D10a.2

DISCRETE MELLIN TRANSFORM FOR SIGNAL ANALYSIS

X
J.Bertrand”, P.Bertrand . and J.P.Ovarlez

*
CNRS,UPR 177 and University Paris VII, LPTM, F75251 PARIS
*x
ONERA, BP 72, F 92322 CHATILLON

Abstract. Theoretical wide-band studies generally
provide expressions involving stretched forms of
the signal. This feature complicates the
implementation of the results and suggests the use
of a Mellin transform in order to process
dilations efficiently. The purpose of the work is
to give a tool for practical developments of this
idea.

In a first step the definition, properties
and time-frequency interpretation of the relevant
Mellin transform are given.Then the discretization
is developed, leading to a form which can run with
any FFT routine. Finally the advantage of the
technique is illustrated by computing broad-band
radar ambiguity functions and affine
time-frequency representations.

1. Time-frequency interpretation of the Mellin

transform.

Introduction of the Mellin transform in
signal analysis corresponds generally to the
search for scale invariant properties [1][2]}.The
point of view here is quite different since the
transformation is only considered as an
interesting technique for computation of
functionals containing dilations. The main
progress is due to the interpretation of the
Mellin variable in the time-frequency half-plane
which leads to a clear formulation of the sampling
problem.

The Mellin transform we consider is defined
on the analytic signal S(f) by the relation:
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and by its reciprocal form:
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The parameter reR corresponds to a physical
scaling factor and is left free.
The transformation is unitary,i.e.
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for the scalar product:
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The main interest of the transformation (1)-(2)
appears when considering the operation:

S(F) — & (£) = a L AMEDEg ) (5)

which corresponds to a dilation of coefficient a>0
about a fixed time £eR. In Mellin space
transformation (5) is simply expressed by:
#E1s1 = a2 E ) (6)
Basically this latter relation comes from the fact
that (2) represents a decomposition of the signal
onto the improper basis of signals:

e—21n§ff—21n3-r—1

2££,p) = 7

which are eigenfunctions of (5).

These signals as well as the B variable get a
geometrical interpretation when going to phase
space, i.e. to the time-frequency half-plane
(£>0). The problem of devising a suitable
time-frequency representation of real signals has
been solved elsewhere [3]. The relevant one in
this context is given by:
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Representation (8) possesses a unitarity
property given by:

P (t,£) P.(t, ) £7%2 at ar = |(5,5)[% 9
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where P1 and P2 correspond to the signals S1 and
82 respectively and where the r.h.s. is defined
by (4).
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The correspondence S —> P has a remarkable
covariance property with respect to the group
E=GxR where G is the affine group of elements

(a,b).Indeed, let V(a,b,c) be the projective
representation of GxR defined by:
V(a,b,c) S(f) = a*! f2iMC ~2imabf o (10)

Then the following diagram is commutative:

S(f) V(a,b,c )S(f)

l )

P(t,f) — > P(a ‘t-b-a lef !, af)

—_—

(11)

Notice that E 1is the only 3-parameter group
containing the affine group G as an invariant
subgroup. This property together with (11) shows
that V plays the same role here as the
inhomogeneous metaplectic representation in the
case of Wigner’s function [4] In the following
E is called compression group to refer to its
appearance in radar theory [5]

Another property of P is obtained by
inserting signals (7) into (8) which yields:

2

P(t,£) = £72772 5(t- (8/£) - €) (12)

Thus the representation of signals 2g is localized
on hyperbolas in the time-frequency half-plane.
This allows to interpret (7) as a realization of
the so-called "Doppler-tolerant" signals [6].

In applications we are concerned with signals
localized in a bounded domain of the
time-frequency half-plane. For such signals the
integral of P(t,f) on hyperbolas introduced in
(12) must vanish for |B| sufficiently large.
According to (9) this implies that the Mellin
transform of a signal localized in the
time-frequency half-plane 1is itself localized.
This remark is at the basis of the development of
the discrete Mellin transform.

2.Some properties of the transform.
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The between
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correspondence

™14¢) and L2%(R,dB) given

formulas (1) and (2) possesses the same kind of
properties as the Fourier transform. The analogy
comes from the fact that the representation (10)
considered for b=£(1-a):

S(f) S (f) = ar+1 fZinc e—Zing(l—a)f

S(af)
is an alternative representation of the Heisenberg
group.
On f-space, an invariant product with respect
to (5) can be introduced by:
+ .
(5,0 8,)(r) = £ M 5 (5) 5 () (13)
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The Mellin transform of this product is given by:

M [510 82] =M [S1] * M [52] (14)

where the r.h.s. operation is the |usual

convolution of functions on B-space.
+ A multiplicative convolution of functions on
R can also be introduced by:

(Sltﬁ Sz)(f) Sl(f/f’) Sz(f’) X

R"
eZinE(f/f +f -f)f,-l

df’ (15)

For a given S, (or Sz], this is the most general

linear operation commuting with transformation
(5).The Mellin transform of (15) vyields the
relation:

(16)

M [sl** 32] =M [Sll M [Szl

where the r.h.s. operation is the usual product of
functions in B-space.

For future discretization of the tranform, it
is useful to define the geometric sampling
distribution :

- n
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whose Mellin transform is the distribution:
©
M [A] = (1/1nA) Z 5(8-p/1nA) (18)

p=-o
Expressions (17) and (18) are the counterparts of
the "Dirac combs" correspondence in the Fourier
transform.In the following, we will restrict
ourselves to the case £=0 and drop altogether the
indices £ and r. The case £#0 is not fundamentally
different.

3.Discrete Mellin transform

We focalize now to signals localized in
a bounded domain of the time-frequency half-plane
(f>0). To any signal S(f) we associate the signal
S(f) given by:

5(f) = Z Q1) gQyy

n=-co

(19)

In the following S(f) is called dilatocycled form

of S(f). The use of the A distribution (17)
permits a compact rewriting of (19) under the
form:

§ = A(f,Q)%* S(f) (20)

The Mellin transform of equation (20) is given by:
M(B) = M [A(£,Q)] M(B) (21)
Recalling equation (18), we see that M(B) is, up

to a constant factor, the sampled form of the

Mellin transform.



As noted at the end of Sec.1, every localized
signal in the time-frequency plane is B-limited
and this remark permits to periodize #(B) by the

operation:

(22)

the parameter q must

(B = M [A(E,q)]* M(B)

In order to avoid aliasing,
verify:

1/inq = lBa_Bll (23)
where 31 and Bz are the extreme points of the
support of M.

The f-form of (22) is obtained by inverting

the Mellin transform using (2) and (16). The
result is (cf. {(13)):

S(f) = a(f,q)o S(f) (24)

If the real numbers Q and g appearing

respectively in (20) and (22) are connected by the
relation:

a=4q (25)
where N is a positive integer, then (22} is a
sampled periodic function. In the same way

condition (25) ensures that the geometric sampling
(24) does not destroy the dilatocycled structure
of the function S(f) defined in (19). The discrete
Mellin transform is then readily obtained by
writing explicitely (22) and (24).The result is:

P+N-1
HM(p/1nQ) = InQ (N)-ljz qk(r+1) e21nkp/N §(qk)
k=P
(26)
In(26), the integer P is determined by the support
of S(f).

A synopsis of the operations leading to (26)
is given in Table 1. The practical exploitation of
the discretized formulas can be carried out with
any FFT algorithm.

4.Applications in broad-band signal analysis.

The development of a fast mellin transform
gives a tool for computation of signal functionals
containing time dilations. This point is now
briefly illustrated on the two problems relative
to the implementation of the wide-band ambiguity

function and of the affine time-frequency
representation.
The general radar ambiguity function is
defined by [7]:
* s
lx(a,0)1% = al[ s(6) s ar) 210 ar)?
R

The computation of this expression is readily
carried out using (6) and the |unitarity
relation (3). Results obtained with this procedure
are shown in Fig.1.

1605

A class of affine time-frequency
distributions relevant to signal analysis [8] is
given by:

P(t,f) = f[ 2imtf (A(u)-a(-u))

S(EA(W))S (£A(~u))

e
K (27)
‘ 4 [Aku)—x(-u)]‘tx(u)x(—u))r*ldu
u
Expression (8) corresponds to the special case:
Aw=w/(e"-1) (28)

To compute (27), it is convenient to perform first
a Mellin transform with respect to the variable f.
The result of the operation can be formulated in
terms of the transforms of the two functions

—r/2e21ntfk(u)

Sl(f,u) = (fa(u)) S(fa(u))

and

—r/Ze-Zinth(-u)

Sz(f,u) = (fa(-u)) S(fa(-u))

The computation is readily completed by using
properties (6) and (14) and the final result in
the time-frequency half-plane 1is obtained by
inversion of a Mellin transform. Two applications
of the procedure are given in Fig.2 for the choice
(28) of the A-function. The first corresponds to
the hyperbolic signal (7) and the second to the
"minimal" signal [9] Smn given by:

2ny e-2n7f (29)

S (f) =f
min
where ¥y is a positive parameter adjusting the
spectral width.
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Table 1: Graphical development of the discrete Mellin transform

{a)
Fig 1: Wide—band ambiguity functions :
a) Hyperbolic signal (7], b) Radar code built with reguiar frequency steps
Aflf = 0.6
(@

Fig 2 : Affine time-frequency representations (8) :
a) Hyperbolic signal (7) , b) Minimal signal (29
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