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Abstract—The Sample Covariance Matrix (SCM) is widely
used in signal processing applications which require the esti-
mation of the data covariance matrix. Indeed it exhibits good
statistical properties and tractability. However its performance
can become very bad in context of non-Gaussian signals, contam-
inated or missing data. In that case M-estimators provide a good
alternative. They have been introduced within the framework
of elliptical distributions which encompass a large number of
well-known distributions as for instance the Gaussian, the K-
distribution or the multivariate Student (or t) distribution. In
this paper, we show that with an appropriate normalization, the
SCM and M-estimators have the same asymptotic behavior. More
precisely, they share the same asymptotic covariance up to a scale
factor. Tyler (1983) obtains similar results but we propose here
a simpler proof for the case of M-estimators. The important
consequence is that the SCM can easily be replaced by M-
estimators with minor changes in performance analysis of signal
processing algorithms. This result is highlighted by simulations in
Direction-Of-Arrival (DOA) estimation using a MUltiple SIgnal
Classification (MUSIC) approach. In this paper, we address the
case of real data. These results have also been extended to the
complex case but, due to the lack of space and for clarity of
the presentation, this generalization will be omitted and will be
addressed later.

I. INTRODUCTION
Many signal processing applications require the estimation

of the data covariance matrix. In the signal processing com-
munity, the data are traditionally considered to be Gaussian
and the standard covariance matrix estimate is the well-known
SCM. However, the SCM suffers from major drawbacks.
Firstly, when the data turn out to be non-Gaussian, as for
instance in adaptive Radar and Sonar [1], the SCM is a
bad estimate: indeed, it is very sensitive to large data and
performs poorly in the case of impulsive noise. Secondly, it
is not robust to outliers. To overcome these problems, there
has been an intense research activity in robust estimation
theory in the statistical community these last decades [2],
[3], [4]. Among several solutions, the so-called M -estimators
originally introduced by Huber [5] and investigated in the
seminal work of Maronna [6], have imposed themselves as
an appealing alternative to the classical SCM. They have been
introduced within the framework of elliptical distributions. El-
liptical distributions (for details see [7] chapter 13) encompass
a large number of well-known distributions as for instance the
Gaussian, the K-distribution or the multivariate Student (or

t) distribution. They may also be used to model heavy tailed
distributions, as may be met for instance in adaptive Radar
with impulsive clutter. M -estimators of the covariance matrix
are however seldom used in the signal processing community.
Notable exceptions are the recent papers by Ollila [8], [9], [10]
who advocates their use in several applications such as array
processing. We may also mention for instance, papers in the
Spherically Invariant Random Vectors (SIRV) framework for
adaptive radar detection [11]. One possible reason for this lack
of interest is that their statistical properties are not well-known
in the signal processing community, as opposed to the Wishart
distribution of the SCM in the Gaussian context. To promote
the use of M -estimators, we show in this paper that their
asymptotic distribution is essentially the same as the Wishart
one. Tyler in [12] obtains similar results but we propose
here a simpler proof for the case of M -estimators. More
precisely, this result is valid after an appropriate normalization
of the covariance matrix estimate, which can be introduced in
most signal processing applications without any consequence
on final results. For instance, in Direction-of-Arrival (DOA)
estimation, a scale factor on the covariance matrix estimate
has no influence on the estimated DOAs. In this paper, we
address the case of real data. These results have also been
extended to the complex case but, due to the lack of space
and for clarity of the presentation, this generalization will be
omitted and will be addressed later.
This paper is organized as follows. Section II introduces
the required background on M -estimators while Section III
provides our contribution on the asymptotic distribution of
these estimators. Then, in Section IV, simulations validate the
theoretical analysis and Section V concludes this work.
Vectors (resp. matrices) are denoted by bold-faced lowercase
letters (resp. uppercase letters). N (µ,Λ) denotes the multi-
variate normal distribution with mean µ and covariance Λ.
∼ means ”distributed as”, d

= stands for ”shares the same
distribution as”, d→ denotes convergence in distribution and
⊗ denotes the kronecker product.

II. BACKGROUND
A. Elliptical distribution

Let x be a m-dimensional real random vector. x has an
elliptical distribution if its probability density function (PDF)
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can be written as

fx(x) = |Λ|−1/2g((x− µ)TΛ−1(x− µ)), (1)

where g : [0,∞)→ [0,∞) is any function such that (1) defines
a PDF, µ is the statistical mean and Λ is a scatter matrix. The
scatter matrix Λ reflects the structure of the covariance matrix
of x, i.e. the covariance matrix is equal to Λ up to a scale
factor. This elliptical distribution will be denoted by E(µ,Λ).

In this paper, we will assume without loss of generality that
the scatter matrix is equal to the covariance matrix. Indeed,
function g in (1) can always be defined such that this equality
holds.

B. M -estimator of the scatter matrix

Let (x1, ...,xN ) be a N -sample of m-dimensional real
independent vectors with xi ∼ E(0,Λ), i = 1, ..., N . The
M -estimator of Λ is defined as the solution of the following
equation

VN =
1

N

N∑
n=1

u
(
xTnV−1N xn

)
xnxTn , (2)

where u is a function satisfying a set of general assumptions
stated in [6] and recalled here below in the case where µ = 0:

- u is non-negative, non increasing, and continuous on
[0,∞).

- Let ψ(s) = su(s) and K = sups≥0 ψ(s). m < K <∞,
ψ is increasing, and strictly increasing on the interval
where ψ < K.

- Let PN (.) denote the empirical distribution of
(x1, ...,xN ). There exists a > 0 such that for every
hyperplane H, dim(H) ≤ m− 1, PN (H) ≤ 1− m

K − a.
This assumption can be strongly relaxed as shown in
[13], [14].

Let us now consider the following equation, which is roughly
speaking the limit of (2)

V = E
[
u(xTV−1x) xxT

]
, (3)

where x ∼ E(0,Λ). Then, under the above conditions,
Maronna has shown in [6] that:

- Equation (3)(resp. (2)) admits a unique solution V (resp.
VN ) and

V = σΛ, (4)

where σ is given in [7].
- A simple iterative procedure provides VN .
- VN is a consistent estimate of V.
- The asymptotic distribution of VN is given by [15]

√
N (vec(VN )− vec(V))

d−→ N (0,Π) , (5)

where
Π = σ1(I + K)(V ⊗ V) + σ2(vecV)(vecV)T , K is
the commutation matrix which transforms vec(A) into
vec(AT ), σ1 and σ2 are scalars given in [15], [7].

C. Wishart distribution
The Wishart distribution W (N,Λ) is the well known

distribution of
N∑
n=1

ynyTn , where yn are i.i.d and N (0,Λ)

distributed. Let WN = N−1
N∑
n=1

ynyTn be the related SCM

which will be also referred to, with a slight abuse, as a Wishart
matrix. The asymptotic distribution of the Wishart matrix WN

is √
N(vec(WN )− vec(Λ))

d−→ N (0,Σ) , (6)

where Σ = (I + K)(Λ⊗Λ).

III. ASYMPTOTIC DISTRIBUTION OF NORMALIZED
M -ESTIMATORS OF THE SCATTER MATRIX

A. Main results
The aim of this paper is to show that after an appropriate

normalization defined here below, M -estimators and Wishart
matrices share the same asymptotic distribution. The required
normalization is as follows. Let A be a m ×m matrix. The
Λ-normalized matrix

∼
A is defined as
∼
A =

m

tr(Λ−1A)
A. (7)

Note that, for any matrix A = αΛ, we have
∼
A = Λ and

therefore: ∼
Λ = Λ and

∼
V = Λ. (8)

Finally, using the identity tr(ATB) = vec(A)T vec(B), the
normalization (7) may be rewritten in vector form:

vec(
∼
A) =

1

cT vec(A)
vec(A), (9)

where c =
1

m
vec(Λ−1). (10)

We show in section III.1 that
∼
VN and

∼
WN/σ1

(with σ1 of (5)),
share the same asymptotic distribution.We start by a lemma
needed for proving the main result.

Lemma III.1 Let (zN )N∈N be a sequence of random vectors
such that √

N(zN −m)
d−→ N (0,Σ). (11)

Let us set
∼
zN =

1

cT zN
zN and

∼
m =

1

cTm
m, where c is an

arbitrary vector. Then
√
N(
∼
zN −

∼
m)

d−→ N
(
0,AΣAT

)
, (12)

with A =
1

cTm

(
I−

mcT

cTm

)
.

Proof: Let us define δN = zN −m. Then

∼
zN =

m + δN

cT (m + δN )
=

m + δN

cTm

(
1 +

cT δN

cTm

). (13)
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Thus, for large N , a first order expansion gives

∼
zN =

1

cTm

(
1−

cT δN

cTm

)
(m + δN )

=
1

cTm

(
m + δN −

cT δN

cTm
m

)
=
∼
m + AδN .

(14)

So, for large N ,
√
N(
∼
zN −

∼
m) = A

√
NδN , which concludes

the proof.

Theorem III.1 Let
∼
VN (resp.

∼
WN ) be a Λ-normalized M -

estimate (resp. Wishart matrix). Then
√
N(
∼
VN − Λ) and√

σ1N(
∼
WN −Λ) share the same asymptotic distribution.

Proof: From (6) and taking into acount (8), the lemma of
section III.1 applied to vec(WN ) with c given by (10) yields√

σ1N(vec(
∼
WN )− vec(Λ))

d−→ N
(
0, σ1AΣAT

)
, (15)

with A =
1

cT vec(Λ)

(
I−

vec(Λ)cT

cT vec(Λ)

)

=

(
I−

1

m
vec(Λ)(vec(Λ−1))T

)
.

Similarly, we obtain from (5),
√
N(
∼
VN −Λ)

d−→ N
(
0,A′ΠA′T

)
, (16)

with A′ =
1

cT vec(V)

(
I−

vec(V)cT

cT vec(V)

)
= 1

σA,

(17)

where the last equality follows from (4). By noticing that

Avec(V)

= vec(V)−
1

m
vec(V)(vec(V−1))T vec(V) = 0,

(18)

it follows that A′ΠA′T = σ1A
′(I + K)(V ⊗V)A′T

= σ1AΣAT ,
(19)

which concludes the proof.
B. Comments

Performance of signal processing algorithms based on a co-
variance matrix estimate have been extensively studied in the
Gaussian framework with the Wishart distributed SCM. Most
of the time, these algorithms are insensitive to a scaling of the
covariance matrix estimate, as for instance in DOA estimation.
In these cases, the proposed theorem allows a straightforward
performance analysis when using M -estimates of V. Indeed
for such algorithms, VN and

∼
VN could be equivalently used,

although of course, only VN can be obtained in practice. Since
theorem 3.2 says that

∼
VN and

∼
WN share the same distribution

for large N , we can conclude that using robust M -estimates
is equivalent in terms of performance, to using the SCM with
N/σ1 Gaussian data.

IV. SIMULATIONS

To illustrate theorem (III.1), we consider a simulation using
the MUltiple SIgnal Classification (MUSIC) method, which
estimates the Direction Of Arrival (DOA) of a signal.
A. MUSIC with real data

MUSIC is normally applied to complex baseband signals.
However, to highlight the result of theorem (III.1), our analysis
of M -estimates has been conducted for real observations.
Therefore, we choose to apply the MUSIC algorithm to real
narrowband signals. The resulting so called MUSIC-COM
algorithm has been described in [16] in a spectral analysis
framework with sinusoidal signals; it may be applied to DOA
estimation as will be done in this section.

Let a(t) be a white zero-mean Gaussian stationnary signal
in the angular frequency band [ω0 − Ω, ω0 + Ω]. a(t) can be
written

a(t) = sI(t) cos(ω0t)− sQ(t) sin(ω0t) (20)

where sI(t) and sQ(t) are independent, white, zero-mean,
Gaussian, stationnary signals in [−Ω,Ω].

Assuming that τ <<
π

Ω
, we have

a(t− τ)

= (sI(t− τ) cos(ω0t)− sQ(t− τ) sin(ω0t)) cos(ω0τ)

+ (sI(t− τ) sin(ω0t) + sQ(t− τ) cos(ω0t)) sin(ω0τ)

≈ (sI(t) cos(ω0t)− sQ(t) sin(ω0t)) cos(ω0τ)

+(sI(t) sin(ω0t) + sQ(t) cos(ω0t)) sin(ω0τ)

where the last approximation follows from τ �
π

Ω
.

Let us set: b(t) = sI(t) sin(ω0t) + sQ(t) cos(ω0t) (21)

so that a(t− τ) ≈ a(t) cos(ω0τ) + b(t) sin(ω0τ). (22)

It is easy to check that a(t) and b(t) are independent, and that
b(t) has the same statistical properties as a(t).

Now let us consider a linear uniform array of M sensors
receiving signals from P Gaussian, independent, white, nar-
rowband [ω0−Ω, ω0 + Ω], stationary sources. From the above
discussion the signals xm(t) at the sensors output may be
written

x(t) =
(
x1(t)...xM (t)

)T
=

P∑
p=1

ap(t)

 cos(ω0τp,1)
...

cos(ω0τp,M )

+

P∑
p=1

bp(t)

 sin(ω0τp,1)
...

sin(ω0τp,M )


+n(t).

where
- ap(t) and bp(t) are decorrelated and of same variance σ2

p,
- (ap(t), bp(t)) and (ap′(t

′), bp′(t
′)) are decorrelated for

p 6= p′,
- n(t) is a white Gaussian noise.
- τp,m is the propagation delay between the first and m-th

sensors for the p-th signal (τp,1 = 0).
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Let us sample the array output at a rate
1

Ts
=

Ω

π
. Let

(x1, ...,xn, ...,xN ) be N snapshots with xn = x(nTs):

xn =

P∑
p=1

ap,n

 cos(ω0τp,1)
...

cos(ω0τp,M )

+

P∑
p=1

bp,n

 sin(ω0τp,1)
...

sin(ω0τp,M )

+nn.

(23)
where

- ap,n ∼ N (0, σ2
p), bp,n ∼ N (0, σ2

p), nn ∼ N (0, σ2I)
- E [ap,nap′,n′ ] = E[bp,nbp′,n′ ] = σ2

pδp,p′δn,n′

- E[ap,nbp′,n′ ] = 0
- E[nnnTn′ ] = σ2δn,n′I

This leads to a real 2P -dimensional signal subspace for P nar-
rowband sources, instead of the usual P -dimensional subspace.
Let M̂ be the estimated covariance matrix, P̂ its projector
onto the eigenspace related to the 2P largest eigenvalues and
P̂⊥ = I − P̂. The pseudospectrum of the MUSIC-COM
algorithm is

F (θ) =
||a||2 + ||b||2

aT (θ)P̂⊥a(θ) + bT (θ)P̂⊥b(θ)
(24)

with a(θ) =
(
cos(ω0τ1(θ))... cos(ω0τM (θ))

)T
and b(θ) =(

sin(ω0τ1(θ))... sin(ω0τM (θ))
)T

. τm(θ) is the theoretical
propagation delay between the first and m-th sensor (depend-
ing on the distance between two sensors and the angular
frequency of the signal) for DOA θ (τ1(θ) = 0).
The P largest maxima are reached for θ corresponding to the
estimated DOAs of the P arriving signals.
B. Implementation using Huber’s M-estimator

We consider M = 6 uniform linear array with half wave-
length sensors spacing, receiving P = 1 Gaussian stationnary
narrowband signal with DOA 20◦. The array output is cor-
rupted by an additive spatially white Gaussian noise. SNR per
sensor is 5dB, the N snapshots are assumed to be independent.

The employed covariance matrix estimators are the SCM
and Huber’s M - estimator (example 1, p.53, [6]) defined by

u(s) =
1

β
min

(
1,
k2

s

)
(25)

where k2 and β depend on a parameter q, according to q =
Fm(k2) and β = Fm+2(k2)+k2 1−q

m . Fm(.) is the cumulative
distribution function of χ2 variate with m degrees of freedom.
Briefly, q = 1 leads to the SCM while smaller values bring
robustness to outliers. The chosen value is q = 0.05 for which
σ1 = 1.3 in (III.1).

Figure 1 depicts the Mean Square Error (MSE) of the DOA
estimated with N data for the SCM and for Huber’s estimate.
The MSE of the DOA obtained for σ1N data with Huber’s
estimate is also represented. For N large enough (N ≥ 20),
this curve and the SCM one overlap, as expected from theorem
(III.1).

V. CONCLUSION

In this paper we have analyzed the statistical properties of
general M -estimators of scatter matrix. More precisely, we
have shown that these estimators and the classical Wishart

matrix share the same asymptotic ditribution, with an ap-
propriate normalization. Indeed, M -estimators have the same
asymptotic covariance matrix as the Wishart matrix up to
a scalar factor σ1. Roughly speaking, this means that M -
estimators built with σ1N data achieve the same asymptotic
performance as the SCM built with N data. A simulation
of DOA estimation using MUSIC method has illustrated this
theoretical analysis. These results are in favor of M -estimators
since they provide robustness and behave almost like standard
tools. The generalisation to the complex case has been done
and will be submitted in a forthcoming paper.

Fig. 1. MSE (logarithmic scale) on the source DOA for Huber’s estimate
and the SCM. ACKNOWLEDGMENT
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