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Abstract—This letter presents a new estimation scheme for
optimally deriving clutter parameters with high-resolution polari-
metric synthetic aperture radar (POLSAR) data. The heteroge-
neous clutter in POLSAR data is described by the spherically
invariant random vector model. Three parameters are introduced
for the high-resolution POLSAR data clutter: the span, the nor-
malized texture, and the speckle normalized covariance matrix.
The asymptotic distribution of the novel span estimator is investi-
gated. A novel heterogeneity test for the POLSAR clutter is also
discussed. The proposed method is tested with airborne POLSAR
images provided by the Office National d’Études et de Recherches
Aerospatiales Radar Aéroporté Multi-spectral d’Etude des Signa-
tures system.

Index Terms—Detection, estimation, polarimetry, synthetic
aperture radar (SAR).

I. INTRODUCTION

THE RECENTLY launched polarimetric synthetic aperture
radar (SAR) (POLSAR) systems are now capable of pro-

ducing high-quality images of the Earth’s surface with meter
resolution. The goal of the estimation process is to derive
the scene signature from the observed data set. In the case
of spatially changing surfaces (“heterogeneous” or “textured”
scenes), the first step is to define an appropriate model de-
scribing the dependence between the polarimetric signature
and the observable as a function of the speckle. In general,
the multiplicative model has been employed for POLSAR data
processing as a product between the square root of a scalar
positive quantity (texture) and the description of an equivalent
homogeneous surface (speckle) [1], [2].
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In the context of the non-Gaussian polarimetric clutter mod-
els, several studies tackled POLSAR parameter estimation us-
ing the product model. For deterministic texture, Novak and
Burl derived the polarimetric whitening filter (PWF) by opti-
mally combining the elements of the polarimetric covariance
matrix to produce a single scalar image [1], [3]. Using the com-
plex Wishart distribution, the PWF for homogeneous surfaces
has been generalized to a multilook PWF (MPWF) in [2] and
[4]. The objective of this letter is to present a novel parameter
estimation technique based on the spherically invariant random
vector (SIRV) model. For a detailed review on the use of SIRV
with POLSAR data, refer to [5].

This letter is organized as follows. The POLSAR parameter
estimation strategy for SIRV clutter model both with normal-
ized texture and normalized covariance matrix is presented
in Sections II and III, respectively. Then, the novel span es-
timator is introduced in Section IV. Next, some estimation
results are shown in Section V on a real high-resolution
POLSAR data set acquired by the Office National d’Études
et de Recherches Aerospatiales (ONERA) Radar Aéroporté
Multi-spectral d’Etude des Signatures (RAMSES) system.
Eventually, in Section VI, some conclusions are presented.

II. SIRV CLUTTER MODEL WITH NORMALIZED TEXTURE

The SIRV is a class of nonhomogeneous Gaussian processes
with random variance [6], [7]. The complex m-dimensional
measurement k (with m being the number of polarimetric
channels) is defined as the product between the independent
complex circular Gaussian vector ζ ∼ N (0, [T ]) (speckle) with
zero mean and covariance matrix [T ] = E{ζζ†} and the square
root of the positive random variable ξ (representing the texture):
k =

√
ξ · ζ. It is important to notice that, in the SIRV definition,

the probability density function (pdf) of the texture random
variable is not explicitly specified. As a consequence, SIRVs
describe a whole class of stochastic processes [8].

For POLSAR clutter, the SIRV product model is the product
of two separate random processes operating across two differ-
ent statistical axes [5]. The polarimetric diversity is modeled
by the multidimensional Gaussian kernel. The randomness of
spatial variations in the radar backscattering from cell to cell is
characterized by ξ. Relative to the polarimetric axis, the texture
random variable ξ can be viewed as an unknown deterministic
parameter from cell to cell.

The texture and the covariance matrix unknown parameters
can be estimated from the maximum likelihood (ML) theory.
For N independent and identically distributed secondary data,
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let Lk(k1, . . . ,kN |[T ], ξ1, . . . , ξN ) be the likelihood function
to maximize with respect to [T ] and ξi

Lk (k1, . . . ,kN ; [T ], ξ1, . . . , ξN ) =
1

πmN det {[T ]}N

×
N∏
i=1

1

ξmi
exp

(
−k†

i[T ]
−1ki

ξi

)
. (1)

The corresponding ML estimators are given by [9]

∂ lnLk (k1, . . . ,kN |[T ], ξ1, . . . , ξN )

∂ξi
=0 ⇔ ξ̂i

=
k†
i[T ]

−1ki

m
(2)

∂ lnLk (k1, . . . ,kN |[T ], ξ1, . . . , ξN )

∂[T ]
= 0 ⇔ [T̂ ]

=
1

N

N∑
i=1

kik
†
i

ξ̂i
. (3)

As the variables ξi are unknown, the following normalization
constraint on the texture parameters assures that the ML estima-
tor of the speckle covariance matrix is the sample covariance
matrix (SCM):

[T̂ ] =
1

N

N∑
i=1

kik
†
i

= [T̂ ]SCM ⇔ 1

N

N∑
I=1

kik
†
i

(
1− 1

ξ̂i

)
= [0m]. (4)

The generalized ML estimator for ξi is obtained by introduc-
ing (4) in (2)

ξ̂i =
k†
i[T̂ ]

−1
SCMki

m
. (5)

Note that the ki primary data are the cell under study.
The normalized texture estimator from (5) is known as the

PWF (PWF-SCM) introduced by Novak and Burl in [1].

III. SIRV CLUTTER MODEL WITH NORMALIZED

COVARIANCE MATRIX

Now, let the covariance matrix be of the form [T ] = σ0[M ],
such that Tr{[M ]} = 1. The product model can be also written
as k =

√
τ · z, where z ∼ N (0, [M ]). σ0 and ξ are two scalar

positive random variables such that τ = σ0 · ξ.
Using the same procedure as in Section II and given the

fact that the covariance matrix is normalized, it is possible to
compute the generalized ML estimator of [M ] as the solution
of the following recursive equation:

[M̂ ]FP = f
(
[M̂ ]FP

)
=

1

N

N∑
i=1

kik
†
i

k†
i[M̂ ]−1

FPki

. (6)

This approach has been used in [10] by Conte et al. to derive
a recursive algorithm for estimating the matrix [M ]. This algo-

rithm consists in computing the fixed point (FP) of f using the
sequence ([M ]i)i≥0 defined by

[M ]i+1 = f ([M ]i) . (7)

This study has been completed by the work of Pascal et al.
[11], [12], which recently established the existence and the
uniqueness, up to a scalar factor, of the FP estimator of the
normalized covariance matrix, as well as the convergence of
the recursive algorithm whatever the initialization. The al-
gorithm can therefore be initialized with the identity matrix
[M̂ ]0 = [Im].

The generalized ML estimator (PWF-FP) for the τi texture
for the primary data ki is given by

τ̂i =
k†
i[M̂ ]−1

FPki

m
. (8)

One can observe that the PWF-FP texture from (8) has the
same form as the PWF-SCM. The only difference is the use of
the normalized covariance estimate given by the FP estimator
instead of the conventional SCM [5].

IV. MAIN RESULT

The span (total power) σ0 can be derived using the covariance
matrix estimators presented in Sections II and III as

σ̂0 =
k†[M̂ ]−1

FPk

k†[T̂ ]−1
SCMk

. (9)

Note that (9) is valid when considering N identically distributed
linearly independent secondary data and one primary data. It
can be seen as a double PWF issued from two equivalent
SIRV clutter models: with normalized texture variables and
with normalized covariance matrix parameter.

The main advantage of the proposed estimation scheme
is that it can be directly applied with standard boxcar
neighborhoods.

A. Asymptotic Statistics of σ̂0

This section is dedicated to the study of large sample proper-
ties and approximations of the span estimator σ̂0 from (9).

On one hand, the asymptotic distribution of the FP estimator
from (6) has been derived in [12]. The FP estimator computed
with N secondary data converges in distribution to the nor-
malized SCM computed with N [m/(m+ 1)] secondary data.
Since the normalized SCM is the SCM up to a scale factor,
we may conclude that, in problems invariant with respect to a
scale factor on the covariance matrix, the FP estimate is asymp-
totically equivalent to the SCM computed with N [m/(m+ 1)]
secondary data. Hence, one can set the degrees of freedom of
FP normalized covariance matrix estimators as

q1 = N
m

m+ 1
. (10)

On the other hand, Chatelain et al. established the multi-
sensor bivariate gamma distribution pdf, whose margins are
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Fig. 1. Ratio pdf of two correlated Gamma random variables (11) for different
ρ values and the empirical pdf of simulated σ0 in Gaussian clutter.

univariate gamma distributions with different shape param-
eters [13]

PbΓ(y1, y2; p1, p2, p12, q1, q2).

The scale parameters p2 and p1 and the shape parameters q2 >
q1 and p12 are linked to the mean parameters µ1 and µ2, to the
number of degrees of freedom n1 and n2, and to the normalized
correlation coefficient ρ such as

q1 = n1, q2 = n2, p1 =
µ1

q1
, p2 =

µ2

q2
, p12 =

µ1µ2

q1q2
(1− ρ).

Using these results, we derived the pdf of the ratio R = y1/y2
of two correlated Gamma random variables

PRΓ(R, p1, p2, p12, q1, q2)

=Rq1−1

(
p2
p12

)q1( 1

p2

)q2( p12
p1 +Rp2

)q2+q1 Γ(q1 + q2)

Γ(q1)Γ(q2)

×H3

[
q1 + q2, q2 − q1, q2;

R
p1p2 − p12
(p1 +Rp2)2

,
p1p2 − p12

p2(p1 +Rp2)

]
(11)

where H3(α, β, γ;x, y) =
∑∞

m,n=0((α)2m+n(β)n/(γ)m+n

m!n!)xmyn is one of the 20 convergent confluent
hypergeometric series of order two (Horn function) and
(α)n is the Pochhammer symbol such that (a)0 = 1 and
(a)k+1 = (a+ k)(a)k for any positive integer k [14].

By taking into consideration both (10) and (11) and
Cochran’s theorem [15], the pdf of the span estimator from
(9) converges asymptotically to the the ratio of two corre-
lated Gamma random variable pdfs (the ratio of two quadrat-
ics). Moreover, the degrees of freedom n1 and n2 are set
to N [m/(m+ 1)] and N (the number of secondary data),
respectively.

Fig. 1 shows the behavior of the σ0 pdf with respect to the
normalized correlation coefficient ρ. The pdf parameters are set
according to the processing illustrated in Section IV, namely,
N = 24, m = 3, µ1 = 10, and µ2 = 1. Notice that, when the
normalized correlation coefficient approaches to one, the pdf
tends to a Dirac.

A Monte Carlo simulation has also been represented in
Fig. 1. Five thousand samples of σ0 were obtained by comput-
ing 5000 × 24 samples drawn from a zero-mean multivariate
circular complex Gaussian distribution with a covariance matrix

TABLE I
EMPIRICAL MEAN AND VARIANCE OF THE σ0 ESTIMATOR FROM (9) AND

THEIR EXPECTED VALUES FOR SIMULATED GAUSSIAN CLUTTER

selected from the real POLSAR data. The span of the selected
covariance matrix equals three. One can observe the good
correspondence between the empirical pdf of simulated σ0 and
the pdf derived in (11) for ρ = 0.95.

Using the same parameters as in the previous Monte Carlo
simulation, Table I illustrates the behavior of the empirical
mean and variance of the proposed σ0 in Gaussian clutter (e.g.,
in homogeneous regions). By using 24 up to 48 secondary data,
the estimation bias is negligible, and the empirical variance is
close to zero.

B. σ0 Test

In this section, we propose to show how the estimator from
(9) is linked with a binary hypothesis testing problem, also
under the following.

1) Null hypothesis H0: The observed target vector k =√
ξ · ζ belongs to the SIRV clutter ζ ∼ N (0, [T ]) with

normalized texture.
2) Alternative hypothesis H1: The primary target vector k =√

τ · z belongs to the SIRV clutter z ∼ N (0, [M ]) with
normalized covariance matrix.

From the operational point of view, the proposed detector is
a classical constant false-alarm-rate detector with current pixel
as the primary data and with the local boxcar neighborhood
around it as the secondary data.

The Neyman–Pearson optimal detector is given by the fol-
lowing likelihood ratio test (LRT):

Λ(k) =
pk(k/H1)

pk(k/H0)

H1

≷
H0

λ. (12)

After expressing the pdf under each hypothesis, it results in

Λ(k) =

1
πm det{[M ]}τm exp

(
−k†[M ]−1k

τ

)
1

πm det{[T ]}ξm exp
(
−k†[T ]−1k

ξ

) H1

≷
H0

λ. (13)

By plugging into the LRT the ML texture estimators from (5)
and (8), we obtain

Λ(k) =
det {[T ]}
det {[M ]}

(
k†[T ]−1k

k†[M ]−1k

)m
H1

≷
H0

λ. (14)

Next, we assume that the ratio of determinants is a deterministic
quantity, and we denote it by α. This is an approximation, since
in practice, the ratio of determinants is also computed using
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Fig. 2. Toulouse, RAMSES POLSAR data, X-band, 1500 × 2000 pixels:
Amplitude color composition of the target vector elements k1 − k3 − k2.

the ML estimators of the respective covariance matrix with N
secondary data. Finally, by replacing the known covariances by
their ML estimates, the generalized LRT is

Λ(k) = ασ̂0
−m

H1

≷
H0

λ. (15)

As α appears as a deterministic quantity only, it is possible to
use the pdf derived in Section IV-A to set the decision threshold
λ for a specific false-alarm probability.

V. RESULTS AND DISCUSSIONS

The high-resolution POLSAR data set, shown in Fig. 2,
was acquired by the ONERA RAMSES system over Toulouse,
France, with a mean incidence angle of 50◦. It represents a
fully polarimetric (monostatic mode) X-band acquisition with a
spatial resolution of approximately 50 cm in range and azimuth.
In the upper part of the image, one can observe the CNES
buildings.

Fig. 4(a)–(c) shows the three SIRV parameters which com-
pletely describe the POLSAR data set: the total power, the
normalized texture, and the normalized covariance matrix. The
5 × 5 boxcar neighborhood has been selected for illustration;
hence, 24 secondary samples and 1 primary data.

Fig. 3 shows the zoom over the red rectangle from
Fig. 4(a), where a narrow diplane target was previously de-
tected. Fig. 3(a)–(c) shows the FP-PWF texture, the SCM-
PWF normalized texture, and the proposed span estimator σ̂0,
respectively. For comparison, the MPWF has been shown in
Fig. 3(d). The proposed estimator exhibits better performances
in terms of spatial resolution preservation than the MPWF span
estimator: The ring effect (two large dips on a spatial profile
near the boundaries of a pointwise target [16]) is reduced.

Finally, Fig. 5 shows the detection map obtained using the
LRT from (15) with 25 secondary and one primary data. The
detection threshold has been obtained by Monte Carlo inte-
gration of the pdf from (11) with a false-alarm probability set
to Pfa = 10−3 in each pixel. Note that the pdf integration for
such a small Pfa is quite time consuming, and fast numerical
approximations need to be investigated in the future for going

Fig. 3. Toulouse, RAMSES POLSAR data, X-band, 50 × 50 pixels, zoom im-
age: (a) FP-PWF texture, (b) SCM-PWF normalized texture, (c) span estimated
using σ̂0 from (9), and (d) SCM-MPWF span.

to an operational level. This detection map can be interpreted
as follows:

1) heterogeneous clutter areas, represented in red, reveal
dense urban areas, which exhibit fewer dominant scatter-
ers within the resolution cell. Over these areas, according
to the hypotheses test from Section IV, it is better to esti-
mate clutter parameters using the normalized covariance
SIRV model;

2) homogeneous clutter areas, represented in blue, where the
normalized texture model is better.

Concerning the validation of our results, the generalized LRT
is known to be asymptotically uniformly most powerful ac-
cording to the Neyman–Pearson lemma [17]. This “optimality”
holds provided that the ML estimators plugged into the LRT are
consistent, which is the case for our study [11], [12].

VI. CONCLUSION

This letter has presented a new estimation scheme for
optimally deriving clutter parameters with high-resolution
POLSAR images. The heterogeneous clutter in POLSAR data
was described by the SIRV model. Three estimators were
introduced for describing the high-resolution POLSAR data set:
the span, the normalized texture, and the speckle normalized
covariance matrix. The asymptotic distribution of the new
span estimator has been established. The estimation bias on
homogeneous regions has been assessed also by Monte Carlo
simulations. Based on these issues, a novel test has been intro-
duced for selecting the most appropriate model for POLSAR
heterogeneous clutter described by SIRVs.

This work has many interesting perspectives. We believe
that this letter contributes toward the description and the anal-
ysis of heterogeneous clutter over scenes exhibiting complex
polarimetric signatures. First, the exact texture normaliza-
tion condition for the PWF-SCM estimator has been derived
in Section II under the SIRV clutter hypothesis. A novel
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Fig. 4. Toulouse, RAMSES POLSAR data, X-band, 1500 × 2000 pix-
els: (a) Span estimated using σ̂0 from (9), (b) normalized texture ξ, and
(c) color composition of the normalized coherency diagonal elements [M ]11 −
[M ]33 − [M ]22.

estimation/detection strategy has been proposed, which can be
used with conventional boxcar neighborhoods directly. Finally,
the proposed estimation scheme can be extended to other
multidimensional SAR techniques using the covariance matrix
descriptor, such as repeat-pass interferometry, polarimetric in-
terferometry, or multifrequency polarimetry.
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Fig. 5. Toulouse, RAMSES POLSAR data, X-band, 1500 × 2000 pixels: LRT
detection map at Pfa = 10−3 (SIRV with normalized texture in blue and SIRV
with normalized covariance in red).

REFERENCES

[1] L. M. Novak and M. C. Burl, “Optimal speckle reduction in polarimet-
ric SAR imagery,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 2,
pp. 293–305, Mar. 1990.

[2] A. Lopes and F. Sery, “Optimal speckle reduction for the product model in
multilook polarimetric SAR imagery and the Wishart distribution,” IEEE
Trans. Geosci. Remote Sens., vol. 35, no. 3, pp. 632–647, May 1997.

[3] L. M. Novak, M. C. Burl, and W. W. Irving, “Optimal polarimetric
processing for enhanced target detection,” IEEE Trans. Aerosp. Electron.
Syst., vol. 29, no. 1, pp. 234–244, Jan. 1993.

[4] G. Liu, S. Huang, A. Torre, and F. Rubertone, “The multilook polarimetric
whitening filter (MPWF) for intensity speckle reduction in polarimetric
SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 1016–
1020, May 1998.

[5] G. Vasile, J.-P. Ovarlez, F. Pascal, and C. Tison, “Coherency matrix
estimation of heterogeneous clutter in high resolution polarimetric SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4, pp. 1809–
1826, Apr. 2010.

[6] B. Picinbono, “Spherically invariant and compound Gaussian stochas-
tic processes,” IEEE Trans. Inf. Theory, vol. IT-16, no. 1, pp. 77–79,
Jan. 1970.

[7] K. Yao, “A representation theorem and its applications to spherically-
invariant random processes,” IEEE Trans. Inf. Theory, vol. IT-19, no. 5,
pp. 600–608, Sep. 1973.

[8] S. Zozor and C. Vignat, “Some results on the denoising problem in the
elliptically distributed context,” IEEE Trans. Signal Process., vol. 58,
no. 1, pp. 134–150, Jan. 2010.

[9] F. Gini and M. V. Greco, “Covariance matrix estimation for CFAR detec-
tion in correlated heavy tailed clutter,” Signal Process., vol. 82, no. 12,
pp. 1847–1859, Dec. 2002.

[10] E. Conte, A. DeMaio, and G. Ricci, “Recursive estimation of the co-
variance matrix of a compound-Gaussian process and its application to
adaptive CFAR detection,” IEEE Trans. Signal Process., vol. 50, no. 8,
pp. 1908–1915, Aug. 2002.

[11] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P. Larzabal, “Co-
variance structure maximum-likelihood estimates in compound Gaussian
noise: Existence and algorithm analysis,” IEEE Trans. Signal Process.,
vol. 56, no. 1, pp. 34–48, Jan. 2008.

[12] F. Pascal, P. Forster, J.-P. Ovarlez, and P. Larzabal, “Performance analysis
of covariance matrix estimates in impulsive noise,” IEEE Trans. Signal
Process., vol. 56, no. 6, pp. 2206–2217, Jun. 2008.

[13] F. Chatelain, J. Y. Tourneret, and J. Inglada, “Change detection in mul-
tisensor SAR images using bivariate gamma distributions,” IEEE Trans.
Image Process., vol. 17, no. 3, pp. 249–258, Mar. 2008.

[14] A. Erdlyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcen-
dental Functions, vol. 1. New York: Krieger, 1981.

[15] W. G. Cochran, “The distribution of quadratic forms in a normal system,
with applications to the analysis of covariance,” Math. Proc. Camb. Phi-
los. Soc., vol. 30, no. 2, pp. 178–191, 1934.

[16] J. S. Lee, S. R. Cloude, K. P. Papathanassiou, M. R. Grunes, and
I. H. Woodhouse, “Speckle filtering and coherence estimation of po-
larimetric SAR interferometry data for forest applications,” IEEE Trans.
Geosci. Remote Sens., vol. 41, no. 10, pp. 2254–2263, Oct. 2003.

[17] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and
Time Series Analysis. Reading, MA: Addison-Wesley, 1991.


