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2 : SONDRA, Supélec, FRANCE,frederic.pascal@supelec.fr

3 : French Aerospace Lab, ONERA DEMR/TSI, FRANCE,ovarlez@onera.fr

ABSTRACT

This paper presents a new estimation scheme for optimally
deriving clutter parameters with high resolution POLSAR
data. The heterogeneous clutter in POLSAR data was de-
scribed by the Spherically Invariant Random Vectors model.
Three parameters were introduced for the high resolution
POLSAR data clutter: the span, the normalized texture and
the speckle normalized covariance matrix. The asymptotic
distribution of the novel span estimator is also investigated.
The proposed method is tested with airborne POLSAR im-
ages provided by the ONERA RAMSES system.

Index Terms— SAR, polarimetry, estimation

1. INTRODUCTION

The recently launched polarimetric SAR (POLSAR) sys-
tems are now capable of producing high quality images of
the Earth’s surface with meter resolution. The goal of the
estimation process is to derive the scene signature from the
observed data set. In the case of spatially changing surfaces
(”heterogeneous” or ”textured” scenes) the first step is to de-
fine an appropriate model describing the dependency between
the polarimetric signature and the observable as a function
of the speckle. In general, the multiplicative model has been
employed for POLSAR data processing as a product between
the square root of a scalar positive quantity (texture) and the
description of an equivalent homogeneous surface (speckle)
[1]. The objective of this paper is to present a new param-
eter estimation technique based on the Spherically Invariant
Random Vectors (SIRV) model.

2. SIRV CLUTTER MODEL WITH NORMALIZED
TEXTURE

The SIRV is a class of non-homogeneous Gaussian processes
with random variance [2]. The complex m-dimensional mea-
surementk is defined as the product between the independent
complex circular Gaussian vectorζ ∼ N (0, [T ]) (speckle)
with zero mean and covariance matrix[T ] = E{ζζ†} and the

square root of the positive random variableξ (representing the
texture):

k =
√

ξ · ζ. (1)

It is important to notice that in the SIRV definition, the prob-
ability density function (PDF) of the texture random variable
is not explicitly specified. As a consequence, SIRVs describe
a whole class of stochastic processes.

For POLSAR clutter, the SIRV product model is the
product of two separate random processes operating across
two different statistical axes [3]. The polarimetric diversity
is modeled by the multidimensional Gaussian kernel. The
randomness of spatial variations in the radar backscattering
from cell to cell is characterized byξ. Relatively to the po-
larimetric axis, the texture random variableξ can be viewed
as a unknown deterministic parameter from cell to cell.

The texture and the covariance matrix unknown parame-
ters can be estimated from the ML theory. ForN i.i.d. sec-
ondary data, letLk(k1, ...,kN |[T ], ξ1, ..., ξN ) be the likeli-
hood function to maximize with respect to[T ] andξi.

Lk(k1, ...,kN ; [T ], ξ1, ..., ξN ) =
1

πmNdet{[T ]}N
×

×
N∏

i=1

1

ξm
i

exp

(
−k

†
i [T ]−1

ki

ξi

)
. (2)

The corresponding ML estimators are given by [4]:

∂lnLk(k1, ..., kN |[T ], ξ1, ..., ξN)

∂ξi

= 0 ⇔ bξi =
k
†
i
[T ]−1

ki

m
, (3)

∂lnLk(k1, ..., kN |[T ], ξ1, ..., ξN)

∂[T ]
= 0 ⇔ [ bT ] =

1

N

N
X

i=1

kik
†
i

bξi

.

(4)

As the variablesξi are unknown, the following normal-
ization constraint on the texture parameters assures that the
ML estimator of the speckle covariance matrix is the Sample
Covariance Matrix (SCM):

[ bT ] =
1

N

N
X

i=1

kik
†
i

= [ bT ]SCM ⇔
1

N

N
X
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†
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1 −
1
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«

= [0m].

(5)
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The generalized ML estimator forξi are obtained by intro-
ducing Eq. 5 in Eq. 3:

ξ̂i =
k
†
i [T̂ ]−1

SCMki

m
. (6)

Note theki primary data is the cell under study.

3. SIRV CLUTTER MODEL WITH NORMALIZED
COVARIANCE MATRIX

Let now the covariance matrix be of the form[T ] = σ0[M ],
such that Tr{[M ]} = 1. The product model form Eq. 1 can
be also written as:

k =
√

τ · z, (7)

wherez ∼ N (0, [M ]). σ0 andξ are two scalar positive ran-
dom variables such thatτ = σ0 · ξ.

The likelihood function is:

Lk(k1, ...,kN ; [M ], τ1, ..., τN ) =
1

πmNdet{[M ]}N
×

×
N∏

i=1

1

τm
i

exp

(
−k

†
i [M ]−1

ki

τi

)
. (8)

Using the same procedure as in Sect. 2, the corresponding
texture and normalized covariance ML estimators are given
by:

∂lnLk(k1, ..., kN ; [M ], τ1, ..., τN )

∂τi

= 0 ⇔ bτi =
k
†
i
[M ]−1

ki

m
,

(9)

∂lnLk(k1, ..., kN ; [M ], τ1, ..., τN)
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(10)

Given the fact that the covariance matrix is normalized, it
is possible to compute the generalized ML estimator of[M ]
as the solution of the following recursive equation:

[M̂ ]FP = f([M̂ ]FP ) =
1

N

N∑

i=1

kik
†
i

k
†
i [M̂ ]−1

FP ki

. (11)

This approach has been used in [5] by Conte et al. to derive
a recursive algorithm for estimating the matrix[M ]. This al-
gorithm consists in computing the Fixed Point off using the
sequence([M ]i)i≥0 defined by:

[M ]i+1 = f([M ]i). (12)

This study has been completed by the work of Pascal et al. [6],
[7], which recently established the existence and the unique-
ness, up to a scalar factor, of the Fixed Point estimator of the
normalized covariance matrix, as well as the convergence of
the recursive algorithm whatever the initialization. The al-
gorithm can therefore be initialized with the identity matrix
[M̂ ]0 = [Im].

The generalized ML estimator for theτi texture for the
primary dataki is given by:

τ̂i =
k
†
i [M̂ ]−1

FP ki

m
. (13)

4. MAIN RESULT

The span (total power)σ0 can be derived using the covariance
matrix estimators presented in Sect. 2 and Sect. 3 as:

σ̂0 =
k
†[M̂ ]−1

FPk

k†[T̂ ]−1

SCMk
. (14)

Note that Eq. 14 is valid when consideringN identically
distributed linearly independent secondary data and one pri-
mary data. It can be seen as a double polarimetric whitening
filter issued from two equivalent SIRV clutter models: with
normalized texture variables and with normalized covariance
matrix parameter.

The main advantage of the proposed estimation scheme is
that it can be directly applied with standard boxcar neighbor-
hoods. Fig. 1 illustrates the spanσ0 estimation with high
resolution POLSAR X-band data acquired by the ONERA
RAMSES system with a spatial resolution of approximately
1.5 m. The5 × 5 boxcar neighborhood has been selected for
illustration, hence24 secondary samples and1 primary data.
The proposed estimator from Fig. 1-(c) exhibits better per-
formances in terms of spatial resolution preservation thanthe
standard span estimator illustrated in Fig. 1-(b).

Finally, Fig. 2 presents the three SIRV parameters which
completely describe the POLSAR data set: the total power,
the normalized texture and the normalized covariance matrix.

5. ASYMPTOTIC STATISTICS OF σ̂0

This section is dedicated to the study of large sample prop-
erties and approximations of the span estimatorσ̂0 form Eq.
14.

On one hand, the asymptotic distribution of the FP esti-
mator from Eq. 11 has been derived in [7]. The FP estimator
computed withN secondary data converges in distribution
to the normalized SCM computed withN [m/(m + 1)] sec-
ondary data. Since the normalized SCM is the SCM up to a
scale factor, we may conclude that, in problems invariant with
respect to a scale factor on the covariance matrix, the FP esti-
mate is asymptotically equivalent to the SCM computed with
N [m/(m+1)] secondary data. Hence one can set the degrees
of freedom of FP normalized covariance matrix estimators as:

q1 = N
m

m + 1
. (15)

On the other hand, the bivariate Gamma PDF has been
established by Chatelain et al. in [8]:

PbΓ(y1, y2; p1, p2, p12, q1, q2).
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Fig. 1. Brétigny, RAMSES POLSAR data, X-band. (a) ini-
tial 1-look span estimated asσSLC = k

†
k, (b) 25-look span

estimated asσSCM = Tr
{
[T̂ ]SCM

}
, and (c) span estimated

usingσ̂0 from Eq. 14

The scale parametersp2 andp1, the shape parametersq2 >
q2 andp12 are linked to the mean parametersµ1, µ2, to the
number of degrees of freedomn1, n2, and to the normalized
correlation coefficientρ such as:

q1 = n1, q2 = n2, p1 =
µ1

q1

, p2 =
µ2

q2

, p12 =
µ1µ2

q1q2

(1−ρ).

Using these results, we derived the PDF of the ratioR =
y1/y2 of two correlated Gamma random variables:

PRΓ(R, p1, p2, p12, q1, q2) = Rq1−1

(
p2

p12

)q1
(

1

p2

)q2

×

×
(

p12

p1 + Rp2

)q2+q1 Γ(q1 + q2)

Γ(q1)Γ(q2)
× (16)

×H3

[
q1 + q2, q2 − q1, q2; R

p1p2 − p12

(p1 + Rp2)2
,

p1p2 − p12

p2(p1 + Rp2)

]
,

where H3(α, β, γ; x, y) =

∞∑

m,n=0

(α)2m+n(β)n

(γ)m+nm!n!
xmyn is

one of the twenty convergent confluent hypergeometric series
of order two (Horn function), and(α)n is the Pochhammer
symbol such that(a)0 = 1 and(a)k+1 = (a + k)(a)k for any
positive integerk [9].

By taking into consideration both Eqs. 15, 16 and the
Cochran’s theorem, the PDF of the span estimator from Eq.

14 converges asymptotically to the the ratio of two corre-
lated Gamma random variables PDF (the ratio of two quadrat-
ics). Moreover, the degrees of freedomn1 andn2 are set to
N [m/(m + 1)] andN (the number of secondary data), re-
spectively.

Fig. 3 illustrates the behavior of theσ0 PDF with respect
to the normalized correlation coefficientρ. The PDF parame-
ters are set according to the processing illustrated in Sect. 4,
namelyN = 24, m = 3, µ1 = 10, µ2 = 1. Notice that
when the normalized correlation coefficient approaches to1,
the PDF tends to a Dirac.

A Monte Carlo simulation has been represented in Fig. 3,
also. 5000 samples ofσ0 were obtained by computing5000
times24 samples drown from a zero-mean multivariate cir-
cular complex Gaussian distribution with a covariance matrix
selected from the real POLSAR data. The span of the selected
covariance matrix equal10. One can observe the good corre-
spondence between the empirical PDF of simulatedσ0 and
the PDF derived in Eq. 16 forρ = 0.95.

Using the same parameters as in the previous Monte Carlo
simulation, Fig. 4 illustrates the behavior of the empirical
mean and variance of the proposedσ0 in Gaussian clutter (e.g.
in homogeneous regions). By using24 up to 48 secondary
data, the estimation bias is negligible and the empirical vari-
ance is close to zero.

6. CONCLUSIONS

This paper presented a new estimation scheme for optimally
deriving clutter parameters with high resolution POLSAR im-
ages. The heterogeneous clutter in POLSAR data was de-
scribed by the SIRV model. Three estimators were introduced
for describing the high resolution POLSAR data set: the span,
the normalized texture and the speckle normalized covariance
matrix. The asymptotic distribution of the new span estimator
has been established. The estimation bias on homogeneous
regions have been assessed also by Monte Carlo simulations.
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(Eq. 16) for differentρ and the empirical PDF of simulated
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20 40 60 80 100 120 140 160 180 200
10

12

14

16

N

 

 
Sample mean
Expected mean

20 40 60 80 100 120 140 160 180 200
0

200

400

600

N

 

 
Sample variance
Expected variance

Fig. 4. Empirical mean and variance of theσ0 estimator from
Eq. 14 and the their expected values for simulated Gaussian
clutter.
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