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ABSTRACT square root of the positive random variablgepresenting the
This paper presents a new estimation scheme for o tima"texture):
g cur LSAR. k=VE-C (1)

deriving clutter parameters with high resolution POLSAR

data. The heterogeneous clutter in POLSAR data was détis important to notice that in the SIRV definition, the prob
scribed by the Spherically Invariant Random Vectors modef@bility density function (PDF) of the texture random vateab
Three parameters were introduced for the high resolutiof Not explicitly specified. As a consequence, SIRVs describ
POLSAR data clutter: the span, the normalized texture an@ Whole class of stochastic processes.

the speckle normalized covariance matrix. The asymptotic For POLSAR clutter, the SIRV product model is the
distribution of the novel span estimator is also investigat Product of two separate random processes operating across
The proposed method is tested with airborne POLSAR imtwo different statistical axe$|[3]. The polarimetric disiy

ages provided by the ONERA RAMSES system. is modeled by the multidimensional Gaussian kernel. The
randomness of spatial variations in the radar backscadferi

from cell to cell is characterized b, Relatively to the po-
larimetric axis, the texture random varialglean be viewed
1. INTRODUCTION as a unknown deterministic parameter from cell to cell.

The texture and the covariance matrix unknown parame-
The recently launched polarimetric SAR (POLSAR) sys-ters can be estimated from the ML theory. Féri.i.d. sec-
tems are now capable of producing high quality images opndary data, lefy (ki, ..., kn|[T], &1, ...,En) be the likeli-
the Earth’s surface with meter resolution. The goal of thé1ood function to maximize with respect 6] andg;.
estimation process is to derive the scene signature from the 1
observed data set. In the case of spatially changing swrface L (ki, ... kn; [T],&1,...,6N8) = TN Gl TN X
("heterogeneous” or "textured” scenes) the first step iseto d

Index Terms— SAR, polarimetry, estimation

fine an appropriate model describing the dependency between N Al [T] ki

the polarimetric signature and the observable as a function X H §_meXp<_ZT>' (2)
of the speckle. In general, the multiplicative model hasbee i=1 !

employed for POLSAR data processing as a product betweerhe corresponding ML estimators are given by [4]:

the square root of a scalar positive quantity (texture) &ed t _1
description of an equivalent homogeneous surface (speckle OInLuc(kr, o K [IT] €100 6) _ gy m7 ©)
[1]. The objective of this paper is to present a new param-

eter estimation technique based on the Spherically Inveria  dinLy (k. ..., ky|[T], &1, ..\ ) L1 Y kik!
Random Vectors (SIRV) model. a[T] =0e[T]=5> —=*

i=1 i
4)
2. SIRV CLUTTER MODEL WITH NORMALIZED

TEXTURE As the variableg; are unknown, the following normal-

ization constraint on the texture parameters assurestibat t

. . ML estimator of the speckle covariance matrix is the Sample
The SIRV is a class of non-homogeneous Gaussian processggyariance Matrix (SCM):

with random variancé [2]. The complex m-dimensional mea- N N

suremenk is defined as the product between the independent,, — 1 b 1 ot ( B l) _
complex circular Gaussian vectgr~ N (0, [T]) (speckle) - N ;kzki =Mlsen & 5 ;kzki ! &) [Orn].
with zero mean and covariance matfiX = F{¢¢} and the (5)
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The generalized ML estimator f@; are obtained by intro- The generalized ML estimator for the texture for the

ducing Eq[b in Eq.13: primary datgk; is given by:
. kj [f]géﬁlki ~ k;'f []/V[\];}Dkz

Note thek; primary data is the cell under study. 4. MAIN RESULT

3. SIRV CLUTTER MODEL WITH NORMALIZED The span (total power), can be derived using the covariance
COVARIANCE MATRIX matrix estimators presented in Sedt. 2 and $éct. 3 as:
Let now the covariance matrix be of the fofffi = o([M], kK [J/\/[\];}Dk (14)
such that T{[M]} = 1. The product model form Ed] 1 can 70 = Kt [f]g(lng.

be also written as: ) ) S )
k=7 2z, (7) Note that Eq.[I# is valid when consideridg identically

distributed linearly independent secondary data and oiRe pr
mary data. It can be seen as a double polarimetric whitening
filter issued from two equivalent SIRV clutter models: with
normalized texture variables and with normalized covaran
) = 1 » matrix parameter.
N amNdet{[M]}N The main advantage of the proposed estimation scheme is
that it can be directly applied with standard boxcar neighbo
Mo kj[M]*lkZ— hoods. Fig.[ illustrates the spai estimation with high
X H Eexp L) (8) resolution POLSAR X-band data acquired by the ONERA
] = . 'RAMSES system with a spatial resolution of approximately
Using the same procedure as in SEtt. 2, the correspondings m. Thes x 5 boxcar neighborhood has been selected for
texture and normalized covariance ML estimators are 9iVefiystration, hence4 secondary samples andbrimary data.

wherez ~ N (0, [M]). oo and¢ are two scalar positive ran-
dom variables such that= oy - £.
The likelihood function is:

Lk(klv ---7kN; [M]lev

by The proposed estimator from Fi§] 1-(c) exhibits better per-
ONLic(ki, ..., kn; [M], 71, .y Tn) 0 n ki [M] "'k, formancesin term_s of sp'_attial resolu_tion preservation than
or; - T ' standard span estimator illustrated in Fif. 1-(b).
9) Finally, Fig.[2 presents the three SIRV parameters which
oInLyc(ky, ... kn; [M], 71,0 TN) 0 [M] = 1 i kik] completely describe the POLSAR data set: the total power,
O0[M] N < Ti the normalized texture and the normalized covariance ratri

. . . i . 5. ASYMPTOTIC STATISTICS OF &g
Given the fact that the covariance matrix is normalized, it

is possible to compute the generalized ML estimatofdéf  This section is dedicated to the study of large sample prop-

as the solution of the following recursive equation: erties and approximations of the span estimatpform Eq.
4.
N t
— — 1 k k! e -
[Mrp = f([M]pp) = _E : —— (11) On one hand, the asymptotic distribution of the FF_’ esti
N = k![M]ppki mator from Eq[IlL has been derived|in [7]. The FP estimator

, . computed with/N secondary data converges in distribution
This approach has been used[ih [5] by Conte et al. to derivg) the normalized SCM computed withi[m/(m + 1)] sec-

a recursive algorithm for estimating the matfi]. This al- ondary data. Since the normalized SCM is the SCM up to a
gorithm consists in computing the Fixed Pointfoising the  gcae factor, we may conclude that, in problems invariatit wi
sequencg[M];)i>o defined by: respect to a scale factor on the covariance matrix, the P est
[M]ir1 = F([M];). (12) ]n\}ate is asymptotically equivalent to the SCM computed with
[m/(m+1)] secondary data. Hence one can set the degrees
This study has been completed by the work of Pascal éflal. [6ff freedom of FP normalized covariance matrix estimators as
[7], which recently established the existence and the wgiqu m
ness, up to a scalar factor, of the Fixed Point estimatoref th n=N m4+1 (15)
normalized covariance matrix, as well as the convergence of
the recursive algorithm whatever the initialization. THe a
gorithm can therefore be initialized with the identity nbatr

[ﬂ]oz [Im]' Pbr(y17y2;p1,p2,]912,Q1,QQ)-

On the other hand, the bivariate Gamma PDF has been
established by Chatelain et al. [d [8]:
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Fig. 1. Brétigny, RAMSES POLSAR data, X-band. (a) ini-
tial 1-look span estimated as;.c = k'k, (b) 25-look span

~

estimated agscy = Tr{[T]SCM}, and (c) span estimated

usingoo from Eq.[12

The scale parameters andp;, the shape parameteys >

g2 andpi, are linked to the mean parameters 1o, to the
number of degrees of freedom, no, and to the normalized

correlation coefficienp such as:

H1 H2 H1 2
—,p2=—"—, P12 = (1—p).
il q2 4192
Using these results, we derived the PDF of the rdtio=

y1/y2 of two correlated Gamma random variables:

q 92
_ 2 1
PRF(R7p17p27p12’ql’qQ) = R% 1 <p_> (_> g
D12 D2

g1 = N1, g2 = N2, p1 =

y ( P12 )q2+q1 T(q1 + q2) (16)
p1 + Rp2 I'(q1)T'(g2)
P1p2 — P12 pip2 — P12
XH + 9 - ) aR ) 9
° [Q1 @2 B2 2 (p1 4 Rp2)? " pa(p1 + RP2)}

— (@) 2m+n(B)n ;
where Hjs(o, 8,7;2,y) = ———M™y" is
mZn;O (V) m+nmin!

one of the twenty convergent confluent hypergeometricserie
of order two (Horn function), anda),, is the Pochhammer
symbol such thata)o = 1 and(a)r+1 = (a + k)(a)x for any

positive integek [9].

By taking into consideration both Eq$.115,]16 and the
Cochran’s theorem, the PDF of the span estimator from Eq.

[I4 converges asymptotically to the the ratio of two corre-
lated Gamma random variables PDF (the ratio of two quadrat-
ics). Moreover, the degrees of freedemandn, are set to
N[m/(m + 1)] and N (the number of secondary data), re-
spectively.

Fig.[3 illustrates the behavior of they PDF with respect
to the normalized correlation coefficiemt The PDF parame-
ters are set according to the processing illustrated in. 8kct
namelyN = 24, m = 3, 1 = 10, u2 = 1. Notice that
when the normalized correlation coefficient approachds to
the PDF tends to a Dirac.

A Monte Carlo simulation has been represented in[Hig. 3,
also. 5000 samples oty were obtained by computing)00
times 24 samples drown from a zero-mean multivariate cir-
cular complex Gaussian distribution with a covariance inatr
selected from the real POLSAR data. The span of the selected
covariance matrix equal. One can observe the good corre-
spondence between the empirical PDF of simulatgénd
the PDF derived in Eq._16 for = 0.95.

Using the same parameters as in the previous Monte Carlo
simulation, Fig. % illustrates the behavior of the empirica
mean and variance of the proposedn Gaussian clutter (e.g.
in homogeneous regions). By usi2d up to 48 secondary
data, the estimation bias is negligible and the empiricet va
ance is close to zero.

6. CONCLUSIONS

This paper presented a new estimation scheme for optimally
deriving clutter parameters with high resolution POLSAR im
ages. The heterogeneous clutter in POLSAR data was de-
scribed by the SIRV model. Three estimators were introduced
for describing the high resolution POLSAR data set: the span
the normalized texture and the speckle normalized covegian
matrix. The asymptotic distribution of the new span estonat

has been established. The estimation bias on homogeneous
regions have been assessed also by Monte Carlo simulations.
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Fig. 3. Ratio PDF of two correlated Gamma random variables
(Eq. [16) for differentp and the empirical PDF of simulated
oo in Gaussian clutter
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Fig. 2. Brétigny, RAMSES POLSAR data, X-band. (a) spanFig. 4. Empirical mean and variance of thg estimator from

estimated using, from Eq.[14, (b) normalized textuge and

Eg.[12 and the their expected values for simulated Gaussian

(c) color composition of the normalized coherency diagonatlutter.
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