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Abstract— A new lower bound is proposed in this article.
Like Levenshtein bound, it relates to the maximum correlation
value (autocorrelation and cross-correlation) a set of sequences
can achieve. The novelty introduced here is that each sequence
is associated with a mismatched filter. The proposed bound is
inspired from Levenshtein’s, holds for any set of unimodular
sequences and can be applied in both aperiodic and periodic
cases. It appears that the obtained expression does not deviate a
lot from the (matched) Levenshtein, which indicates that the use
of a mismatched filter will not guarantee much better sidelobe
performance, as the number fo sequences is significant, contrary
to the popular belief.

Index Terms— Aperiodic correlation lower bound, correlation,
Levenshtein bound, mismatched filter, periodic correlation lower
bound, Welch bound.

I. INTRODUCTION

ORRELATION plays a crucial role in order to deter-

mine the performance a system can achieve. For exam-
ple, in the field of telecommunications, performance of a
DS-CDMA system (Direct-Sequence Code-Division Multiple
Access) is directly linked to the highest correlation value
of each spreading sequence [1], called the Peak-to-Sidelobe
Level Ratio (PSLR). In radar systems also, low PSLR codes
are desired so that small targets remain detectable in the
presence of stronger targets and clutter. It is thus relevant to
design a set of sequences with the lowest cross-correlation and
autocorrelation values for cooperative systems (e.g. statistical
MIMO radars [2]), as it may reduce detection errors — a
small PSLR improves the discrimination capacity between a
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weak target and a stronger one — and increase the average
Signal-to-Noise Ratio (SNR).

Alongside extensive works to find sequences with the lowest
PSLR (e.g. see [3], [4]), some studies have been conducted
to define lower bounds on the PSLR — in other words,
the performance that might be achieved at best —, according
to some parameters: the number of sequences, their length,
the assumptions made on the sequences, the type of cor-
relation, efc. This paper deals with correlations of a set of
sequences (both periodic and aperiodic cases are concerned),
meaning that each correlation sequence from a pair of the
set (autocorrelation and/or cross-correlation, for every delay)
has to be handled. Notice that it is different from the optimal
codebook topic [5], [6], in which only the correlation at the
zero-delay is considered.

Welch was the first to establish a lower bound on correlation
sidelobes for a set containing M sequences of length N, under
the identical energy assumption [7]. About 25 years later,
a new lower bound was found by Levenshtein [8], [9] but
only in the aperiodic case. At first, this bound was restricted
to binary sequences, but it was later proved to hold for any
sequence sets over the complex roots of unity [10] and even
later for unimodular sequences [11]. This bound is tighter than
the Welch one in most of the cases [9], [10], [12].

Levenshtein’s bound is only valid for the aperiodic corre-
lation, encountered in practice in radar systems by applying
a matched filter at the reception side. The matched filter is
known for maximising the Signal-to-Noise Ratio in Gaussian
noise, but it may suffer from high sidelobes. Hence, in cer-
tain applications, for instance in the presence of multiple
targets or in a strong clutter, it is interesting to replace this
matched filter by another, identified as a mismatched filter,
that may provide a better PSLR at the cost of some Loss-
in-Processing Gain (LPG) [13]. Alongside numerous papers
on waveform diversity [3], [14], [15], mismatched filters have
gained an increasing interest in the recent years. Most notably
it is of importance in joint radar and communication appli-
cations, in which specific waveforms are required to transmit
information, and where the effort on the sidelobe level will
thus be mainly turned back to the reception filter [16]—[18].
For that matter, it may seem interesting to determine a lower
bound on the minimum PSLR that can be achieved using such
a filter. To our knowledge, this question remains open.

This paper provides new results that enable to handle this
question. It formulates a lower bound on correlation values
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— whether periodic or aperiodic — in the mismatched filter
case. More precisely, a set of sequences is considered; each is
associated with a mismatched filter (hence defining a second
set). The correlation between a sequence and its counterpart
is still refered as an “autocorrelation” by extension, while the
others are cross-correlations. The main result of this paper is
a lower bound on the maximum sidelobe value of all of these
correlation sequences. Like Levenshtein’s bound, it introduces
some weights on the correlation sequences, so that an optimal
weight vector may be calculated. The proof of this novelty is
also inspired from Levenshtein’s. But it holds for any set of
unimodular sequences, with any restrictive constraints on the
mismatched filter set.

Note that computation of both sets of sequences is not the
concern of the paper. Nevertheless, there is a lot of literature on
related topics, especially in the field of waveform diversity: the
aforementioned search of pseudo-orthogonal sequences [3],
[19], [20]; the generation of the optimal mismatched filter of a
sequence [13] (optimal according to a criterion like the PSLR
for instance) ; the joint optimisation of a sequence and its
filter [21]-[23]; the definition of a set of sequences and their
associated mismatched filters [14], [15]. In practice, they help
to get closer to their corresponding bounds but, akin to the
matched filter case, these cannot probably be equalized.

This article is organised as follows. Section II provides a
brief overview of some of the existing bounds in the matched
filter case: the Welch bound and the Levenshtein bound. A new
lower bound on the maximum correlation sidelobe with a set
of mismatched filter is formulated in Section III. Section IV
suggests some interpretations, especially by comparing the
new result with existing bounds from the matched filter case.
Some details on the proofs are given in the appendices.

Notation: In the following, vectors and matrices are desig-
nated with bold lowercase letters (e.g. ) and bold uppercase
letters (e.g. X)) respectively. Additionally, x;, X; and X ;
refer to the i-th element of vector x, the i-th row and the
element in the i-th row and j-th column of matrix X, respec-
tively. (.)*, (.)T and (.)¥ denote the conjugate, the transpose
and the transpose conjugate operator, respectively. Given an
m x n matrix X, its trace and its rank is denoted by Tr(X)
and rank(X), whilst its Frobenius norm is || X || . o stands for
the Hadamard product (the entrywise product); by extension,
the operator (.)°? refers to the Hadamard product of power
q, i.e. X°? = X o-.--0 X (g times). Circulant matrices are
defined through a map denoted circ, and are specified by a
vector © = [x1,...,2,]T of length n :

(CYL N (CYLXH
2 ) Tp—1 Tn
Tp T1 T2 Tn—1
xz—circ(x)=|: x, >
T3 T2
X2 T3 ... In X1

[.] denotes the ceil function. Finally, for two integers a and
b, the modulo operator is denoted by mod, while [-,-] is an
integer interval, that is, with a < b, [a,b] = {a,a+1,...,b}.
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II. REVIEW ON EXISTING BOUNDS IN THE MATCHED
FILTER CASE

A. Definitions

Let {x™ € CN},cpmp be a set of M polyphase
sequences of length N. Each sequence of the set is unimodular,
meaning that any n-th element of any m-th sequence satisfies
|z™|?> = 1/N, for each m € [1,M] and n € [0, N — 1].
Therefore, their energy is constant:

N—1
S lam =1, v¥me[1,M]. (1)
n=0

The correlation function may be expressed into two types,
periodic and aperiodic, according to the definition of each
sequence of {x"},, outside its original support. More pre-
cisely, for any n < 0 or n > N:

in the periodic correlation,
in the aperiodic correlation.

(n mod N
xZL _{ O(nmo ) )
The correlation output between two sequences ™ and x' is
also a sequence, denoted 8™'. At delay k, it is defined by:

N-—1
O = a i (al,)", for [k| < N. 3)
n=0

The latter is read as a cross-correlation if both sequences are
different, while as an autocorrelation if m = [. Besides, it can
be noticed that each autocorrelation mainlobe has the same
value: 65" = 1, for each m € [1, M].

B. Lower Bounds on the PSLR

Several lower bounds have been developed on the maximum
sidelobe level of every auto- and cross-correlations. This level
will be denoted in this paper by ,.x and is provided by:

o112 o 12
anax = max{ max |9m1’m2‘ ,max |9;"1’ml‘ @
lk|<N kA0
myF#mo mi

Notice that Eq. (4) includes every delay k, and not only the
zero-delay (which is related to the inner product).

The Peak-to-Sidelobe Level Ratio, denoted by PSLR is
defined as the ratio between the maximum sidelobe level and
the peak level. Because of (1), it simply reduces to 62 .

The most well-known bounds on the PSLR were provided
by Welch [7] and Levenshtein [8]!. The former is expressed

under the unimodular hypothesis by:

M—-1
PSLR > ———
SLR 2 ML -1’ ®)
with
I N in the periodic case, )
" | 2N —1 in the aperiodic case.

In 1999, Levenshtein has established another bound [8] that
can be applied in the aperiodic case only. Originally designed

n the literature, both bounds have been applied in the optimal codebook
topic, see e.g. [5], [6]. It is not the concern of this paper because it only
considers inner products, contrary to Eq. (4).
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for a set of binary sequences, it actually also holds for any
unimodular polyphase sequences [11]. This bound is:

Qono1 (w, M)

1 M
PSLR >+ | N — — G
1- Z w? /M
i=1
where:
2N—1 2N—1
Qov-1(w,a)=a Y wi+ Y Lo nwswr,
P =1 ®)

lsy, v =min(|s — ¢[,2N — 1 — |s — t]).

w is a weight vector — on each correlation delay — that
satisfies the following weighting condition:

2 wi=1 ©)

w; >0 forie [1,2N —1].

This bound has been proved to be tighter than the Welch bound
in some cases?: for N > 2 with M =2, N > 3 with M =3
and for N > 2 with M > 4. Some current literature [10], [12],
[24] has been interested in the optimisation of this weight
vector, in order to enhance the Levenshtein bound. Notably
the authors of [24] have proposed an asymptotically locally
optimal weight vector — in the particular case where each
correlation delay is considered.

III. MISMATCHED FILTER BOUND

In this section is introduced a new bound on the PSLR
for the output of the correlations between a set of polyphase
sequences and a set of associated mismatched filters. This
bound is defined in both periodic and aperiodic cases. Some
proofs are given in the appendices.

A. Definitions

Akin to Section II-A, some definitions are given below.

1) A Set of Sequences: Let {x™ € CN= }mepi,nr) be a set of
M polyphase unimodular sequences of length N,,, with same
energy equal to 1.

2) A Set of Mismatched Filters: Let {y™ € (CNv}meﬂLMﬂ
be a set of mismatched filters. For simplicity, it will be
assumed that the length NN, of the mismatched filter sequences
is equal to N, := N, +2N,, N, € N.

As implicitly mentioned in the introduction, a mismatched
filter is a substitute for a matched filter, meaning that it should
also help to detect a known signal (while rejecting the others).
In other words, for each m,l € [1,M],m # [, the inner
product® between a sequence ™ ...

e ... and its so-called associated mismatched filter y™
should be maximised,
e ... and another filter y* should be minimised.

2Hence the Welch bound cannot be achieved in the aperiodic case. And,
to the best of our knowledge, the Levenshtein bound has not been reached
yet.

3Sequences @™ should of course be zero-padded if needed.
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In practice, mismatched filters can be generated* for example
via a convex optimisation [13], [14], [21].

3) Correlations: Aperiodic and periodic correlations are
defined according to the definition of each sequence =™, see
(2). The output of the correlation between the m-th sequence
x™ and the [-th mismatched filter yl is also a sequence,
denoted by ™' € CN-+Ny—1,

N/_l
07t = 3 ) for K< No N — 1. (10)
n=0

Set Ni := N, + N; — 1.
4) Mainlobe, Sidelobe: The mainlobe is simply defined as
the central value of each correlation sequence ™™ between

a sequence ™ and its associated mismatched filter y™*, m €
[1, M]:

(1)

N,—1
96”’7"’ _ Z x?—Ns (yg;,)* _ |96n,m‘ ejwm7
n=0

where ¢,,, € [—, 7] is the phase of §5"""™. Since phase shifting
each mismatched filter y™ by —¢,, will affect neither any
sidelobe level nor the loss in processing gain, it is always
possible to find a new set of mismatched filter {3/'" },,,c[1, 0]
such that:

{y’m =yMeI¥m m e ﬂl,Mﬂ},

]\/'y—l
H/Sn,,m _ Z x:zanS (y’:l"’)* = |96n,m‘ e RT. (12)
n=0

It is clear that y™ and y'™ present the same sidelobes (except
for a constant phase). This property will be necessary in the
following proof.

5) Peak-to-Sidelobe Level Ratio: Using the same notation
as Section II-B, the Peak-to-Sidelobe Level Ratio (PSLR) is
expressed by:
9121'1ax

PSLR = —max___
max (|65 %)

13)

where 62, is defined as in Eq. (4).
6) Loss-in-Processing-Gain (LPG): As already mentioned
in the introduction, using a mismatched filter necessarily

implies a loss in processing gain. This loss is defined by:
166" |2

LPG,, = ,
B2

(14)

where E2,. := (y™)"y™ is the energy of y™. If each filter
is designed as to provide a predefined mainlobe level 6"
(say equal to 1), then it clearly comes from its definition that
the LPG is fully defined by the energy of the filter. In other
words, an identical LPG for all these filters necessarily implies
that each filter has the same energy. For now, no hypothesis

has been set on each variable of Eq. (14).

4While defining the bound, only the hypotheses in this section are needed:
it is not required to exhibit the set of mismatched filters. On the other side,
the bound calculation does not help to deduce the optimal set.
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7) Mismatched Filter Length: In the periodic case, it is not
relevant to consider mismatched filters that are larger than N,.
With the assumption that yfl = 0 if n > N, Condition (2)
indeed implies:

m I m *
Z Lp—k—N, )
rhh/N'—11Nf—1

— Z Z (EnJr,iN —k—N, (yinran)*

N1 R
=S Y (W) (15)
n=0 k=0

Hence a mismatched filter y' of length IV, is equivalent to a
mismatched filter y’ of length N,, which coordinates are:

[N, /Ne—1]

D

k=0

Y, = Yht kN, (16)

B. A New Bound on the PSLR

A new lower bound is introduced now. It concerns the
maximum correlation value of a set of unimodular sequences
associated to a set of mismatched filters.

In the following are considered only sets of sequences
{2 } e, mq and filters {y™ },,,c1,017 such that each main-
lobe element 6™ is real positive. This hypothesis seems
restrictive at first. But, as mentioned in Section III-A.4, any
sequence/filter pair may be resolved in that case by a simple
phase shift (on the filter, for instance). This assertion is clearly
stated in Proposition 1.

Proposition 1 (Extension of the Bound to Any Complex
Filter): Let us assume that #2, > B for any mismatched
filter set {y'"},, such that 6™ is real positive, for all
m € [1, M]. Then, the lower bound B also applies for any
other filter set {y™},, such that 65" is complex.

Proof: Assume it exists a set of mismatched filters {y™ },

such that its maximum sidelobe 62,  satisfies 62, < B.
From each filter y™, m € [1, M], write:
0y™ == p™el¥m  with p™ € R, (17)

Then, let us consider another filter set {y'™

mainlobe is real positive, that is:

}m such that each

m —7
y — yme JPm ,
rm,m m
=p

= 0 (18)

shares the same sidelobe level
max < B'
"™ is real positive, it should also satisfy

max = B by hypothesis Therefore, the initial claim is
absurd: it cannot exist a set such that 62, < B. O

Let X™ and Y be two square matrices, (m, 1) € [1, M]>.
Each matrix contains shifted versions of respectively =™ and
', but its definition depends on the considered periodicity of

It is clear that each filter y'™
as y™, so its maximum sidelobe should satisfy 92
However, since ¢'('

0"
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the signal. In the aperiodic case, X" and Y are circulant
square matrices of order Nx := N, + N, — 1:

X™ = circ ([, 0n,-1,1])
= circ (X7"),
Y! = circ (Yll) ,

19)

where 0,,, denotes the zero matrix of size m X n. In

the periodic case, these matrices are of size Nx = N,
(cf. HI-A.7):
X™ = circ (™),
I ! (20)
Y =circ (y ) .

For the sake of clarity, Eq. (19) is detailed in (21) and (22),
shown at the bottom of the next page.
Consider the following matrices X and Y of size MN, x N,:

X! Y!
b & Y?

X=| .|, Y=|. (23)
XM Y.M

All the correlation values are contained in a square matrix R
of order M N,. It is defined by:

Xl(Yl)H Xl(YJ\I)H
R=XY" = : - : :

(24)

such that:

X™(YHYH = cire ([96”’I,HT1’I, . .,HTj\l,k,Hx;l, ..

).

It is also possible to weight each correlation value, akin to
Levenshtein bound (7). Each row of X™ and Y is weighted
by a coefficient w;, thus becoming:

{XZ" = X7/, (

N 25)
Y. =Yl w; forie[1,Nx],(l,m)e 1, M]%

where the weight vector w := {wl}z , satisfies the weighting
condition (9). Matrices X, Y and R are constructed as above:

x' v

and Y = : ,

Y]W

R=xv" with X = (26)

j(. M

such that R contains now a weighted version of all correlation
values. Remark that it is quite common to consider weights
that only handle the the K-first delays:

{ w; >0 ie[l,K],

K
> wi =1 such that wi=0 i>Kori<DO0.

i=1

27)

Under these hypotheses, an upper and a lower bound on the
Frobenius norm of R, ||R||%, is suggested in the following.

Lemma 1 (Upper Bound): Under the above-mentioned
hypotheses, an upper bound of the Frobenius norm of matrix
R is the following:

IR|% < Z (165"

m=1

wTw + M26?

max*

(28)

max)
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Proof: This result is similar to [9, Lemma 1] and is
obtained by a similar proof. O
In addition, a lower bound on the Frobenius norm of matrix
R can also be computed.
Lemma 2 (Lower Bound): Under the above-mentioned
hypotheses, a lower bound of the Frobenius norm of the
matrix R is the following:
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By gathering these lemmas, a lower bound of the maximum
correlation sidelobe 6., can easily be deduced. Its expression
is given in the following theorem:

Theorem 1: For any set of M unimodular sequences of
length NN, under the identical energy assumption, for any set
of associated mismatched filter of length N,, a lower bound
of the maximum correlation sidelobe 6,,,,« is:

- ‘Zm:l 0o max = M2 — MwTw
IR|F > ———- (29)
Na\Ny K M2
DO S5 e o
o [zt | :
with Iy, v, x = min(N, + N, — 1, N, + K — 1, MK). oK wm_1| oGO
Proof: See Appendix A. O B
[ a0 0 ]
0 o zyy, 0
™ 21
0
0 Ty,
xy,
: 0o . oo
| oy TN, 0 0 " |
[ Yo, Yy, O 0 o v, ]
Y, Yy, O
: Y
yi 0
0 o
0 0
Y! = 0 WA (22)
y§V1/ O yﬁvy_l
y§V1/—1 y§V1/ :
L Ui Yy, O 0 v YN

Authorized licensed use limited to: Centrale Supelec. Downloaded on September 22,2020 at 07:27:44 UTC from IEEE Xplore. Restrictions apply.



6560

with: w a weight vector of length Nx that satisfies (9),
le,Ny,K = min(Nx + Ny —1,N, + K — 1,MK),
K € [1, Nx].
Theorem 1 establishes a bound for a given K. Actually,

a tighter bound can be obtained, considering those with a
smaller K, that is:

1
6% > max
max K M?2 - MwTw
K'<K
M 2
R
m=
x | =1 _wTw |96”’m|2 . (3D
m=1

IN, Ny K7

Some papers may study a more general case, in which 24
is lower-bounded instead, with ¢ € N* (e.g. [25] with matched
filters). The suggested bound can easily be extended to that
case, and becomes:

Theorem 2 (General Case, Under the Same Hypotheses):

1
02, > —
max = A2 — MwTw
2

M m,m
(S 65
>< _—

IN, Ny, K q

M
—wlw Y 105" (32)
m=1

with: w a weight vector of length Nx that satisfies (9),
a different weighting, since X:ﬂ = X;nwil/Qq,
leNanJI — min ((Nerqfl), (NI+K+q72)7MK)’

q q
K e [[1,Nx]].
Proof: See Appendix B. O

IV. DISCUSSION AND INTERPRETATION

Each bound introduced in the previous section depends on
several parameters such as the number of sequences M, their
length N, or the weight vector w. In this section, a discussion
is made on the influence of all these parameters. In particular,
the existence of an optimal weight vector is explained. Some
comparisons — especially with bounds on the matched filter
— are made at the end.

A. Optimal Weight Vector

Consider the right-hand side of Eq. (30) of Theorem 1 as a
function of the weight vector w. This parameter is said to be
“optimal” if it provides the tightest bound, i.e. the largest in
value.

Notice that (30) can be rewritten as:

1 M
G (M > wa””"w?) x
m=1
2
M s
[ ‘an:l 96774’”1

SR
Y M Z]\I

m=1

N, N, K

(33)

1

- o5

M — wTw
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It is now easier to observe that the lower w? w, the higher the
bound. This assertion is not necessarily true with Levenshtein
bound, since l5 ¢, v (similar to I, n,, r) depends on the weight
vector. Optimizing w such that it minimizes w” w should thus
give a tighter bound. The Cauchy-Schwarz inequality writes:

(Zfil wi)2 1

K
wiw=> w} > ——t = —. (34)
i=1

K K
The best weight vector is obtained when the Cauchy-Schwarz
inequality meets, that is to say when w”w = 1/K. It is quite
clear that the constant weight vector, recalled below, fill this
requirement:
1/K ifi<K

w; =
Lo

Using this particular weight vector, Theorem 1 becomes:
Corollary 1 (Maximum Correlation Sidelobe Bound, Con-
stant Weight Vector):

1 M
<M Z |96n’m|2> X

m=1

35
otherwise (33)

2
emax 2

(36)

2
M )
[ 5
MYy 165"

IN, N, K

IN, N, K —
MK ’

1—
MK -1

This result is really interesting. It means that there exists
an optimal weight vector w, contrary to the Levenshtein
bound, in which the optimal weight vector is still a subject
of research. (However, note that the authors of [24] have
proposed a locally optimal weight vector, in the particular case
K=2N-1)

In the previous expression, 2 is only determined by each
mainlobe value 63""™. Since 63" is only expressed through
the energy of the filters and the loss in processing gain —
that have not been constrained — it can be set to ;""" =1
without loss of generality. Hence, the lower bound becomes:

52 . MK — lNI,N,y,K
max = (VK — 1)1Nw,Ny,K.

(37)

B. Bounds Comparisons

In this section, the behaviour of the proposed bound
is described according to some parameters it depends on.
Besides, it will be compared with the matched filter bounds
from Welch [7] and Levenshtein [9].

1) Bound Value: Like the Levenshtein bound, the proposed
one — Eq. (37) — is defined with a parameter K, the number
of considered correlation values. Fig. 1 depicts its effect in
a simple example: a set of M = 4 sequences of length
N, = 1024. In this figure, it seems that the length of the
mismatched filter N, has an influence on the choice of K.
Its optimal value is indeed determined as the one that gives
the tightest bound, in other words, the greatest value in each
curve. In the case N, = 3N, the optimal value is not

Authorized licensed use limited to: Centrale Supelec. Downloaded on September 22,2020 at 07:27:44 UTC from IEEE Xplore. Restrictions apply.



TAN et al.: NEW LOWER BOUND ON THE MAXIMUM CORRELATION OF A SET WITH MISMATCHED FILTERS

s Welch Bound (Matched)
—32 |- m= Matched Bound
e Mismatched Bound
m 34
Z
"
7
A, —36 |-
—38 |-
| | | |

500 1,000 1,500 2,000

Parameter K

Fig. 1.

—32

|
w
b

PSLR (dB)
|
&

s Welch Bound (Matched)
m= Matched Bound
mm Mismatched Bound

—38

500 1,000 1,500
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Fig. 2. Comparison of aperiodic correlation bounds as functions of K, for a

achieved for K = Kyax = N; + Ny, — 1, meaning that
considering every correlation value is not necessarily useful.
Additionally, as expected, a longer filter goes with a looser
bound (a noticeable difference of 1.15 dB here). Does this
observation always hold? Check another example, still with
N, = 1024, but with many more sequences (M = 10).

Both curves of Fig. 2 show identical bounds, despite dif-
ferent mismatched filter lengths. In this example, each bound
appears to be independent of N,,, meaning that a filter larger
than IV, does not provide any enhancement. This phenomenon
has already been seen in the periodic case (see Section III-
A.7) and may be explained here via I, N,k (¢f. Lemma 2).
As illustrated in Fig. 3 (left) with a plain line, this parameter
is in a way piecewise linear as a function of K. But the bound
reaches its maximum at K, < N, while the corresponding
“piece” does not depend on N,. Anyway, notice here an
improvement of 1.3 dB compared to the matched filter bound.

2) Comparison With Matched Filter Bounds: Even though
their proofs are quite similar, Theorem 1 does not “include”
the earlier matched bounds (e.g. Levenshtein [9]) per se. That
can easily be seen with Figs. 1 and 2: neither their respective
curves are overlaid nor their highest values (i.e. the bound
value) are equal.

Comparison of aperiodic correlation bounds, as functions of K, for a set of M

2,000
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= 4 sequences. On the left: Ny = N;. On the right: Ny = 3N;.

)
)
~
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Parameter K
set of M = 10 sequences. On the left: N, = N. On the right: N, = 3N;.

However, the matched filter is after all a particular mis-
matched filter. So, theoretically, Theorem 1 could be employed
under its constraints, that are”:

1) Same length: N, = N,;

2) Zeroloss: |07"™|? = 1, LPG,,, = 0, forall m € [1, M].
Actually, this is represented on the left of Figs. 1 and 2. But,
as one could expect, Theorem 1 — in this particular case —
is looser®. This difference can be explained with the structure
of correlation sequences, which manifests in the proof of the
lower bound, c¢f. Appendix A.

o In the matched filter case, there is only one set of
unimodular sequences, {x™ € (CNw}me[[L M- Sidelobes
that are evaluated in those bounds come from correla-
tions between two sequences within the set. In addition,
an autocorrelation sequence has some structural proper-
ties that are exploited in the proof (cf. the lower bound
of [11] and Lemma 2).

In the mismatched filter case, there are two sets of
sequences: {x™ € CN},,cp1 a7, composed of unimod-

SThere is no way to easily incorporate the restrictive constraint y™ = x™
(for all m € [1, M]).

61t also means that a mismatched filter with the same length may provide
some gain, compared to a matched filter.
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Fig. 4. Aperiodic correlation bound value vs. number of sequences M.

Sequences of length N, = 1024. Mismatched filters three times longer.

ular sequences, and {y™ € C™},,cp1 . in which no
hypothesis is put on. Correlations between two sequences
of the same set are ignored. Instead, the mismatched
filter bound studies the correlations between =™ and y',
for each m,l € [1, M]. However, no useful property is
known this time, to the best of our knowledge.

On the other side, it is confirmed that the Welch bound is
too loose. Its expected performance must be indeed “worse”
or, at best, equal. Nonetheless, Fig. 2 shows the opposite: the
Welch bound is there smaller.

Finally, note that the Welch bound can be retrieved from
the matched filter bound Eq. (7) or the mismatched filter one,
in a peculiar case. Indeed, adding the following hypothesis
that corresponds to Welch bound computation:

3) All correlation delays: K = 2N, — 1 (and again, with a

constant weight vector),

it induces:

levNyaK - mln(Nx + Ny - 17N:C + K — 15MK)

= 2N, — 1; (38)

so that Eq. (37) writes:

2 > MK —In, N, Kk
meT (MK = 1)IN, N, &
M—1
- 39
M(2N, —1)—1’ (39)

which is precisely the Welch bound, c¢f. Eq. (5).

3) Asymptotic Behavior: As expected, mismatched filters
may provide some improvements, in terms of sidelobes. But,
does this depend on the number of sequences of the set ? Let
us find out with Fig. 4.

This figure demonstrates a not-so-surprising behaviour: the
gain brought by mismatched filters compared to matched filters
becomes smaller and smaller as the number of sequences
increases. For small sets, mismatched filtering is fully realized
(a difference of 3 dB for a set of 2 sequences of length
N, = 1024) while for larger sets, it loses its appeal as both
bounds are nearly equal. The cardinality of the set M seems
involved: although a mismatched filter provides some addi-
tional degrees of freedom (it is not concerned by the constant
modulus constraint and its length N, may be greater than
N,), the number of constraints on the correlation sequences
(M? autocorrelation and cross-correlation sequences) grows
quicker. Hence, the impact of this provided relaxation is
poor and becomes insignificant, compared to the correlation
constraints induced by the system.

4) Effects of the LPG: Recall that the loss-in-processing
gain — LPG, Eq. (14) — is defined with the mainlobe level
05" |* and the energy of each filter E_... In the proof, no
hypothesis is put on all these elements. Both statements are
thus equivalent:

(i) Set the mainlobe level 6™, and let both parameters
LPG,, and Ey~ be undefined.

(i1) Normalise each mismatched filter, i.e. EZ,. = 1, which
implies |65 |2 = LPG,y,.

Figs. 1 and 2 considers (i)’ with 5™ = 1, which yields to

Eq. 37. In order to study the behaviour of the LPG, consider

7As the filter energy has not been set, this hypothesis does not mean that
there is zero loss.
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case (ii). Let us set for simplicity, for all m € [1, M]:

2 _
Eym =1
a:=LPG,,

which implies || = «. Hence, Corollary 1 becomes:
MK — ZNWN;“K
(MK = 1)In, N, K

which is nearly Eq. (37), up to a factor a. This indicates that
LPGs only induce a shift of the bound.

In order to see that, Fig. 3 (right) represents Eq. (41) with
different values of «. Green curve is with zero loss, which
is equivalent to the “original” bound. Notice the difference of
around 1 dB with the blue curve (LPG = —1 dB). However,
in this case, the mainlobe value is also equal to —1 dB, because
of Eq. (40). At the end of the day, the Peak-to-Sidelobe Level
Ratio (PSLR) is the same... Finally, if the loss is taken into
account, each curve is equivalent, which means:

(filter normalisation)
o (40)
(identical loss)

0% >«

max

(41)

o The proposed bound is true whatever the loss considered,
provided that the constraint 3™ = 1 is satisfied (which
does not imply that there is no loss, but which implies
that the mismatched filter output for the zero delay must
provide a mainlobe).

o Allowing a significant loss will not enable to lower the
bound.

e This bound — the first on the mismatched filter case,
to our knowledge — has no dependence with the LPG.
Maybe another tighter bound will, but it is yet to be
found.

All these comments concern how these bounds behave,
but there is any mention on how loose they are. Previous
figures have noticed that a mismatched filter that is longer
than the initial sequence does not necessarily lead to a larger
bound. However in practice, the additional degrees of freedom
it procures may enable to get closer to these bounds, or at least
may provide some gain. But probably quite poor...

V. CONCLUSION

A new lower bound has been introduced in this paper. It esti-
mates the maximum correlation value of a set of sequences
with a set of associated mismatched filters. Its expression is
fairly general, as it holds for any unimodular sequences, it can
be applied in both aperiodic and periodic cases, and there is
no constraint on the mismatched filters.

The obtained result can be interpreted in several ways.

¢ On one hand, this bound is somehow an extension of

Levenshtein’s work to the more general case of unimod-
ular sequences with corresponding mismatched filters.
It enables to set a lower bound on the minimum sidelobe
level that can be reached using such mismatched filters,
and in that sense provides important indications when
designing a given radar or joint communication and radar
system. Interestingly, it appears that this mismatched
bound does not deviate a lot from the matched Leven-
shtein, which indicates that the use of a mismatched filter
will not guarantee much better sidelobe performance.
While we have been able to link the proposed bound with

6563

the Welch bound, it has not been possible yet to provide
a similar link with the Levenshtein bound. Finding such
a generic bound that links both matched and mismatched
filter may be of interest for some future work.

¢ On the other hand, each bound has still not be reached
— to our knowledge — or can be possibly loose (take a
look at their asymptotic behavior). Does that change with
a mismatched filter?

APPENDIX A
PROOF OF LEMMA 2 (LOWER BOUND)
This appendix proves Property 2, recalled below :
Lemma 2 (Lower Bound): Under the above-mentioned
hypotheses, a lower bound of the Frobenius norm of the matrix
R is the following:

2
M m,m
‘an:l 90 :
IN,, N, K
with Iy, N,k = min(N, + Ny — 1, N, + K — 1, MK).
Proof: Let {\;,i € [1,rank(R)]} be the non-zero
eigenvalues of R. They may define the Frobenius norm of
matrix R:

|R|% > (29)

rank(R)

IRIZ= > [N

i=1

(42)

and its trace : _
rank(R)

T(R)= > X\ (43)
=1

that is also equal to, by construction :

~ M N,
TR =SS 6w

m=1 i=1

M
=> .

m=1

The Cauchy-Schwarz inequality links both :

(44)

9 rank(R)
‘Tr(R)‘ < rank(R) Z ‘)\i
i=1

< rank(R)| R| -

| 2

(45)
Hence,

(46)
From there, it remains to find an upper bound of rank(R).

- S
Remind that R = XY . The particular structure of both
matrices gives us (with N, > N):

~ | min(MK,N, + K —1)
rank(X) = { min(MK, N, + N, — 1)

if K <N,
otherwise,

rank(R) < min(rank(X), rank(Y))
= min(MK,N, + K —1,N, + N, — 1).
47

rank(Y') = min(M K, N, + min(K, N,) — 1),
in(
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Set I, N,k = min(M K, N;4+-K—1, N,+N,—1). Gathering

(46) and (47) gives the desired result:

2
~ 192 ‘Zm 19
IR|F > ——— (48)
IN,, N, K
O
APPENDIX B

PROOF OF THEOREM 2 (GENERAL CASE)

This appendix deals with a generalisation of Theorem 1,
where the term Hfr?ax has to be lower-bounded, ¢ € N*.
Theorem 2 (General Case, Under the Same Hypotheses):

924 1
max = M2 MwTw
2
M m,m
‘Zm*l 90 ' M -|
- T m,m |2
— | _wlw |65 ™| (32)
IN. Ny K g ;%;, ’ J

with: w a weight vector of length Nx that satisfies (9),

a different weighting, since X =X 1/ 2‘1,

lNr,Ny,K,q — min ((Nerqfl), (N e+ K +q— 2),MK),

q q
K e [[]. Nx]]
This expression may also be proved via an upper and a
lower bound, but of the Frobenius norm of matrix R
Lemma 3 (Upper Bound, General Case):

M

IRIE < D (165 % — Ot ) w"w + M6, (49)
m=1

Proof: ~ Again, the proof is really similar to [9,

Lemma 1]. O
Lemma 4 (Lower Bound, General Case):

‘Z mm2
m=1 0

IN, N, K q

IR™|3 > (50)

with ZN N, K,q = min ((NXJ;qfl), (N":JFIZJF(FQ),MK )

Proof: In the case where ¢ # 1, some studies have been
done (see for instance [26], [27, Section 1.2] or [28, Section 4])
in order to get an upper bound of rank(Roq) from an upper
bound of rank(R). The latter has already been considered in
Appendix A:

rank(R) < min(MK,N, + K —1,N, + N, —1).  (51)

Incidentally, it is possible to show that — more details are
given in the following:

rank(Roq) <IN, N, K.q (52)

= min (M), (M) MK,

Finally, it should bring us to the conclusion that:

2
] S 05|
IR™)2 > ‘;

In order to be more thorough, let us give some details of (52).
This equation is based on the following property.

with [N, N, K,q

(53)
IN, N, K,q
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Property 1: Let R be a square matrix of size m X m such
that R = XY, where X ,Y € C"™*™, Denote the columns
of both matrices by respectively x; and y;, ¢ € [1,n]. The
rank of matrix R°? can be upper-bounded as:

-1
nta ) . (54)

rank(R°?) < <
q

Proof of the Property: Matrix R can be developed as :

n n
R=) zyl'=) R (55)
i=1 i=1
with R; = a:iyf{ . Hence,
n °q
R°q—Ro--~oR—<z;Ri> . (56)
q =

Applying the multinomial theorem [27] gives :

q o
RQl
Z (QIa7Qn>( ! °

Y ai=q
q B q! . . . .
where = —— is a multinomial coefficient.
Q-5 qn a!..qn!

R = oRy™), (57)

Using the following properties, defined for two matrices A
and B :

rank(A + B) < rank(A) + rank(B),
rank(A o B) < rank(A) rank(B),

rank(AB) < min (rank(A),rank(B)), (58)

it comes that :

rank(R°?) < rank(Rp)™ x ---

>

2 9i=q

< >

2 9i=q

because rank(R;) < 1.

But the cardinality of set {g1,...,qn| Y iy ¢ = ¢} is equal
to the number of g-combinations from a set of n elements. It
thus means that :

rank(R°?) < (n ta- 1) .
q

x rank(R,,)"

(59)

(60)

]
Besides, as R°? is a square matrix of order m, it follows :

rank(R°?) < min <m, (n ta- 1>> .
q

In particular, if rank(R) < k, there exists matrices A and
B of size m x k such that R = ABH, so that :

rank(R°?) < min (m, (k ta- 1)) .
q

From the defintion of matrix R?, Eq. (52) may be obtained
straightforwardly. O

(61)

(62)
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