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a b s t r a c t

Reducing the number of secondary data used to estimate the Covariance Matrix (CM) for
Space Time Adaptive Processing (STAP) techniques is still an active research topic. Within
this framework, the Low-Rank (LR) structure of the clutter is well-known and the
corresponding LR STAP filters have been shown to exhibit a smaller Signal Interference
plus Noise Ratio (SINR) loss than classical STAP filters, only 2r secondary data (where r is
the clutter rank) instead of 2m (where m is the data size) are required to reach the
classical 3 dB SNR loss. By using other features of the radar system, other properties of the
CM can be exploited to further reduce the number of secondary data; this is the case for
active systems using a symmetrically spaced linear array with constant pulse repetition
interval, which results in a persymmetric structure of the noise CM. In this context, we
propose to combine this property of the CM and the LR structure of the clutter to perform
CM estimation. In this paper, the resulting STAP filter is shown, both theoretically and
experimentally, to exhibit good performance with fewer secondary data; 3 dB SINR Loss is
achieved with only r secondary data.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Space Time Adaptive Processing (STAP) is a technique
used in airborne phased array radar to detect moving
target embedded in an interference background such as
jamming or strong clutter [1]. While conventional radars
are capable of detecting targets both in the time domain
related to target range and in the frequency domain
related to target velocity, STAP uses an additional domain
(space) related to the target angular localization. The
consequence is a two-dimensional adaptive filtering tech-
nique which uses jointly temporal and spatial dimensions
All rights reserved.
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to cancel interference and to improve target detection.
In most works on radar, the clutter is assumed to be a
simple Gaussian process. However, the increase of the
radar resolution leads to a higher scene heterogeneity
where the clutter can be no longer modeled by a Gaussian
process [2,3]. To take this heterogeneity into account, one
can use the so-called Spherically Invariant Random Vector
(SIRV) product model, first introduced by Yao [4] in the
information theory community. This is a compound-
Gaussian model, well-known for its good statistical prop-
erties and for its good fit to several real data sets [5,6].
Secondly in side-looking STAP (as considered in this
paper), the ground clutter can be shown to have a Low
Rank (LR) structure from Brennan's rule [7]. Therefore, we
decide to use the same disturbance model as in [8]: the
disturbance is assumed to be the sum of a LR-SIRV clutter
and a zero-mean white Gaussian noise.

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2013.10.026
http://dx.doi.org/10.1016/j.sigpro.2013.10.026
http://dx.doi.org/10.1016/j.sigpro.2013.10.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2013.10.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2013.10.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2013.10.026&domain=pdf
mailto:guillaume.ginolhac@univ-savoie.fr
mailto:pforster@u-paris10.fr
mailto:frederic.pascal@supelec.fr
mailto:ovarlez@onera.fr
http://dx.doi.org/10.1016/j.sigpro.2013.10.026


G. Ginolhac et al. / Signal Processing 97 (2014) 242–251 243
In practice, the disturbance Covariance Matrix (CM) is
generally unknown and an estimate is required to perform
the STAP processing. This estimation procedure is cur-
rently performed by the Sample Covariance Matrix (SCM)
built from the so-called secondary data, i.e. independent
signal-free observations of the noise sharing the same
distribution as the observation under test. In a STAP
framework, the dimension of the CM can be important
(the number of sensors times the number of pulses).
Commonly, the number of secondary data has to be more
than twice this dimension to ensure the classical 3 dB loss
on the performance results [9]. Several methods, denoted
as reduced-rank, are proposed in STAP to reduce this
number of secondary data. The first one, denoted LR-
STAP filter, is based on a Singular Value Decomposition
(SVD) of the SCM which is known to preserve such a
performance of 3 dB loss [10–13] for few secondary data.
Moreover, in the context of a LR-SIRV clutter plus white
Gaussian noise, results of [14] shows that the LR-STAP filer
built from SCM allows to reach the same performance than
in a Gaussian context.1 To avoid the computation of the
SVD and to limit the computational time, some algorithms
[15,16] based on subspace tracking has been proposed.
Similarly, to fill these gaps, new STAP algorithms based on
a projection received data onto a lower dimensional Krylov
subspace [17–20] or based on joint iterative optimization
of adaptive filters [21,22] have been recently developed.2

In this paper, we derive a new STAP filter from the SVD of a
new estimator of the CM in order to still reduce the
number of secondary data by reaching the same perfor-
mance. Indeed, it is well known in array processing and
particularly in radar systems (and STAP) to have a symme-
trically spaced linear array for spatial domain processing,
and/or symmetrically spaced pulse train for temporal
domain processing [25–27] which leads to aparticular
structure of the disturbance CM: the persymmetric struc-
ture. It is well known that this persymmetric structure
could be exploited to improve the estimation accuracy (or
to reduce the number of secondary data to reach equiva-
lent performance). In particular, the persymmetric Max-
imum Likelihood Estimate (MLE) of the disturbance CM is
used instead of the SCM [28,29] to improve the perfor-
mance of adaptive detectors. But in a Low-Rank context,
this persymmetric structure is not used in detectors or
STAP filters.

We propose in this paper to build the projector onto
the clutter subspace from this MLE which results in a new
LR-STAP filter. We expect to achieve the classical 3 dB loss
for the performance results for a number of secondary
data smaller than in classical LR-STAP filters. For this
purpose, we investigate the theoretical Signal Interference
plus Noise Ratio (SINR) Loss of this new LR-STAP filter in a
LR-SIRV clutter plus white Gaussian noise context. Under
the two hypotheses of LR-Gaussian clutter plus noise and
orthogonality between the target signal and the clutter
subspace, the theoretical analysis of LR-STAP filters has
1 LR-STAP filters built from other estimators (like for instance
Normalized SCM) are less performant.

2 It is also possible to develop STAP algorithms robust to outliers as in
[23,24]
been conducted in the seminal works [10,12,13]. In [14],
the first hypothesis has been relaxed and consequently the
much more realistic case of a LR-SIRV clutter plus white
Gaussian noise is considered. However, for mathematical
tractability the second hypothesis was kept. In this paper,
we extend these results by integrating the persymmetric
property of the disturbance CM to investigate the theo-
retical SINR Loss of the new LR-STAP filter. Numerical
simulations validate our results. Moreover for the theore-
tical SINR Loss computed from the proposed LR-STAP filter
and the one in [14], several simulations that show the
limits of validity are presented in this paper for various
parameters:
�
 hypothesis of orthogonality between the target signal
and the clutter subspace,
�
 the texture distribution,

�
 the Clutter to Noise Ratio (CNR).

These simulations show that theoretical results of this
paper and the ones of [14] are still valid for large values of
texture, CNR and even when the assumption of orthogon-
ality is not true anymore. Finally, these results show the
interest of the combination of LR techniques and persym-
metric property: the new STAP filter requires twice less
secondary data than the classical LR-STAP filter for achiev-
ing equivalent performance. Moreover, the good perfor-
mance of the new LR STAP filter is illustrated on STAP data
composed of a real clutter and synthetic targets.

This paper is an extension of [30] with the details of the
proof to obtain the theoretical SINR Loss. Moreover, several
new simulations on simulated and real data have been
done.

The paper is organized as follows: Section 2 gives the
problem statement and the definition of the Low-Rank
STAP filter, Section 3 contains the derivation of the corres-
ponding theoretical SINR Loss and finally Section 4 shows
STAP simulations which illustrate the theoretical results.
The following convention is adopted: italic indicates a
scalar quantity, lower case boldface indicates a vector
quantity and upper case boldface a matrix. T denotes the
transpose operator, H the transpose conjugate and n the
conjugate operator. E[] is the expected value operator.
CN ða;MÞ is a complex Gaussian vector of mean a and of
covariance matrix M. Im is the m�m-identity matrix. χ2ðnÞ
is a Chi-square random variable with n degrees of freedom.
2. Low-rank STAP filter

2.1. Signal model

STAP [1] is applied to airborne radar in order to detect
moving targets. Typically, the radar receiver consists in an
uniform linear array of N antenna elements processing M
pulses in a coherent processing interval. In the following,
let us set m¼NM. In this framework, we assume that a
known complex signal d corrupted by an additive distur-
bance n is in xACm:

x¼ αdþn; ð1Þ
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where α is a complex attenuation. We assume to have K
secondary data xk which only contain the disturbance:

xk ¼ nk; k¼ 1;…;K ð2Þ

Moreover, it is assumed that n and nk are independent and
share the same statistical distribution and are modeled as
the sum of a clutter, c or ck, and a white Gaussian noise, b
or bk:

n¼ cþb

nk ¼ ckþbk; k¼ 1;…;K ð3Þ

The processes b and bk are modeled as zero-mean com-
plex Gaussian noises, denoted by b;bk � CN ð0; λImÞ (Im is
the identity matrix of size m). Concerning the clutters c
and ck, we consider that their power in each cell k and the
cell under test is different. In such a situation, it is common
to model this kind of clutter by a SIRV [31]. A SIRV is a
non-homogeneous Gaussian random vector with random
power: its randomness is induced by spatial variation in
the radar backscattering. The SIRV [4] c (resp. ck) is the
product of a positive random variable τ (resp. τk), called the
texture, and a m-dimensional independent complex Gaus-
sian vector g (resp. gk), called the speckle, denoted by
g;gk � CN ð0;CÞ with zero-mean and CM C¼ EðggHÞ ¼
EðgkgHk Þ:

c¼ ffiffiffi
τ

p
g

ck ¼
ffiffiffi
τ

p
kgk; k¼ 1;…;K ð4Þ

In classical STAP context, we are able to evaluate the
clutter rank thanks to the Brennan's rule [7] which leads
to a low rank structure for the STAP clutter c and ck, e.g.
rankðCÞ ¼ r5m. The speckle CM, C, can be thus decom-
posed as

C¼ ∑
r

i ¼ 1
λiuiuH

i ð5Þ

where λ14λ24⋯4λr4λrþ1 ¼⋯¼ λNM ¼ 0 are the eigen-
values of C and fu1;…;ur ;urþ1;…;uNMg are the associated
eigenvectors. The CM of n and nk is then given by

Σ¼ E½τ�CþλIm ð6Þ

Furthermore, many applications can result in a CM that
exhibits some particular structure. For radar systems using
a symmetrically spaced linear array for spatial domain
processing, and/or symmetrically spaced pulse train for
temporal domain processing [25–27], the CM Σ has the
persymmetric property which can be written as follows:

Σ¼ JmΣnJm; ð7Þ

where Jm is the m-dimensional antidiagonal matrix having
1 as non-zero elements. Since the signal vector is also
persymmetric, one has

d¼ Jmd
n ð8Þ

One way to take advantage of the persymmetric property
is to transform the complex primary data (1) and second-
ary data (2) into real data. The persymmetric operation can
be characterized by an unitary matrix T defined as

T¼

1ffiffiffi
2

p
Im=2 Jm=2

iIm=2 � iJm=2

 !
for m even

1ffiffiffi
2

p
Iðm�1Þ=2 0 Jðm�1Þ=2

0
ffiffiffi
2

p
0

iIðm�1Þ=2 0 � iJðm�1Þ=2

0
BB@

1
CCA for m odd

8>>>>>>>><
>>>>>>>>:

ð9Þ

By applying the transformation T to all the quantities, one
obtains

x′¼ Tx
x′
k ¼ Txk

d′¼ Td
c′¼ Tc

c′k ¼ Tck
b′¼ Tb

b′
k ¼ Tbk ð10Þ

Let us remind that the transformed data are denoted
thanks to a ′ and, more importantly, that they are all
real-valued, contrary to the original data which are
complex-valued. The primary and the secondary data (1),
(2) become after transformation by T:

x′¼ αd′þc′þb′
x′
k ¼ c′kþb′

k; k¼ 1;…;K ð11Þ
The CM of data (11) is thus Σ′¼ TΣTH and its eigende-
composition is given by

Σ′¼ ∑
r

i ¼ 1
E½τ�λiu′

iu
′H
i þλ ∑

m

i ¼ 1
u′
iu

′H
i

¼ S′ΣþλIm ð12Þ
where fu′

1;…;u′
r ;u

′
rþ1;…;u′

mg are the eigenvectors of Σ′.
Let us notice that the matrix covariance rank and the
eigenvalues are unchanged by the operator T.

Let us now define the projector onto the clutter sub-
space Π′

c and the projector onto the orthogonal of the
clutter subspace Π′?

c [10,12]:

Π′
c ¼ ∑

r

i ¼ 1
u′
iu

′H
i

Π′?
c ¼ Im�Π′

c ð13Þ

2.2. Optimal and sub-optimal STAP filters

The optimal STAP filter is known to be defined as [1]

w′
opt ¼Σ′�1d′; ð14Þ

whereas in LR assumption, it is expressed as [10,12]

w′
lropt ¼Π′?

c d′ ð15Þ

In practical cases, since the CM Σ′ (and therefore also Π′
c) is

unknown, it is necessary to estimate them from the
secondary data x′

k (11).
This estimation is classically performed by using the

SCM, but the persymmetric structure of Σ could be
exploited to improve the estimation quality. The persym-
metric MLE of the CM could be used instead of the SCM.
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The MLE, denoted R̂ ′, has been derived in [28,29] and is
given by

R̂ ′¼ReðTR̂SCMT
HÞ ð16Þ

where R̂SCM is the SCM computed from the original data
(2) as follows: R̂SCM ¼ ð1=KÞ∑K

k ¼ 1xkxH
k . From the eigen-

vectors fû ′
1;…; û′

mg of R̂ ′, the estimates of the projectors
(onto the subspace clutter and its complement) by using
the persymmetric structure of the CM are defined as
[10,12]

Π̂′
c ¼ ∑

r

i ¼ 1
û′
iû

′H
i

Π̂′?
c ¼ Im�Π̂′

c ð17Þ

Finally, the adaptive filter ŵ′ studied in this paper is

ŵ′¼ Π̂′?
c d′ ð18Þ

The next section is devoted to the derivation of its theo-
retical performance.
3. Theoretical SINR Loss

3.1. Definition of the SINR Loss

As in previous works on LR-STAP theoretical perfor-
mance analysis [12], the following usual assumption is
made for mathematical tractability: the projection of the
steering vector on the true interference subspace is neg-
ligible, i.e. u′H

i d′� 0 for i¼1,…,r. This just means that the
target is not fully embedded in the clutter ridge. In the
next section, simulations will show that the theoretical
result is still valid in the case of non orthogonality
between the target signal and the clutter subspace. From
this assumption and from the structure of Σ′, one has

S′Σd′¼Π′
cd′¼ 0 ð19Þ

It follows from (12) and (13) that

Σ′d′¼ λd′

Σ′�1d′¼ 1
λ
d′

Π′?
c d′¼ d′ ð20Þ

The generic STAP filter output is given by

w′Hx′¼ αw′Hd′þw′Hn′ ð21Þ

The SINR at the filter output SINRout is

SINRout ¼
jαj2jw′Hd′j2

E½w′Hn′n′Hw′� ¼
jαj2jw′Hd′j2
w′HΣ′w′

ð22Þ

SINRout is maximum when w′¼w′
opt and its value is

SINRmax ¼ jαj2d′HΣ′�1d′ ð23Þ

The SINR Loss, denoted by ρ, is the loss of performance
when w′¼ ŵ′ and it can be written as

ρ¼ SINRout

SINRmax
¼ jŵ ′Hd′j2
ðŵ ′HΣ′ŵ′Þðd′HΣ′�1d′Þ

: ð24Þ
From Eqs. (18)–(20) the SINR Loss, ρ can be rewritten as
follows:

ρ¼ SINRout

SINRmax
¼ λ

ðd′HΠ̂ ′?
c d′Þ2

d′HΠ̂′?
c Σ′Π̂ ′?

c d′
ð25Þ

The next subsection is devoted to the derivation of the
SINR Loss by using a perturbation analysis, known to be
valid for large K.

3.2. Perturbation analysis

The main result is given by the following proposition.

Proposition 3.1.

E ρ½ � ¼ 1� 1
K′

∑
r

i ¼ 1

E½τ�λiþλ

E½τ�λi

� �2

; ð26Þ

with K′¼ 2K .

Proof. Since all considered estimators have been shown to
be consistent, the SINR Loss is evaluated for large K by
means of a perturbation analysis [32]. Starting from the
perturbations on R̂ ′, Π̂ ′

c and Π̂? ′
c , the SINR Loss ρ of

Eq. (25) is reduced in a compact form thanks to a second
order approximation.
First, let us introduce the pseudo-inverse, M′, of S′Σ (see

Eq. (12)):

M′¼ ∑
r

i ¼ 1

1
E½τ�λi

u′
iu

′H
i ð27Þ

Let ΔΣ′¼ R̂ ′�Σ′ be the covariance estimation error on
Σ′. This estimation error induces an error on the estimates
Π̂′

c and Π̂? ′
c . It is shown in [32] that the projector estimates

are given up to the second order with respect to ΔΣ′ by

Π̂′
c �Π′

cþδΠ′
cþδ2Π′

c

Π̂? ′
c �Π? ′

c �δΠ′
c�δ2Π′

c; ð28Þ
where δΠ′

c and δ2Π′
c are equal to

δΠ′
c ¼Π′?

c ΔΣ′M′þM′ΔΣ′Π′?
c

δ2Π′
c ¼Π′?

c ΓM′þM′ΓnΠ′?
c þΠ′

cΦΠ′
cþΠ′?

c ΔΣ′M′2ΔΣ′Π′?
c

ð29Þ
and where matrices Γ and Φ are second order terms with
respect to ΔΣ′. In the following, all equalities are valid up
to the second order with respect to ΔΣ′.
The second-order approximation of the denominator of

Eq. (25) yields

d′HΠ̂? ′
c Σ′Π̂? ′

c d′¼ d′HΠ? ′
c Σ′Π? ′

c d′�d′HΠ? ′
c Σ′δΠ′

cd′
�d′HδΠ′

cΣ′Π
? ′
c d′þd′HδΠ′

cΣ′δΠ
′
cd′

�d′Hδ2Π′
cΣ′Π

? ′
c d′�d′HΠ? ′

c Σ′δ2Π′
cd′ ð30Þ

From Eq. (20), the first term is equal to λ. The second and
the third terms are equal to 0 since Π? ′

c Σ′M′¼ 0 and
M′d¼ 0. Therefore

d′HΠ̂? ′
c Σ′Π̂? ′

c d′¼ λþd′HδΠ′
cΣ′δΠ

′
cd′�2λd′Hδ2Π′

cd′
¼ λþd′HΔΣ′M′Σ′M′ΔΣ′d′�2λd′HΔΣ′M′2ΔΣ′d′: ð31Þ

Then Eqs. (12) and (27) lead to

M′Σ′M′¼M′ðS′ΣþλImÞM′¼M′þλM′2: ð32Þ
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Now, using the previous equation, Eq. (31) becomes

d′HΠ̂? ′
c Σ′Π̂? ′

c d′¼ λþd′HΔΣ′ðM′�λM′2ÞΔΣ′d′: ð33Þ
Secondly, let us compute the numerator of Eq. (25). We

have

d′HΠ̂? ′
c d′¼ d′HΠ? ′

c d′�d′HδΠ′
cd′�d′Hδ2Π′

cd′: ð34Þ
Since Π? ′

c d′¼ d′ and M′d′¼ 0, Eq. (34) is equivalent to

d′HΠ̂? ′
c d′¼ 1�d′HΔΣ′M′2ΔΣ′d′: ð35Þ

and thus

ðd′HΠ̂? ′
c d′Þ2 ¼ 1�2d′HΔΣ′M′2ΔΣ′d′: ð36Þ

Finally, the second order expression of the SINR Loss of
Eq. (25) is

ρ¼ λ
ðd′HΠ̂? ′

c d′Þ2

d′HΠ̂? ′
c Σ′Π̂? ′

c d′
¼ 1�d′HΔΣ′

1
λ
M′þM′2

� �
ΔΣ′d′:

ð37Þ
As M′Σ′d′¼ 0 (since u′H

i d′� 0 for irr), we can substi-
tute R̂ ′ instead of ΔΣ′ in Eq. (37)

ρ¼ 1�d′HR̂ ′
1
λ
M′þM′2

� �
R̂ ′d′

¼ 1� J
1
λ
M′þM′2

� �1=2

R̂ ′d′J2 ð38Þ

Let us set

1
λ
M′þM′2

� �1=2

¼ ∑
r

i ¼ 1
aiu′

iu
′H
i with ai ¼

1
E½τ�λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½τ�λiþλ

λ

r

ð39Þ
and

zk ¼
1
λ
M′þM′2

� �1=2

x′
kx

′H
k d′

z¼ 1
λ
M′þM′2

� �1=2

R̂ ′d′¼ 1
K′

∑
K′

k ¼ 1
zk; ð40Þ

with K′¼ 2K . One has

ρ¼ 1� JzJ2 ð41Þ
For large K′, as assumed in this paper, the central limit

theorem ensures that z is Gaussian distributed. Its first and
second order moments follow from those of zk and will be
now investigated. The SINR Loss distribution will be
obtained from these results. The first order moment of zk
is

E zk½ � ¼Re
1
λ
M′þM′2

� �1=2

E x′
kx

′H
k

� �
d′

 !

¼Re
1
λ
M′þM′2

� �1=2

Σ′d′

 !
¼ 0; ð42Þ

since u′H
i d′¼ 0 for irr. Let us derive the second order

moments of zk. By setting

yk ¼ ½u′
1⋯u′

rd′�Hx′
k: ð43Þ

Conditionally to τk, x′
k is complex zero-mean Gaussian

and its covariance eigensystem is τkλ1þλ4τkλ2þλ4
⋯4τkλrþλ4λ¼⋯¼ λ and fu′

1;…;u′
r ;u

′
rþ1;…;u′

mg.
Consequently, each component of yk, conditioned on τk,
can be written as follows:

ðykÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτkλiþλÞχ1k;i

q
expðjθk;iÞ; i¼ 1;…; r

ðykÞrþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λχ1k;rþ1

q
expðjθk;rþ1Þ; ð44Þ

where χ1k;i and χ1k;rþ1 are respectively two independent
Chi-square-distributed random variables with 1 degree of
freedom and where θk;i is uniformly distributed on ½0;2π�.
All random variables are mutually independent. Therefore,
we obtain

zk ¼Re ∑
r

i ¼ 1
aiðu′H

i x′
kÞðx′H

k d′Þu′
i

 !

¼Re ∑
r

i ¼ 1
aiðykÞiðykÞnrþ1u

′
i

 !
ð45Þ

The second order moments of zk are easily computed from
Eqs. (44) and (45): EðzkzTk Þ ¼ 0 and

E½zkzHk � ¼ ∑
r

i ¼ 1
a2i E½ðτkλiþλÞλχ1i χ1rþ1�u′

iu
′H
i ; ð46Þ

where χ1i and χ1rþ1 are respectively two independent
Chi-square variables with 1 degree of freedom. The SINR
Loss distribution follows from Eqs. (41) and (46) and the
central limit theorem:

ρ¼ 1� 1
K′

∑
r

i ¼ 1

E½τ�λiþλ

E½τ�λi

� �2

χ1i ; ð47Þ

with K′¼ 2K . Taking the expectation of Eq. (47) completes
the proof for E½ρ�. □

Remark. In STAP context, the hypothesis of a strong
clutter in comparison to the white Gaussian noise is often
valid. In this particular case, the SINR Loss of proposition
3.1 admits the simplified expression:

E ρ½ � � 1� r
2K

ð48Þ

Indeed, one has E½τ�λibλ for i¼1,…,r in the case of a strong
clutter. By comparing this result to the classical result of
[10,12], one can notice that a 3 dB SINR Loss is reached
for K¼r, instead of K ¼ 2r when the persymmetric struc-
ture is not taken into account (E½ρ� � 1�ðr=KÞ for a classic
LR-STAP filter). Moreover, let us notice that the final result
does not depend on the texture τ.

The result of Proposition 3.1 has been obtained by an
asymptotical analysis which means that this result is valid
for high values of K. In the next section, the validity of this
result is investigated for small values of K by means of two
SAP simulations on synthetic and real data (containing a
real clutter and synthetic targets).

4. Numerical simulations

4.1. Validation of theoretical SINR Loss

We consider the following STAP configuration to check
the theoretical SINR Loss of Eq. (26). The number of
sensors is N¼8 and the number of coherent pulses is
also M¼8. The center frequency and the bandwidth are
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respectively equal to f 0 ¼ 450 MHz and B¼4 MHz. The
radar velocity is 100 m/s. The inter-element spacing is
d¼ c=2f 0 (c is the speed of light) and the pulse repetition
frequency is f r ¼ 600 Hz. The clutter rank is computed
from Brennan's rule [7] and is equal to r¼15. Therefore,
the clutter has a low-rank structure since r¼ 15o
NM¼ 64.

The CM of the Gaussian clutter, C, is computed using
the model presented in [1]. To simulate the SIRV clutter,
we choose for the texture τ a Gamma distribution with
shape parameter ν and scale parameter 1=ν (which results
in E½τ� ¼ 1). In most simulations, the CNR is 25 dB. Then,
we obtain Σ′ of Eq. (12) by using the transformation matrix
T. The eigendecomposition of this last matrix allows to
obtain eigenvalues λ1;…; λr ; λ and therefore the theoretical
SINR Loss of Eq. (26).

In the same STAP configuration, K secondary data have
been simulated. These secondary data allow us to compute
the SCM R̂SCM and its persymmetric counterpart R̂

′
given

in Eq. (16). From its eigendecomposition, the sub-optimal
STAP filter ŵ ′ of Eq. (18) has been computed and the SINR
Loss of Eq. (25) has been evaluated using 1000 trials.

The same steps are used to evaluate the numerical and
theoretical SINR Loss computed from the classical LR-STAP
filter based on the SCM. Theoretical result for Gaussian
clutter is well known [12] and the result for SIRV clutter
can be found in [14].

Fig. 1 shows the numerical and the theoretical SINR
Losses obtained from LR-STAP filters based on SCM and
persymmetric SCM for different values of K and for a shape
parameter of the K-distribution ν¼ 1. Firstly, one can
notice that the numerical SINR Losses are very close to
the theoretical ones which validates the theoretical for-
mula of Eq. (25). Secondly, we conclude that the LR-STAP
filter based on the persymmetric SCM yields better per-
formance than the classical LR one: since two times less
secondary data are required to achieve the same perfor-
mance, the Persymmetric LR-STAP filter will perform
Fig. 1. Theoretical SINR Loss of LR STAP built from SCM (black square), numerical
STAP built from persymmetric SCM (red diamond), numerical SINR Loss of LR STA
parameter for τ is ν¼ 1. (a) SINR Loss for a target at 40 m/s, �201 and (b) SINR Lo
this figure caption, the reader is referred to the web version of this article.)
better than the classical one for the same number of
secondary data. Thirdly, the simulation shows that the
theoretical SINR Losses are still valid in a realistic context.
In Fig. 1(a), the target is far from the clutter ridge and
therefore the hypothesis u′H

i d′� 0 for i¼1,…,r is valid
(maxiA f1;rgðju′H

i d′jÞ ¼ 0:1). For Fig. 1(b), the target is very
close of the clutter ridge and therefore the assumption
to obtain the theoretical result is not valid anymore
(maxiA f1;rgðju′H

i d′jÞ ¼ 0:5). This allows to conclude that
theoretical results are close to the numerical ones in both
cases which encourages the use of our result in realistic
scenarios. Moreover, the LR-STAP filter based on the
persymmetric SCM yields again better performance than
the classical LR one: two times less of secondary data are
needed to reach the same performance.

Now, let us study the SINR Losses as a function of the
heterogeneity of the LR-SIRV clutter. This is the purpose of
the simulation plotted in Fig. 2. A strong heterogeneity is
reached for small values of ν. We show in both sub-figures
that the results of the numerical and theoretical SINR
Losses are close and almost constant until a value of ν
which corresponds to a very strong heterogeneity of the
LR-SIRV clutter. This value depends of the number of
secondary data used for the estimation of the projector.
In this context of strong heterogeneity, the number of
effective cells (i.e. which contains non-null responses form
the clutter) for the subspace estimation is smaller than for
a homogeneous clutter which explains that the numerical
SINR Loss decreases with the heterogeneity of the clutter.

In Fig. 3, the shape parameter for τ is ν¼ 1, the number
of secondary data is K ¼ 4r for LR STAP built from SCM and
K ¼ 2r for LR STAP built from Persymmetric SCM. In Fig. 3
(a), we study the SINR Losses versus the speed of the
target. We show that our theoretical result is valid until a
target speed of around 2 m/s (7 km/h), which is a very
small value for ground targets. Fig. 3(b) shows the evolu-
tion of the SINR Losses as a function of the CNR. The limit
of validity is around CNR¼ 2 dB.
SINR Loss of LR STAP built from SCM (black ×), theoretical SINR Loss of LR
P built from persymmetric SCM (green circle) as a function of K. The shape
ss for a target at 5 m/s, 01. (For interpretation of the references to color in



Fig. 2. Theoretical SINR Loss of LR STAP built from SCM (black square), numerical SINR Loss of LR STAP built from SCM (black ×), theoretical SINR Loss of LR
STAP built from persymmetric SCM (red diamond), numerical SINR Loss of LR STAP built from persymmetric SCM (green circle) as a function of the shape
parameter for τ, ν. The target is at 40 m/s, �201. (a) SINR Losses of LR STAP built from SCM for K ¼ 4r and LR STAP built from persymmetric SCM for K ¼ 2r
and (b) SINR Losses of LR STAP built from SCM for K ¼ 2r and LR STAP built from persymmetric SCM for K¼r. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)

Fig. 3. Theoretical SINR Loss of LR STAP built from SCM (black square), numerical SINR Loss of LR STAP built from SCM (black ×), theoretical SINR Loss of LR
STAP built from persymmetric SCM (red diamond), numerical SINR Loss of LR STAP built from persymmetric SCM (green circle). The shape parameter for τ
is ν¼ 1. K ¼ 4r for LR STAP built from SCM. K ¼ 2r for LR STAP built from persymmetric SCM. (a) SINR Loss as a function of Vt. The CNR is 25 dB and (b) SINR
Loss as a function of CNR. The target is at 40 m/s, �201. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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4.2. Real clutter data

The STAP data are provided by the French agency DGA/
MI: the clutter is real while the targets are synthetic. The
number of sensors is N¼4 and the number of coherent
pulses is M¼64. The center frequency and the bandwidth
are respectively equal to f 0 ¼ 10 GHz and B¼5 MHz. The
radar velocity is given by V ¼ 100 m=s. The inter-element
spacing is d¼0.3 m and the pulse repetition frequency is
f r ¼ 1 kHz. For this particular STAP datacube, the clutter is
fitted by our clutter data model of Eq. (3) since its statistic
is shown slightly non-homogeneous [33]. The CNR is equal
to 20 dB. The total number of secondary data available is
K¼408. The clutter rank obtained from the Brennan's
rule [7] is equal to r¼45. This value is small in comparison
to the full size of clutter CM, MN¼256. The outputs
of adaptive LR-STAP filters, Λ̂LR�SCM ¼ jdHΠ̂?

c xj2 and
Λ̂
′
LR� SCM ¼ jd′HΠ̂ ′?

c x′j2 (new LR-STAP filter proposed in this
paper), are used.

In a first scenario, a target with a signal to clutter ratio
of �5 dB is present at (4 m/s, 01, cell 256). Figs. 4 and 5
show results of Λ̂LR� SCM and Λ̂

′
LR� SCM for respectively 100

(almost 2r) and 50 (almost r) secondary data. As expected
in the theoretical section, we notice that the persymmetry
property allows to reduce the number of secondary data.
In Fig. 5(a), the target is embedded in a noise for which the



Fig. 4. LR-STAP outputs with 100 cells to estimate the CM. Cell under test contains a target at 4 m/s, 01. (a) Λ̂LR� SCM and (b) Λ̂
′
LR�SCM .

Fig. 5. LR-STAP outputs with 50 cells to estimate the CM. Cell under test contains a target at 4 m/s, 01. (a) Λ̂LR�SCM and (b) Λ̂
′
LR� SCM .

Fig. 6. LR-STAP outputs with 100 cells to estimate the CM. Cell under test contains ten targets at 01. (a) Λ̂LR� SCM and (b) Λ̂
′
LR�SCM .
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Fig. 7. LR-STAP outputs with 50 cells to estimate the CM. Cell under test contains 10 targets at 01. (a) Λ̂LR� SCM and (b) Λ̂
′
LR�SCM .
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level is around -130 dB while in Fig. 5(b), the target is
easily detected because the noise level has been strongly
reduced, around �136 dB.

In a second scenario, 10 targets with a signal to clutter
ratio of �5 dB are present at (01, cell 252) for different
speeds before and after the clutter ridge. Figs. 6 and 7
show results of Λ̂LR� SCM and Λ̂

′
LR� SCM for respectively 100

(almost 2r) and 50 (almost r) secondary data. As shown
previously, the persymmetry property strongly enhances
the performance of the LR-STAP filters. As shown the noise
(clutter plus white Gaussian noise) is strongly reduced by
using the persymmetry property in the derivations. There
is a reduction in the level noise of almost 6 dB for some
parts of the ridge clutter. Moreover, one can notice that it
is more difficult to distinguish the ten targets in Fig. 7(a)
than in Fig. 7(b).

5. Conclusion

In this paper, a new LR-STAP filter has been proposed
by taking into account the persymmetry property of the
CM. This filter has been derived using both data trans-
formed by a unitary matrix T and the persymmetric MLE
of the CM derived in [28,29]. Then, this filter has been
theoretically analyzed through the derivation of its SINR
Loss. Finally, in a context of a LR-SIRV clutter, the resulting
STAP filter is shown, both theoretically and experimentally,
to exhibit good performance with fewer secondary data;
3 dB SINR Loss is achieved with only r secondary data.
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