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Abstract
This paper presents how the use of a cleaned and robust covariance matrix estimate can improve significantly the overall
performance of maximum variety and minimum variance portfolios. We assume that the asset returns are modelled through
a multi-factor model where the error term is a multivariate and correlated elliptical symmetric noise extending the classical
Gaussian assumptions. The factors are supposed to be unobservable and we focus on a recent method of model order selection,
based on the random matrix theory to identify the most informative subspace and then to obtain a cleaned (or de-noised)
covariance matrix estimate to be used in the maximum variety andminimum variance portfolio allocation processes.We apply
our methodology on real market data and show the improvements it brings if compared with other techniques especially for
non-homogeneous asset returns.
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1 Introduction

Modern portfolio theory introduced by Markowitz (1952)
lays the foundation for optimal portfolio construction with
the so-called mean–variance strategy. This optimization
problem maximizes the expected return for a given risk level
in order to obtain the optimal weights. Nevertheless, its prac-
tical implementation relies on the knowledge of the empirical
expected return, a quantity classically known to be very hard
to estimate. To overcome these drawbacks, allocation meth-
ods focusing solely on the covariance matrix estimation have
been developed, such as the globalminimumvariance portfo-
lio (GMWP)or the equally risk contribution portfolio (Clarke
et al. 2012; Maillard et al. 2010).

An alternative method has been proposed in Choueifaty
and Coignard (2008) and Choueifaty et al. (2013), based
on portfolio diversification and having only the covariance
matrix as an input parameter. This method seeks the most
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diversified portfolio by maximizing the variety (or diversifi-
cation) ratio to reduce common risk exposures.

In financial modelling, a widely used estimator of the
covariance matrix is the sample covariance matrix (SCM),
optimal underGaussian assumptions.Nevertheless, it iswell-
known that asset returns usually exhibit departures from the
optimal framework as asymmetry, fat tails, tail dependence,
thus leading to large estimation errors. To dealwith this point,
covariance matrix estimation has been extended under non-
Gaussian distributions (Tyler 1987; Maronna 1976). These
robust estimators are generally adapted when N > m, where
N is the sample size and m is the number of assets. Indeed,
for singular covariance matrix estimate (N < m) regulariza-
tion approaches are required and some authors have therefore
proposed an hybrid robust shrinkage covariance matrix esti-
mators (Chen et al. 2011; Pascal et al. 2014; Abramovich and
Spencer 2007) based on Tyler’s robust M-estimator (Tyler
1987) and Ledoit–Wolf’s shrinkage approach (Ledoit and
Wolf 2004).

Recent works (Couillet et al. 2014; Chen et al. 2011; Pas-
cal et al. 2014; Yang et al. 2015) based on random matrix
theory (RMT) have therefore considered robust estimation
when N < m. In Yang et al. (2015), the covariance estima-
tion approach is based on the Shrinkage–Tyler M-estimator
and the authors show that applying an adapted estimation
methodology leads to achieving superior performance over
many other competing methods under the GMWP frame-
work. Another way to lower the estimation errors of the
covariance matrix is to distinguish the signal part from the
noisy part using filters. It is now well documented in finan-
cial literature that the introduction of multiple sources of
risks is a key factor to challenge the capital asset pricing
model (CAPM) single market factor assumption (Sharpe
1964). Multi-factor models have therefore emerged based
either on statistical factors or on observable factors (Fama
andFrench 1993, 2015;Rosenberg 1974;Grinold et al. 1989)
and are designed to capture common risk factors (system-
atic risks). In this setup, the covariance matrix estimate of
the assets depends solely of the systematic part of the risk,
as in Fama and French (1993). Statistical multi-factor mod-
els are also very interesting tools. Instead of choosing the
factors among many others and from empirical studies, the
factors are determined from the assets universe, using sta-
tistical methods. Whereas the principal component analysis
may fail in distinguishing informative factors from the noisy
ones, RMT helps identifying a solution to filter noise as in
Laloux et al. (1999, 2000), Potters et al. (2005), and Plerou
et al. (2001) by correcting the eigenvalues of the covariance
matrix, thanks to the upper bound of the Marčenko–Pastur
distribution (Marčenko and Pastur 1967). This method called
“Eigenvalue clipping” provides competitive out-of-sample
results (Bouchaud and Potters 2011), even though in most
cases only the first component (market factor) is detected

which is not completely satisfactory. Other recent works
(Bun et al. 2016, 2017; Ledoit and Péché 2011) deal with
the class of Rotational Invariant Estimators (RIE) that use
all of the information on both eigenvectors and eigenvalues
of the covariance matrix. The methodology proposed in Bun
et al. (2016) leads to portfolios having a lower volatility that
those obtained when using SCM, Ledoit and Wolf (LW) and
Eigenvalue clipping methods.

In this paper, we extend the results presented in Jay et al.
(2018) by considering that the assets returns might be non-
homogeneously distributed. Indeed, as in Jay et al. (2018),
we assume that the asset returns are still modelled through a
multi-factor model where the error term is a multivariate and
correlated elliptical symmetric noise. Nevertheless, in our
approach the whitening procedure is now applied by group
of homogeneous assets and the final covariance estimate
obtained only using the de-noised part of the observations
as suggested in Vinogradova et al. (2013) and Terreaux et al.
(2017a, b, 2018).

This article is organized as follows: Sect. 2 introduces the
selected methods of portfolio allocation for this paper: the
Maximum Variety (or VarMax) portfolio and the Minimum
Variance (or MinVar) portfolio. Section 3 presents the clas-
sical model and the related assumptions. Section 4 describes
the covariancematrix estimationmethodology. Section5pro-
vides empirical illustrations ascertaining the efficiency of the
proposed method compared to the conventional ones. Sec-
tion 6 concludes and discusses our results.
Notations We use bold and capital letters for matrices, and
bold and lowercase letters for vectors. For any matrix A, AT

is its transpose, Tr(A) its trace and ‖A‖ is the spectral norm.
For any vector x of size m, L : x "→ L (x) is defined as
the associated symmetric square matrix of size m obtained
through the Toeplitz operator:

(
[L (x)]i, j

)
= x|i− j |+1. For

any square matrix A = [ai, j ] of size m, T (A) represents
the matrix L (ǎ) where ǎ fulfils ǎi = (

∑m
j=i a j, j−i+1)/m.

The notation “bp” stands for basis point and one basis point
is equal to 0.01%.

2 Portfolio allocation

Portfolio allocation is a widely studied problem. Depending
on the investment objective, the resulting portfolio allo-
cation differs. In this section, two allocation methods are
described: the maximum variety process and the global
minimum variance one. Both of them depend on a single
parameter that is the covariance matrix of the asset returns.
In practice, the minimum variance portfolio is known to lead
to low-diversified but performing portfolios over recent years
reinforcing the low-volatility anomaly concept, whereas the
maximum variety process leads to well-diversified (by con-
struction) but less performing portfolios.
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2.1 Maximum variety (or VarMax) portfolio

We consider m financial assets used to build an investment
portfolio perfectly characterized by the allocation vector
w = [w1, . . . , wm]T where wi represents the proportion
invested in asset i . In particular, we have 0 ≤ wi ≤ 1
∀i ∈ [1,m] and ∑m

i=1wi = 1. In Choueifaty and Coignard
(2008), the authors provide a strong mathematical defini-
tion of portfolio diversification introducing the Variety Ratio
(VR ) associated with w that is none other than the ratio of
theweighted arithmeticmean of volatilities over the portfolio
volatility:

VR (w,!) = wT s
(
wT ! w

)1/2 , (1)

where ! is the variance covariance matrix of the m assets
and s = [√!11, . . . ,

√
!mm, ]T them-vector of correspond-

ing volatilities. Thus, the Maximum Variety (or VarMax)
strategy, denoted by w∗

vr , is obtained as the solution of the
following optimization problem under convex constraints on
weights

w∗
vr = argmax

w
VR (w,!) . (2)

The VarMax Portfolio verifies some interesting properties,
as described in Choueifaty et al. (2013):

• VarMax is invariant by duplication: if an asset is dupli-
cated in the universe, then VarMax will be unchanged
giving half the weight to each duplicated asset,

• VarMax stays unchanged if a positive linear combination
of the assets of the universe is added as a new asset,

• any asset of the universe not held in VarMax is more cor-
related to the portfolio than to any asset of the portfolio.
Furthermore, the more diversified a long-only portfolio
is, the greater its correlation with VarMax.

VarMax portfolios are often considered as interesting
diversifying investments with respect to the other invest-
ments. The above last property would therefore suggest that
the other portfolios might then be weakly diversified portfo-
lios.

2.2 Minimum variance (or MinVar) portfolio

The global minimum variance portfolio (or GMVP) is
obtained by computing the portfolio whose m-vector of
weights wgmvp minimizes the variance of the final portfo-
lio. It can be formulated as a quadratic optimization problem
including the linear constraint that the sum of the weights is
equal to 1:

min
w

σ 2(w,!) = min
w

wT ! w, s.t. wT 1m = 1 (3)

with 1m being a m-vector of ones. The solution to (3), when
there is no other constraint on the weight values, is then:
wgmvp = !−1 1m

1Tm !−1 1m
, and the corresponding portfolio variance

writes σ 2(wgmvp,!) = 1

1Tm !−1 1m
.

As for the VarMax portfolio, the covariance matrix needs
to be estimated. If we denote !̂ an estimate of !, then we
have:

ŵgmvp =
!̂

−1 1m

1Tm !̂
−1 1m

.

In Yang et al. (2017), the authors derive an optimal opti-
mization strategy in order to minimize the realized portfolio
variance, under an assumption of spiked structures1 of both
! and !−1.
In our case, the weights have to be positive, so that the opti-
mal minimum variance portfolio weights cannot be obtained
in a closed form expression. We will nevertheless compare
several competing methods of covariance matrix estimation
in order to get the GMVP.

To get solutions for (2) and (3), the unknown covariance
matrix ! has to be determined or estimated. This is a chal-
lenging problem in portfolio allocation due to the strong
sensitivity of the optimization process to outliers and estima-
tion errors. Apart from the classical SCM or the minimum
covariance determinant (MCD, Rousseeuw and Driessen
1999) that is a method robust to outliers, reside subspace
methods that aim at separating the signal space from the
noise space, using the eigen-decomposition of the SCM. The
noise and signal subspaces are usually identified according
to the eigenvalues magnitudes: the eigenvectors related to
the lowest ones represent the noise whereas those related
to the highest eigenvalues identify the signal. But the open
question remains how to choose the separating threshold?
In this paper, we propose a robust and original technique
that applies the random matrix theory (RMT) results on the
eigen-decomposition of a robust M-estimator leading to a
de-noised and robust covariance matrix estimate.

3 Model and assumptions

Let us assume that the investment universe containsm assets
whose returns at each time t = 1, . . . , N are stored in them-
vector rt .We suppose also that rt admits a K factors structure,
where the K < m common factors are unknown, and that

1 A spiked structure denotes a covariance model where some eigenval-
ues are located out of the “bulk”, like outliers.
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the additive noise is a multivariate elliptical symmetric noise
(Kelker 1970; Ollila et al. 2012). The assumed model for rt
writes as follows:

rt = Bt ft +
√

τt C1/2 xt , (4)

where

• rt is the m-vector of returns at time t ,
• Bt is the m × K -matrix of coefficients that define the

assets sensitivities to each factor at time t ,
• ft is the K -vector of random factor values at t , supposed
to be common to all the assets,

• xt is a m-vector of independent Gaussian white noise
with unit variance and non-correlated with the factors,
i.e. E[xt fTt ] = 0m×K ,

• C is called the m × m scatter matrix that is supposed to
be Toeplitz2 structured (Gray 2006) and time invariant
over the period of observation,

• τt is a family of i.i.d positive random variables with
expectation τ that is independent of the noise and the fac-
tors and drives the variance of the noise. These random
variables are time-dependent and generate the elliptical
distribution (Cambanis et al. 1981) of the noise.

The Toeplitz assumption made onC is a required assump-
tion for the proposed methodology described in Sect. 4.1.
This hypothesis imposes a particular structure for the covari-
ance matrix of the additive noise and is generally used to
describe stationary processes (Gray 2006). In the case of
model (4), this hypothesis is plausible as it states that the
additional white noise admits a Toeplitz-structured covari-
ance matrix. In the case of financial time series where we
only observe one sample at each time, the stationarity of the
dependence structure of the assets is a statistical hypothesis
really difficult to test in practice. Thismotivates the extension
wepropose in this paper, described inSect. 4.4, to splitting the
assets universe into groups composed of assets having sim-
ilar distributions, and being most probingly sampled from a
stationary process representing a unique distribution for each
group.

Given Eq. (4), the covariance matrix writes for a fixed
period of time t :

!t = Bt !
f
t BT

t + τ C, (5)

that is a m × m-matrix composed of two terms: the factor-
related term with !

f
t = E[ft fTt ] being of rank K , and the

noise-related term being of rank m. Subspace methods aim
at identifying the K highest eigenvalues of !t supposed to

2 A Toeplitz matrix is a diagonal-constant matrix.

represent the K -factors especially when the power of the
factors is higher than the noise power.

Determining K , the number of factors is a tough task in all
themodel order selection problems, like e.g. when estimating
the number of emitting sources in any received signal orwhen
trying to unmix sources in hyperspectral images (Bioucas-
Dias et al. 2012). In financial applications, the K factors serve
in building portfolios and also to identify the main sources
of risks within the investment universe under study (Melas
et al. 2009; Jay et al. 2011; Darolles et al. 2013a, b) and is
therefore of main importance in such cases.

In the next section, we give a detailed description of our
methodology that combines the robust Tyler M-estimator of
the covariance matrix and the RMT results adapted to the
above non-Gaussian and multivariate model.

4 Proposedmethodology

4.1 General framework

The Tyler M-estimator (Tyler 1987) of the covariance matrix
for the m-vector rt is defined as being the solution of the
following fixed-point equation:

X = m
N

N∑

t=1

rt rTt
rTt X−1 rt

, (6)

where the trace of the resulting matrix is equal to m, and N
is the number of observations for rt . Applied to model (4)
and under non-Gaussian assumptions, the resulting Tyler-M
estimate (that we denote Ĉt yl ) is shown to be the most robust
covariance matrix estimator (Tyler 1987; Pascal et al. 2008)
for the true scatter matrix C. Ĉt yl is also independent of the
distribution of the variable τ .

Under the white noise assumption, extracting information
from the observed signal using RMT is quite straightforward
and has been proposed in many applications, like in source
detection (Kritchman and Nadler 2009), in radar detection
(Couillet et al. 2015), or signal subspace estimation using an
adapted MUSIC (MUltiple SIgnal Classification) detection
algorithm (Hachemet al. 2013).Nevertheless,when the noise
is correlated, RMT results do not apply directly as the vari-
ance of the Marčenko–Pastur threshold has to be estimated,
and only numerical methods can help in finding the resulting
threshold (Vinogradova et al. 2013; Couillet 2015). In some
cases, secondary data that do not contain any sources can be
used to estimate the covariance matrix and then whiten the
observed data.
However, recent works (Terreaux et al. 2017a, b, 2018)
brought a solution that consists of applying a biased Toeplitz
operator on Ĉt yl , let us say C̃t yl = T

(
Ĉt yl

)
, which was
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proven to spectrally converge towards the theoretical scatter
matrix C. This result refers to the Consistency Theorem in
Terreaux et al. (2017a, b, 2018), and asserts that whenever
the sources are present in the observations, the resulting scat-
ter matrix estimate is a consistent estimation of its theoretical
value.
The first step of our methodology consists therefore in esti-
mating C̃t yl from N observations of rt in order to whiten
the observations leading to the N whitened observations
rw,t = C̃−1/2

t yl rt .
Given the whitened observations

{
rw,t

}
and their Tyler’s

covariance matrix !̂w, it has been shown in Terreaux et al.
(2018) that the eigenvalues distribution of !̂w fit the pre-
dicted bounded distribution of (Marčenko and Pastur 1967).
However, if one or several sources are contained in the obser-
vations, being powerful enough to be detected, then therewill
be as many eigenvalues as there are sources standing out-
side the upper bound of the Marčenko–Pastur distribution,
given in that case by λ̄ = σ 2 (

1+ √
c
)2 where c = m/N

and σ 2 = 1 (due to the preceding whitening process σ 2 is
equal to one). Once the K largest eigenvalues larger than
λ̄ are detected, we process as for the Eigenvalue clipping
in Laloux et al. (2000) to set the values of the remain-
ing m − K lowest eigenvalues to a unique value equal to(
Tr

(
!̂w

)
−

∑m

k=K+1
λk

)
/(m − K ). Using also the cor-

responding eigenvectors, we then build back the de-noised
assets covariance matrix to be used in (2) and (3) or in any
other objective function. The whitening procedure is detailed
more precisely in the next subsection.

4.2 Detailed whitening procedure

Given R the m × N matrix of observations, the de-noised
covariance matrix estimate !̂w is obtained through the fol-
lowing procedure steps:

S1 Set Ĉt yl as the Tyler-M estimate of R, solution of (6),
S2 Set C̃t yl = T

(
Ĉt yl

)
, the Toeplitz rectification matrix

built from Ĉt yl for the Toeplitz operator T (),
S3 Set Rw = C̃−1/2

t yl R, the m × N matrix of the whitened
observations,

S4 Set !̂t yl as the Tyler-M estimate of Rw, solution of (6),

S5 Set !̂
clip
tyl = U"clip UT where U is the m × m eigen-

vectors matrix of !̂t yl and "clip is the m × m diagonal
matrix of the eigenvalues (λclipk )k∈[1,m] corrected using
the Eigenvalue clipping method (Laloux et al. 2000)
described in detail in “Appendix A.1”,

S5 Finally, !̂w =
(
C̃1/2
t yl

)
!̂

clip
tyl

(
C̃1/2
t yl

)T
.

4.3 Simulation example

To illustrate the efficiency of the whitening process, we
ran the following test (Fig. 1): we simulate N = 1000
observations of a m = 100 here, sampled from a highly
correlated K -distributed process (Ollila et al. 2012) hav-
ing a shape parameter ν = 0.5, and a Toeplitz-structured
covariance matrix whose coefficient ρ = 0.8 (each ele-
ment i, j of the Toeplitz matrix is defined by ρ|i− j |, i, j =
1, . . . ,m). We then embed K = 3 sources of information
in the non-Gaussian and correlated noise, and we com-
pare the eigenvalues distribution of the observations with
the Marčenko–Pastur upper bound when the eigenvalues are
computed from (i) the SCM (on the left), (ii) the Tyler M-
estimatematrix (in themiddle), and (iii) theTylerM-estimate
matrix of the whitened observations. It appears clearly that
the K = 3 factors can be identified quite easily only in the
case where the observations are firstly whitened.

Fig. 1 Distributions of the logarithm of the eigenvalues of three covari-
ance matrix estimates. Left side: Eigenvalues (log) of the SCM of the
observations; Middle: Eigenvalues (log) of the Tyler covariance matrix
of the observations; Right side: Eigenvalues (log) of the Tyler covari-
ance matrix of the whitened observations. Observations contain K = 3

sources embedded in a multivariate K -distributed noise with shape
parameter ν = 0.5, and a Toeplitz coefficient ρ = 0.8. m = 100,
N = 1000 (c = 0.1), and the (log) Marčenko–Pastur upper bound is
here: log(λ̄) = log(1.7325)
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4.4 The case of non-homogeneous assets returns

The whitening process proposed above is made under the
implicit assumption that the assets returns are drawn from
a unique multivariate law and are therefore homogeneous
in law. As described hereafter, this assumption is unrealistic
for financial time series of returns. We therefore propose to
split the m assets into p < m groups, each composed of
{mq}pq=1 assets (with

∑p
q=1mq = m), and formed to be

composed of assets having similar distributions. We set a
fixed number of groups, and group the assets regarding their
returns distributions. Under this new assumption, model (4)
applies for each group q as follows:

r(q)t = B(q)
t ft +

√
τt C

1/2
(q) xt , (7)

Then, the full model (4) rewrites:





r(1)t
...

r(p)t



=





B(1)
t
...

B(p)
t



 ft+
√

τt





C(1) 01,2 · · · 01,p

02,1 C(2)
. . .

...
...

. . .
. . . 0p−1,p

0p,1 · · · 0p,p−1 C(p)





1/2

xt ,

(8)

where 0i, j denotes the null matrix of size mi × m j , i, j =
1, . . . , p, corresponding to the additional hypothesis that the
groups are uncorrelated each others. The complete scatter
matrix C is therefore block-constructed, and block-Toeplitz.

To form the groups of assets at each date t and given a
past period of N observations, we proceed as follows:

• for each asset i , we compute the sample mean µi and the
sample standard deviation σi using its N returns ri ,

• we compute the “standardized” returns r̃i = (ri−µi )/σi ,
• we compute several quantiles from r̃i , and append µi
and σi to the vector of the computed quantiles to get our
variables on which to group the assets, and finally,

• we use the classical ascending hierarchical classification
(AHC) using the Euclidean distance and the Ward mea-
sure (Ward 1963) to form the p groups.

AHC is a very classical classification method but ensures to
get homogeneous groups for which the intra-group variances
are smaller than the inter-group variances.

The three first steps S1, S2 and S3 of the whitening pro-
cess described in Sect. 4.2 are therefore repeated for each
group (q), q = 1, . . . , p: given R(q) the mq × N matrix
of observations for assets in group (q), going through S1
to S3 leads to R(q)

w the whitened matrix of observations for
group (q). Once Rw has been completed, then steps S4 to
S6 are applied and lead to the block-constructed covariance

matrix estimate !̂w. This is amixed version between a global
whitening process and a diagonal whitening process (applied
when the series are only standardized). Our process can be
viewed as a block-diagonal whitening process and ensures
that the whitened groups are more homogeneous than the
overall group of assets.

5 Application

In this section, we apply our methodology to the maximum
variety and minimum variance portfolios. The allocation is
done over a blend of European equities.3 This universe is
composed of twenty-four sectors, thirteen countries and six
smart beta indexes. Using a blend of equities instead of indi-
vidual stock allows capturing collective risks (systematic)
rather than idiosyncratic ones and reinforce portfolio diver-
sification without having to impose constraints to reduce a
stock-specific and liquidity risk. Our daily track record spans
from July 2000, the 27th toMay 2019, the 20th. We use clos-
ing prices, i.e. the last traded price during stock exchange
trading hours.
To build the portfolios, the weights are computed as follows:
we estimate every four weeks the covariance matrix of assets
using the last year of daily returns (N = 260 weekdays)
and we optimize the objective function of maximum variety
(1) or minimum variance (3) to obtain the vector of weights.
Finally, the weights remain constant between two rebalanc-
ing periods of four weeks. We apply our methodology in two
manners: the first one, named “RMT-Tyler-Wh”, contains
the whitening process applied on the universe as a whole,
whereas the one denoted by “RMT-Tyler-Wh-by-Gr” refers
to the whitening process applied on each group of assets.4

We compare the results with those obtained using the
“SCM” and also with three other competing methods: the
first one, denoted as “RMT-SCM” uses the Eigenvalue clip-
ping of Laloux et al. (2000), the second one, that we denote
as “LW”, is the method that uses the Ledoit andWolf shrink-
age of Ledoit and Wolf (2003), and finally the method using
the rotational invariant estimator of Bun et al. (2016, 2017),
denoted as “RIE”. These methods are briefly described in
“Appendix”.

We report several portfolios statistics computed over the
whole period in order to quantify the benefits of the pro-
posed methodology: the annualized return, the annualized
volatility, the ratio between the annualized return and the
annualized volatility, the value of the maximum drawdown
(that is the return between the highest and the lowest portfo-
lio levels observed during the whole period), and the average

3 Data are available upon request.
4 The number of group is p = 6 and the quantiles used are qθ and q1−θ

with θ ∈ [1%, 2.5%, 5%, 10%, 15%, 25%, 50%].
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Fig. 2 VarMax portfolios wealth from July 2001 to May 2019. The
proposed “RMT-Tyler-Wh-by-Gr” (green line) leads to improved per-
formances vs the “RMT-Tyler-Wh” (purple), the “RMT-SCM” (dashed
red), the “LW” (dash-dotted blue), the “RIE” (blue) and the “SCM”
(red), as shown in Table 1: higher annualized return, lower annualized

volatility, lower maximum drawdown and higher diversification ratio.
But it results in a twice higher turnover: we then have taken into account
7bp (or 0.07%) of transactions fees to compare the portfolios wealth
(color figure online)

of the variety ratios computed at each rebalancing date. The
higher is the return/volatility ratio, the lower is the maxi-
mum drawdown and the higher is the variety ratio, and better
performing is the portfolio. Performances are also compared
to the performance of the MSCI® Europe Index (composed
of large and mid-cap equity stocks across 15 countries of
the European regions), and to the performance of the equi-
weighted portfolio, composed of all the assets that are equally
weighted.

5.1 Variety maximum (or VarMax) portfolios results

Figure 2 shows the evolutionof theVarMaxportfolioswealth,
starting at 100 at the beginning of the first period.
The “SCM”, “RMT-SCM”, “LW”, “RIE”, “RMT-Tyler-Wh”
and “RMT-Tyler-Wh-by-Gr” VarMax portfolios are, respec-
tively, in red, dashed red, dash-dotted blue, blue, purple, and
green lines. The naive equi-weighted portfolio is reported as
the dotted black line, and the price of the benchmark, also
rebased at 100 at the beginning of the period, is the black
line.

The proposed “RMT-Tyler-Wh”-based techniques clearly
outperform the conventional ones. Moreover, whitening
homogeneous groups of data instead of the whole data set
improves evenmore the results. Regarding the othermethods,
“RMT-SCM” is the only one that outperforms significantly
“SCM”, but shows weaker performances than our proposed
method does; “LW” and “RIE” are quite similar to “SCM”.

In the figure, we have reported the “net of transaction
fees” portfolios wealth, considering 0.07% of fees (or 7 basis

points denoted as “bp”) applied to any weight change from
one time to the next one.Measuring the total weights changes
is referred as the turnover of the portfolio. We assume that
the turnover between two consecutive periods t and t + 1
is measured by

∑m

i=1
|wi,t+1 − wi,t |. If, for example, the

turnover is equal to 0.15 for changing weights from t to t+1,
then the portfolio performance computed between t and t+1
will be decreased by 0.15 × 7 bp = 0.0105%. Turnover is
an important number in portfolio allocation. If you ever find
an apparently well performing strategy that indicates you to
change the overall portfolio at each time, then the cost of
changing the overall portfolio will surely be equivalent or
larger than would be the performance of the strategy itself.
Here, the proposed technique leads to increase the cumulated
turnover, but reasonably enough to let the improvement be
a significant improvement that do not cost all the benefits
of the technique. Limiting the turnover is often added as an
additional nonlinear constraint to any optimization process
like (2) or (3).

We finally report in Table 1 some statistics on the overall
portfolios performance: we compare, for the whole period,
the annualized return, the annualized volatility, the ratio
between the return and the volatility, the maximum draw-
down and the average value of the diversification ratio, for
the portfolios and the benchmark. All the indicators related to
the proposed technique show a significant improvement with
respect to the other methods: a higher annualized return, a
lower volatility (so a higher return/volatility ratio), a lower
maximum drawdown and a higher diversification ratio.
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Table 1 Some performance numbers for VarMax portfolios with 0.07% of fees from July 2001 to May 2019

VarMax portfolios Annualized
return (%)

Annualized
volatility (%)

Ratio
(return/volatility)

Maximum
drawdown

Diversification ratio
(avg) (%)

RMT-Tyler-Wh-by-Gr 9.65 12.03 0.80 46.84 1.57

RMT-Tyler-Wh 8.90 13.16 0.68 51.18 1.44

RMT-SCM 8.94 13.79 0.65 54.15 1.27

RIE 8.65 13.65 0.63 54.44 1.38

LW 8.59 13.57 0.63 54.28 1.40

SCM 8.56 13.68 0.63 54.45 1.38

Equi-weighted 6.60 15.37 0.43 57.82 1.19

Benchmark 4.71 14.87 0.32 58.54

The results are ranked in descending order according to the ratio (return/volatility)

Fig. 3 MinVar portfolios wealth
from July 2001 to May 2019.
The proposed
“RMT-Tyler-Wh-by-Gr” (green
line) leads to improved
performances vs the
“RMT-Tyler-Wh” (purple), the
“RMT-SCM” (dashed red), the
“LW” (dash-dotted blue), the
“RIE” (blue) and the “SCM”
(red), as shown in Table 2.
MinVar portfolios are known to
result in poorly diversified
portfolios and to invest in the
lowest volatile assets. But
surprisingly, the low-volatility
anomaly applies in such cases
(color figure online)

5.2 Minimum variance (or MinVar) portfolios results

Results obtained for the MinVar portfolios also show some
improvements but less important than for the VarMax portfo-
lios. Figure 3 shows that whitening by groups (“RMT-Tyler-
Wh-by-Gr”) improves the performance whereas whitening
the whole assets (“RMT-Tyler-Wh”) do not bring improve-
ment with respect to all the other approaches, even if the
variety ratio is higher. “RMT-SCM”, “LW” and “RIE” pro-
vide lower or similar performances if compared to “SCM”.
Minimizing the portfolio variance leads to choosing the
assets having the lowest volatilities. Then, using a robust
approachdoesflatten the volatility differences between assets
and then the ex-post portfolio volatility, computed classi-
cally, will be higher than the ex-post portfolio volatility
computed using the robust matrix. Nevertheless, our process
leads to higher performance that the classical SCM exhibit-
ing a higher diversification ratio, and also a lower maximum
drawdown.

To illustrate this purpose, Fig. 4 plots the standard devi-
ations of the invested assets versus the resulting weights

obtained forMinVar/SCMweights (on the top graph) theVar-
Max/SCM(on the bottomgraph). The same conclusion arises
for the “RMT-Tyler-Wh-by-Gr”. It shows explicitly which
assets are preferred and when, according to their volatility
level. On a similar way, Fig. 5 shows that VarMax assigns
non-zeros weights to the less correlated assets if compared
to the non-zeros MinVar weights.

As for the VarMax portfolios, Table 2 reports the MinVar
portfolios statistics. Again, the indicators related to the pro-
posed technique show an improvement if compared to the
classical techniques.

6 Conclusion

In this paper, we have shown that when the covariancematrix
is estimated with the Tyler M-estimator and RMT, the Maxi-
mumVariety and theMinimumVariance Portfolio allocation
processes lead to improved performances with respect to
several classical estimators. Moreover, we have proposed to
extend the first results in Jay et al. (2018) by considering
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Fig. 4 VarMax and MinVar
SCM weights versus the assets
volatilities. As expected,
MinVar weights are mostly
non-zeros for the assets having
the lowest volatilities. VarMax
weights are more indifferent to
the volatility levels

Fig. 5 Average correlation of
the invested assets for the
VarMax and MinVar portfolios
combined with either SCM or
RMT-Tyler-Wh-by-Gr method.
VarMax SCM weights are
assigned to the less correlated
assets if compared to the SCM
MinVar weights and the
difference is reduced in the
RMT-Tyler-Wh-by-Gr case

Table 2 Some performance numbers for MinVar portfolios with 0.07% of fees from July 2001 to May 2019

MinVar
portfolios

Annualized
return (%)

Annualized
volatility (%)

Ratio
(return/volatility)

Maximum
drawdown (%)

Diversification
ratio (avg)

RMT-Tyler-Wh-by-Gr 9.35 11.08 0.84 41.07 1.52

LW 8.75 10.75 0.81 43.69 1.21

RIE 8.76 10.78 0.81 43.24 1.19

SCM 8.74 10.92 0.80 43.78 1.19

RMT-SCM 8.62 10.80 0.80 43.95 1.14

RMT-Tyler-Wh 8.72 11.58 0.75 46.50 1.36

Equi-weighted 6.60 15.37 0.43 57.82 1.19

Benchmark 4.71 14.87 0.32 58.54

The results are ranked in descending order according to the ratio (return/volatility)
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the case of non-homogeneous asset returns while keeping a
multi-factor model where the error term is a multivariate and
correlated elliptical symmetric noise. Indeed, the underlying
assumption of the whitening process is that asset returns are
homogeneous in distribution, which is unrealistic for finan-
cial time series of returns. To deal with this point, we have
first grouped the assets within homogeneously distributed
classes before processing. Applying the whitening process
on homogeneous groups of data rather than the whole data
set improves evenmore the results. This paper has focused on
both theMaximumVariety andMinimumVariance portfolios
but can be applied on other allocation framework involving
covariance matrix estimation (and/or model order selection).
Finally, the main factors identified by the whitening process
can also be used and offer many possible avenues for future
research, such as creating dynamic factor portfolios or reduc-
ing the dimension of the covariance matrix when N < m.
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Appendix: Brief description of alternative
covariancematrix estimators

Here, we briefly introduce some well-known covariance
matrix estimators. In the following, c = m/N and Ê =
R̃R̃T/N is the standardized SCM where R̃ = (̃ri )i∈[1,m] as
defined in Sect. 4.4.

A.1 Eigenvalue clipping (or RMT-SCM)

Laloux et al. (2000) proposed Eigenvalue clipping in order
to separate signal and noise subspaces using Marčenko and
Pastur (1967) boundary properties of the eigenvalues. The
Eigenvalue clipping estimator of Ê is as follows:

Êclip =
m∑

k=1

λ
clip
k ukuTk

with uk the eigenvector associated to the eigenvalue λk of Ê,
and λ

clip
k defined as follows:

λ
clip
k =

{
λk, if λk ≥ (1+ √

c)2

λ̃, otherwise
(9)

where λ̃ is chosen such that Tr(Êclip) = Tr(Ê).

A.2 Ledoit andWolf shrinkage (or LW)

Ledoit and Wolf (2003) introduced some shrinkage estima-
tors particularly adapted to financial asset returns and based
on the single factor model of Sharpe (1964), where the factor
is a market index. LW is a linear combination of the SCM
and the covariancematrix containing themarket information.
This model can be written as follows:

ri,t = αi + βi Ft + εi,t , ∀i ∈ [1,m] and ∀t ∈ [1, N ] (10)

where ri,t is the return of stock i at time t , αi is the active
return of the asset i , Ft is the market index return at time
t , βi is the asset sensitivity to the market index return, and
εi,t is the idiosyncratic return for asset i at t . This latter term
is assumed to be uncorrelated to the market index. Then the
covariance matrix writes:

Mr = σ 2
F β βT + $ε

with β = [β1, . . . ,βm]T, σ 2
F is the variance of the market

returns and $ε the covariance matrix of the idiosyncratic
error.
An estimator forMr can be determined:

M̂r = σ̂ 2
F β̂ β̂

T + $̂ε

where each β̂i is estimated individually using the OLS esti-
mator based on Eq. (10) and the $̂ε is a diagonal matrix
composed of the OLS residual variances. Finally, σ̂ 2

F is the
sample variance of the market returns.
The shrinkage-to-market estimator from Ledoit and Wolf is
therefore equal to:

!̂(γ ) = γ M̂r + (1 − γ )S

where γ ∈ [0, 1] is the shrinkage parameter estimated as in
Ledoit and Wolf (2003), and S is the SCM of asset returns.

A.3 Rotational invariant estimator (or RIE)

Bun et al. (2016, 2017) proposed an optimal rotational invari-
ant estimator for general covariance matrices by computing
the overlap between the true and sample eigenvectors intro-
duced first by Ledoit and Péché (2011). For large m, the
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optimal rotational invariant estimator (RIE) of Ê is as fol-
lows:

ÊRI E =
m∑

k=1

λRI E
k uk uTk

with uk the eigenvector associated to the eigenvalue λk of Ê,
and λRI E

k defined as follows:

λRI E
k = λk

|1 − c + c zk s(zk)|2

where zk = λk − i N−1/2 is a complex number and s(z)
denotes the discrete form of the limiting Stieltjes transform

s(z) = 1
m

m∑

j=1

1
z − λ j

We also ensure that Tr(ÊRI E ) = Tr(Ê). For this purpose,
we multiply each λk by ν with ν = ∑m

k=1 λk/
∑m

k=1 λRI E
k .
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