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Introduction

Goal: Detection under signal mismatch has been investigated for
various forms (e.g. [DeMaio 05]), fewer work concern the very
structred off-grid mismatch.

Outline:

» The adaptive detection problem

» The off-grid mismatch isssue : state of the art and proposed Subspace
detecor based solution.

» Adaptive subspace detector peformance

» Relevant choice of the subspace

» Numerical results
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The adaptive detection problem (in radar)

» Common adaptive detection problem: binary Hypothesis test between
presence (#1) or absence (Hy) of a signal in noise

H,y y = CES(@) +n, , Ho - y=n,
Y = g, 1§]€§K, Y = g, 1§]€SK
y € CP*1: observation vector.
a € C is a deterministic, unknown (nuisance) parameter.
0 is the unknown signal parameter under test.
noise: n ~ CN(0,R). In adaptive context R is unknown.
secondary data yr = ng(1l < k < K) are needed to estimate R.
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The adaptive detection problem (in radar)

» Common adaptive detection problem: binary Hypothesis test between
presence (#1) or absence (Hy) of a signal in noise

o, y=as(?)+n, , . JY =M
Yi = ng, 1<k<K, =

y € CP*1: observation vector.

a € C is a deterministic, unknown (nuisance) parameter.

0 is the unknown signal parameter under test.

noise: n ~ CN(0,R). In adaptive context R is unknown.
secondary data yr = ng(1l < k < K) are needed to estimate R.

» Common solutions :
o Kelly's detector [Kelly 86], AMF [Robey et al. 12] and ACE
[Sharf et al. 96]

» Common signal model (sinusoid in noise, radar detection after MF):
1

SO) = —=[ 1 e geP-ne |7

VP
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The off-grid issue

» As 0 is unknown, the parameter space
is often described by a discrete grid
Ga of step A.

» A is often selected as the main lobe
width of s(#) (sinusoids in noise
A=)

e two closer contributors cannot be
well separated.

e 5(0) and s(6 + A) are (sometimes s eM
nearly) orthogonal.

s@” B
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The off-grid issue

» As 0 is unknown, the parameter space
is often described by a discrete grid
Ga of step A.

» A is often selected as the main lobe
width of s(#) (sinusoids in noise
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e two closer contributors cannot be
well separated.

e 5(0) and s(6 + A) are (sometimes s eM
nearly) orthogonal.

s@” B

There is no reason for 6 € Ga : we assume that 0 is spread uniformly in a
resolution cell [0y — 5,00 + 5], 0 € Ga

> 0 ¢ Ga leads to a mismatch :
e For normalized matched filter, the loss can be severe [Rabaste et al. 16].
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The bounded angle mismatch GLRT

a
. . .. \
> The signal is assumed to lie in a cone e B?u"dedh
Hp 9 &v/) Q‘Q mismatc
s €%, = {s; =q2s < cos (96)} , & angle
where P, is the projector on A.
» The GLRT derived in [Besson 06] N
X
» Suited to more general mismatch. s(®o
» No theoretic expression of the
performances.
s@)eM
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The bounded angle mismatch GLRT

a
\
> The signal is assumed to lie in a cone e B'.m"dedh
Hp 9 \#‘ Q’e\ mismatc
s €%, = {s; =q2s < cos (96)} , & angle
where P, is the projector on A.
» The GLRT derived in [Besson 06] N
X
» Suited to more general mismatch. s(®o
» No theoretic expression of the
performances.
s(0)eM
> Choose A = s(fp) and cone angle 6. as the angle between s(fp) and
S (90 + %) (=~ 003‘1(%)).
The probability for n € €, sets a limit on the false alarm prob. (Pf,) =
Not suited for low Pf,, moderate P, highly correlated noise.
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Common adaptive subspace detectors

» Suited to signals with linear structure:
v = Ua + n [Kraut et al. 01]
e ASD: Adaptive Subspace Detector.
e MAMF: Multirank AMF.
e CFAR-ASD.

$(B0~ N

» When U = s(6y), ASD = Kelly's test, 0o ¥ N)
MAMF=AMF, CFAR-ASD=ACE. s

» The teslts statistics are, with
z=8"2y, S= £, vyl
Px =1-Pa: s@) €M
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Common adaptive subspace detectors

» Suited to signals with linear structure:
v = Ua + n [Kraut et al. 01]

e ASD: Adaptive Subspace Detector.
e MAMF: Multirank AMF.
e CFAR-ASD.
» When U = s(6y), ASD = Kelly's test,
MAMF=AMF, CFAR-ASD=ACE.
» The teslts statistics are, with
z=8"2y, S= £, viyi,

$(B0~ N

Pix=1-Pa:
2 2
P17 [Py-s P27
tasp = s 20 5, tMAMF = %, tCFAR—ASD=87U27
K+‘Pi Lz HPl Lz
S 2U S 20U

Idea : approximate the set of locally off-grid vectors by a linear subspace
» Analytic performance can be derived
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Adaptive subspace detectors performance

» One can sow, using the methodology in [Kraut et al. 01] that

Adaptive subspace statistical distribution

» ify =as(d) +n, n~CN(O,R), UecCP*?P

tcFAR—ASD =

tasp = f, tmamr= X T3

o flb~F <2p, 2K — P + 1), 2blaf? HPR_%UR*%S(e)Hj

2
c1-b~p <2(P—p),2(K—P+p+ D, 20af [P, REs(0) )
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Adaptive subspace detectors performance

» One can sow, using the methodology in [Kraut et al. 01] that

Adaptive subspace statistical distribution

» ify =as(d) +n, n~CN(O,R), UecCP*?P

< t _ _ <
b’ CFAR—-ASD 1_p’

tasp = f, tmamr=

o flb~F <2p, 2K — P + 1), 2blaf? HPR_%UR*%S(e)m

2
c1-b~p <2(P—p),2(K—P+p+ D, 20af [P, REs(0) )

> Test thresholds 7); can be determined for a given Py, = Pr (t; > n:|Ho).
» One is interested in

. 1 bo+%5 1 0o+ 5
= — Pi(0)do = — Pr(t:(0) > ni|H1) de
A PN A 00—
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Subspace choice: the basis U

» Consider for an orthonormal basis the averaged projection residue

1 90+% - 2
5(90,A,U):K/6 . ‘s(&)—UU s(e)H do.
o-32
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Subspace choice: the basis U

Z=

» Consider for an orthonormal basis the averaged projection residue

£(6o, A, U) = % :°+f ) - UUHS(G)H2 do.
0—=72

[Bosse et al. 18][Davenport et al. 12]

The orthonormal matrix U of dimension p that minimizes £(6o, A, U) is given by
the p strongest eigenvectors of
1 0o+5

A 02

U(bo, A) s(0)s(6)" de.

We also have (60, A, U) = 31,1 Ak (60, A) .
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Subspace choice: the basis U

» Consider for an orthonormal basis the averaged projection residue

s(6) - UUHS(G)H2 do.

1 b0+%
5(907A7U) = K/e A
0= 7%

[Bosse et al. 18][Davenport et al. 12]

The orthonormal matrix U of dimension p that minimizes £(6o, A, U) is given by
the p strongest eigenvectors of
1 0o+5

A 02

U(bo, A) s(0)s(6)" de.

We also have (60, A, U) = 31,1 Ak (60, A) .

> In case of sinusoids in noise model :
e the eigenvectors of U(fy, A) are deduced from the DPSS vectors

[Slepian 78].
e the eigenvalues A\ (6o, A) of U(fy, A) are the DPSS vectors's

eigenvalues.
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Subspace choice: the dimension p

> Trade-off: when p grows
e the projection error (the mismatch) decreases :

1 - 1
& (90, ﬁ,U) = Z Ak (90, ﬁ) .
k=p+1

= Py f
e the threshold increases = Py \ .
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Subspace choice: the dimension p

> Trade-off: when p grows
e the projection error (the mismatch) decreases :

1 - 1
& (90, ﬁ,U) = Z Ak (90, ﬁ) .
k=p+1

= Py f
e the threshold increases = Py \ .

» Empirically p = 2 gives usually the best result.
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Subspace choice: the dimension p

> Trade-off: when p grows
e the projection error (the mismatch) decreases :

1 - 1
£ (90, ﬁ,U) = > N (90, ﬁ) -
k=p+1
= Py f

e the threshold increases = Py \ .
» Empirically p = 2 gives usually the best result.
» Why ?

e When P is large : [Slepian 78] Ak (6o, 5) =~ A& (5).

> Ak(c) is the k — th eigenvalue of the k — th Prolate Spheroidal Wave
Function (PSWF) of parameter c.

e p =2 allows to capture around 98 % of the signal subspace energy.
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Numerical results and conclusion

» P =15,

> Even in low correlation (p = 0), the

» Proposed subspaces offer good

R = Toeplitz(1, p, ..
SNR = 10logo(|al).

loss can be severe.

performances.

—__AMF
P_l) Kell
P f IS elly
= 0.8 ACE
k1
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=
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a,
=
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T 04r
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o ‘ ‘
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SNR

> 09 =0, Pr, =5x1073,p=0
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Numerical results and conclusion

" 1;&:? litz(1 P-1 =
= Loepit Z( y Py eees P )' ! E(ejlg

o
o

SNR = 10logo(|al).

> Even in low correlation (p = 0), the
loss can be severe.

—e— DPSS MAMF
—e—DPSS ASD
ll DPSS CFAR ASD
—=— GLRT [Besson 06]

o
=N

<
=

» Proposed subspaces offer good
performances.

Mean detection probability Py
(=)
[}

0 5 10 15 20
SNR

> 09 =0, Pr, =5x1073,p=0
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Numerical results and conclusion

» P =15, 1
R = Toeplitz(1,p, ..., pF 1), &
SNR = 10log;(|af). z08
» Even in low correlation (p = 0), the g ool
loss can be severe. A
» Proposed subspaces offer good § 04
performances. 5
g 02}
=
0 ‘ ‘ ‘
15 20 25 30 35

SNR

> 6 =0, Pfa = 10_6, p=0.6

10/12 ICASSP 20 Bosse et al.: Adaptive subspace detectors f I




Numerical results and conclusion

>

» Even in low correlation (p = 0), the

» Proposed subspaces offer good
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Numerical results and conclusion

P =15,

R = Toeplitz(1,p, ..., pF 1),
SNR = 10log;,(|al).

Even in low correlation (p = 0), the
loss can be severe.

Proposed subspaces offer good
performances.

Proposed solution lies close to the
GLRT for which analytic
performances are unknown.
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Numerical results and conclusion
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R = Toeplitz(1,p, ..., pF 1),
SNR = 10log;,(|al).

» Even in low correlation (p = 0), the
loss can be severe.

» Proposed subspaces offer good
performances.

» Proposed solution lies close to the
GLRT for which analytic
performances are unknown.
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Numerical results and conclusion
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P =15, ! Farid AME ‘ 7
R = Toeplitz(1,p, ..., pF 1), | " ot grid Ky
SNR = 10log;,(]). 08 | e Db ASD

Even in low correlation (p = 0), the
loss can be severe.

o
=)

Proposed subspaces offer good
performances.

N
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Proposed solution lies close to the
GLRT for which analytic

Mean detection probability Py

performances are unknown. 10 15 S?R 25
Optimality of the subspace with

respect to the detection probability 7 60 = 0, Pyo = 10-4, p = 0.6
— Y a — ) — Y
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Thank you for your attention

ONERA

12/12 ICASSP 20 Bosse et al.: Adaptive subspace detectors f




