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Introduction

Goal: Detection under signal mismatch has been investigated for
various forms (e.g. [DeMaio 05]), fewer work concern the very
structred off-grid mismatch.

Outline:

I The adaptive detection problem
I The off-grid mismatch isssue : state of the art and proposed Subspace

detecor based solution.
I Adaptive subspace detector peformance
I Relevant choice of the subspace
I Numerical results
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The adaptive detection problem (in radar)

I Common adaptive detection problem: binary Hypothesis test between
presence (H1) or absence (H0) of a signal in noise

H1 :

{
y = αs(θ) + n, ,

yk = nk, 1 ≤ k ≤ K,
H0 :

{
y = n,

yk = nk, 1 ≤ k ≤ K.

• y ∈ CP×1: observation vector.
• α ∈ C is a deterministic, unknown (nuisance) parameter.
• θ is the unknown signal parameter under test.
• noise: n ∼ CN (0,R). In adaptive context R is unknown.
• secondary data yk = nk(1 ≤ k ≤ K) are needed to estimate R.

I Common solutions :
• Kelly’s detector [Kelly 86], AMF [Robey et al. 12] and ACE

[Sharf et al. 96]
I Common signal model (sinusoid in noise, radar detection after MF):

s(θ) =
1√
P

[
1 ej2πθ ... ej2π(P−1)θ

]T
,
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The off-grid issue

I As θ is unknown, the parameter space
is often described by a discrete grid
G∆ of step ∆.

I ∆ is often selected as the main lobe
width of s(θ) (sinusoids in noise
∆ = 1

P ):
• two closer contributors cannot be

well separated.
• s(θ) and s(θ + ∆) are (sometimes

nearly) orthogonal.

𝒔 𝜃  

𝒔 𝜃 ∈ 𝑀 

Δ 

Δ 

There is no reason for θ ∈ G∆ : we assume that θ is spread uniformly in a
resolution cell

[
θ0 − ∆

2 , θ0 + ∆
2

]
, θ0 ∈ G∆

I θ /∈ G∆ leads to a mismatch :
• For normalized matched filter, the loss can be severe [Rabaste et al. 16].
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The bounded angle mismatch GLRT

I The signal is assumed to lie in a cone
s ∈ Cθc =

{
s; sHPAs

sHs
≤ cos2(θc)

}
,

where PA is the projector on A.
I The GLRT derived in [Besson 06]
I Suited to more general mismatch.
I No theoretic expression of the

performances.

𝒔 𝜃  

𝒔 𝜃 ∈ 𝑀 

Δ 

Δ 

𝑩𝒐𝒖𝒏𝒅𝒆𝒅  
𝒎𝒊𝒔𝒎𝒂𝒕𝒄𝒉 

 𝒂𝒏𝒈𝒍𝒆 

I Choose A = s(θ0) and cone angle θc as the angle between s(θ0) and
s
(
θ0 + ∆

2

)
(≈ cos−1( 2

π )).

The probability for n ∈ Cθc sets a limit on the false alarm prob. (Pfa) ⇒
Not suited for low Pfa, moderate P , highly correlated noise.
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Common adaptive subspace detectors

I Suited to signals with linear structure:
y = Uα + n [Kraut et al. 01]

• ASD: Adaptive Subspace Detector.
• MAMF: Multirank AMF.
• CFAR-ASD.

I When U = s(θ0), ASD = Kelly’s test,
MAMF=AMF, CFAR-ASD=ACE.

I The tests statistics are, with
z = S−

1
2 y, S = 1

K

∑K
k=1 yky

H
k ,

P⊥A = I−PA:

𝒔 𝜃  

𝒔 𝜃 ∈ 𝑀 

Δ 

𝒍𝒊𝒏𝒆𝒂𝒓  
𝑺𝒖𝒃𝒔𝒑𝒂𝒄𝒆  

𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏 

𝐔 

tASD =

∥∥∥P
S
− 1

2 U
z
∥∥∥2

K +

∥∥∥∥P⊥
S
− 1

2 U
z

∥∥∥∥2
, tMAMF =

∥∥∥P
S
− 1

2 U
z
∥∥∥2

K
, tCFAR−ASD =

∥∥∥P
S
− 1

2 U
z
∥∥∥2∥∥∥∥P⊥

S
− 1

2 U
z

∥∥∥∥2
,

Idea : approximate the set of locally off-grid vectors by a linear subspace
I Analytic performance can be derived
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Adaptive subspace detectors performance

I One can sow, using the methodology in [Kraut et al. 01] that

Adaptive subspace statistical distribution
I if y = αs(θ) + n, n ∼ CN (0,R), U ∈ CP×p

tASD = f, tMAMF =
f

b
, tCFAR−ASD =

f

1− b ,

• f |b ∼ F
(

2p, 2(K − P + 1), 2b|α|2
∥∥∥P

R
− 1

2 U
R−

1
2 s(θ)

∥∥∥2)
• 1− b ∼ β

(
2(P − p), 2(K − P + p+ 1), 2|α|2

∥∥∥P⊥
R

− 1
2 U

R−
1
2 s(θ)

∥∥∥2)

I Test thresholds ηi can be determined for a given Pfa = Pr (ti > ηi|H0).
I One is interested in

P̄ id =
1

∆

∫ θ0+
∆
2

θ0−∆
2

P id (θ) dθ =
1

∆

∫ θ0+
∆
2

θ0−∆
2

Pr (ti(θ) > ηi|H1) dθ
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Subspace choice: the basis U

I Consider for an orthonormal basis the averaged projection residue

E(θ0,∆,U) =
1

∆

∫ θ0+
∆
2

θ0−∆
2

∥∥∥s(θ)−UUHs(θ)
∥∥∥2 dθ.

[Bosse et al. 18][Davenport et al. 12]

The orthonormal matrix U of dimension p that minimizes E(θ0,∆,U) is given by
the p strongest eigenvectors of

U(θ0,∆) =
1

∆

∫ θ0+
∆
2

θ0−∆
2

s(θ)s(θ)Hdθ.

We also have E(θ0,∆,U) =
∑P
k=p+1 λk (θ0,∆) .

I In case of sinusoids in noise model :
• the eigenvectors of U(θ0,∆) are deduced from the DPSS vectors

[Slepian 78].
• the eigenvalues λk (θ0,∆) of U(θ0,∆) are the DPSS vectors’s

eigenvalues.
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Subspace choice: the dimension p

I Trade-off: when p grows
• the projection error (the mismatch) decreases :

E
(
θ0,

1

P
,U

)
=

P∑
k=p+1

λk

(
θ0,

1

P

)
.

⇒ Pd 1.
• the threshold increases ⇒ Pd % .

I Empirically p = 2 gives usually the best result.
I Why ?

• When P is large : [Slepian 78] λk
(
θ0,

1
P

)
≈ λk

(
π
2

)
.

I λk(c) is the k − th eigenvalue of the k − th Prolate Spheroidal Wave
Function (PSWF) of parameter c.

• p = 2 allows to capture around 98 % of the signal subspace energy.
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Numerical results and conclusion

I P = 15,
R = Toeplitz(1, ρ, ..., ρP−1),
SNR = 10 log10(|α|).

I Even in low correlation (ρ = 0), the
loss can be severe.

I Proposed subspaces offer good
performances.
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I θ0 = 0, Pfa = 5×10−3, ρ = 0
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I Optimality of the subspace with
respect to the detection probability ?
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Thank you for your attention
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