A TYLER-TYPE ESTIMATOR OF LOCATION AND SCATTER LEVERAGING RIEMANNIAN OPTIMIZATION

Introduction

Many signal processing applications require first and second order statist the sample set $\{x_i\}_{i=1}^n$. To be robust to heavy-tailed distributions or outlie the M-estimators:

$$\begin{cases} \boldsymbol{\mu} = \Big(\sum_{i=1}^{n} u_1(t_i)\Big)^{-1} \sum_{i=1}^{n} u_1(t_i) \boldsymbol{x}_{\boldsymbol{i}} \triangleq \mathcal{H}_{\boldsymbol{\mu}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} u_2(t_i) (\boldsymbol{x}_{\boldsymbol{i}} - \boldsymbol{\mu}) (\boldsymbol{x}_{\boldsymbol{i}} - \boldsymbol{\mu})^H \triangleq \mathcal{H}_{\boldsymbol{\Sigma}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) , \end{cases}$$

where $t_i \triangleq (\boldsymbol{x_i} - \boldsymbol{\mu})^H \boldsymbol{\Sigma}^{-1} (\boldsymbol{x_i} - \boldsymbol{\mu}), u_1$ and u_2 are functions that respect Ntions [1].

Under certain conditions [1],

$$\begin{cases} \boldsymbol{\mu}_{k+1} = \mathcal{H}_{\boldsymbol{\mu}}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \\ \boldsymbol{\Sigma}_{k+1} = \mathcal{H}_{\boldsymbol{\Sigma}}(\boldsymbol{\mu}_{k+1}, \boldsymbol{\Sigma}_k) \end{cases}$$

converge towards a unique solution satisfying (1).

Data model

Let n data points $x_i \in \mathbb{C}^p$ distributed according to the model:

 $oldsymbol{x}_{oldsymbol{i}} = oldsymbol{\mu} + \sqrt{ au_i} \Sigma^{rac{1}{2}} oldsymbol{u}_{oldsymbol{i}}$ where $\boldsymbol{\mu} \in \mathbb{C}^p$, $\boldsymbol{\tau} \in (\mathbb{R}^+)^n$, $\boldsymbol{\Sigma} \in \mathcal{SH}_p^{++}$ and $\boldsymbol{u_i} \sim \mathbb{CN}(\boldsymbol{0}, \boldsymbol{I}_p)$. Hence, τ_i $det(\mathbf{\Sigma}) = 1$. Also, the textures τ_i are assumed to be unknown and determ Thus, x_i follows a Compound Gaussian distribution, *i.e.*

The set of parameters is $\mathcal{M}_{p,n} = \mathbb{C}^p \times (\mathbb{R}^+_*)^n \times \mathcal{SH}_p^{++}$.

Likelihood and MLE

 $\boldsymbol{x_i} \sim \mathbb{CN}(\boldsymbol{\mu}, \tau_i \boldsymbol{\Sigma}).$

Hence,
$$\forall \theta = (\boldsymbol{\mu}, \boldsymbol{\tau}, \boldsymbol{\Sigma}) \in \mathcal{M}_{p,n}$$
 the negative log-likelihood is

$$L(\theta) = \sum_{i=1}^{n} \left[\log \det \left(\tau_i \boldsymbol{\Sigma} \right) + \frac{(\boldsymbol{x}_i - \boldsymbol{\mu})^H \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu})}{\tau_i} \right] \,.$$

By derivation we get that the Maximum Likelihood Estimate (MLE) satisf

$$\begin{cases} \boldsymbol{\mu} = \left(\sum_{i=1}^{n} \frac{1}{\tau_i}\right)^{-1} \sum_{i=1}^{n} \frac{\boldsymbol{x}_i}{\tau_i} \\ \boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \frac{(\boldsymbol{x}_i - \boldsymbol{\mu})(\boldsymbol{x}_i - \boldsymbol{\mu})^H}{\tau_i} \\ \tau_i = \frac{1}{p} (\boldsymbol{x}_i - \boldsymbol{\mu})^H \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}). \end{cases}$$

Thus, (6) coincides with the fixed point (1) for $u_1(t) = u_2(t) = p/t$ but Maronna's conditions. The associated fixed-point iterations (2) generally tice !

A. Collas¹, F. Bouchard², A. Breloy³, C. Ren¹, G. Ginolhac⁴, J.-P. Ovarlez^{1,5}

¹SONDRA, CentraleSupélec, Université Paris-Saclay ²CNRS, L2S, CentraleSupélec, Université Paris-Saclay ³LEME, Université Paris Nanterre ⁴LISTIC, Université Savoie Mont Blanc ⁵DEMR, ONERA, Université Paris-Saclay

Riemannian geometry

tical moments of ers, [1] proposed	 A tool of interest for constrained parameters estimation is the Riemannian geometry. Briefly, a Riemannian manifold is a couple (<i>M</i>, (·, ·)^{<i>M</i>}_θ) where <i>M</i> is a smooth manifold (i.e. a locally Euclidean set).
(1)	• $\langle \cdot, \cdot \rangle_{\theta}^{\mathcal{M}}$ is an inner product, on $T_{\theta}\mathcal{M}$, called the Riemannian metric.
	The vector space $T_{\theta}\mathcal{M}$ is called the tangent space and is the linearization of \mathcal{M} at θ .
Aaronna's condi-	With the Riemmanian geometry of \mathcal{M} defined, we can For a full review on this topic: see [2, 3].
(2)	Minimization of the negative log-lik
	The goal is to minimize the negative log-likelihood (5):
	$\widehat{ heta} = rgmin_{ heta \in \mathcal{M}_{p,n}} L(heta).$
	where $\mathcal{M}_{p,n} = \mathbb{C}^p imes (\mathbb{R}^+_*)^n imes \mathcal{SH}_p^{++}.$
	$\mathcal{M}_{p,n}$ is a product manifold of sets which have well kno
	The tangent space of $\mathcal{M}_{p,n}$ at θ denoted $T_{\theta}\mathcal{M}_{p,n}$ is the \mathbb{C}^p , $(\mathbb{R}^+_*)^n$ and \mathcal{SH}_p^{++} i.e,
(3)	$T_{\theta}\mathcal{M}_{p,n} = \{\xi \in \mathbb{C}^p \times \mathbb{R}^n \times \mathcal{H}_p : \mathrm{Tr}(\mathbb{R}^p) \}$
$>$ 0, $\Sigma \succ$ 0 and	where \mathcal{H}_p is the Hermitian set.
ministic. (4)	Let $\xi, \eta \in T_{\theta}\mathcal{M}_{p,n}$, the Riemannian metric at θ is define $\langle \xi, \eta \rangle_{\theta}^{\mathcal{M}_{p,n}} = \langle \xi_{\mu}, \eta_{\mu} \rangle_{\mu}^{\mathbb{C}^{p}} + \langle \xi_{\tau}, \eta_{\tau} \rangle_{\tau}^{(\mathbb{R}^{+}_{*})^{n}}$
	with • $\langle \boldsymbol{\xi}_{\mu}, \boldsymbol{\eta}_{\mu} \rangle_{\mu}^{\mathbb{C}^{p}} = \mathfrak{Re}\{\boldsymbol{\xi}_{\mu}^{H}\boldsymbol{\eta}_{\mu}\},$ • $\langle \boldsymbol{\xi}_{\tau}, \boldsymbol{\eta}_{\tau} \rangle_{\tau}^{(\mathbb{R}^{+})^{n}} = (\boldsymbol{\tau}^{\odot - 1} \odot \boldsymbol{\xi}_{\tau})^{T} (\boldsymbol{\tau}^{\odot - 1} \odot \boldsymbol{\eta}_{\tau}),$ where \odot and product and power operators respectively, • $\langle \boldsymbol{\xi}_{\Sigma}, \boldsymbol{\eta}_{\Sigma} \rangle_{\Sigma}^{\mathcal{H}^{++}_{p}} = \operatorname{Tr} (\boldsymbol{\Sigma}^{-1} \boldsymbol{\xi}_{\Sigma} \boldsymbol{\Sigma}^{-1} \boldsymbol{\eta}_{\Sigma}).$
(5)	$\left(\mathcal{M}_{p,n}, \langle \cdot, \cdot \rangle^{\mathcal{M}_{p,n}}\right)$ is a Riemannian manifold and all its g from Riemannian geometries of \mathbb{C}^p , $(\mathbb{R}^+_*)^n$, and \mathcal{SH}_p^{++} .
(5)	Optimization algorit
fies	Input : Initial iterate $\theta_1 \in \mathcal{M}_{p,n}$. Output: Sequence of iterates $\{\theta_k\}$ k := 1;
(6)	$\begin{aligned} \xi_1 &:= - \operatorname{grad} L(\theta_1); \\ \text{while no convergence do} \\ & \text{Compute a step size } \alpha_k \text{ (e.g see [2, §4.2]) and set } \theta_k \\ & \text{Compute } \beta_{k+1} \text{ (e.g see [2, §8.3]) and set } \xi_{k+1} := - \xi \end{aligned}$
does not satisfy	k := k + 1;end
v diverge in prac-	Algorithm 1: Riemannian conjugate g
	 grad L(\(\theta_k)\) is the Riemannian gradient, computed in F R^{M_{p,n}}_{\(\theta_k)\)} is a retraction provided in Section 3.1.

• $\mathcal{T}_{\theta_k,\theta_{k+1}}^{\mathcal{M}_{p,n}}$ is a vector transport provided in Section 3.1.

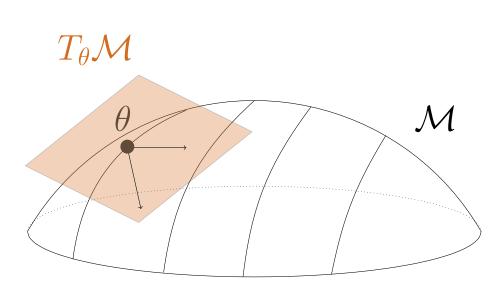


Figure 1. A manifold \mathcal{M} with its tangent space $T_{\theta}\mathcal{M}$.

optimize a function $f : \mathcal{M} \to \mathbb{R}$.

kelihood L on $\mathcal{M}_{p,n}$

(7)

own Riemannian manifolds.

product of the tangent spaces of

$$\left\{\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}_{\boldsymbol{\Sigma}}\right) = 0\right\},\tag{8}$$

ed as,

$$^{n} + \langle \boldsymbol{\xi}_{\boldsymbol{\Sigma}}, \boldsymbol{\eta}_{\boldsymbol{\Sigma}} \rangle_{\boldsymbol{\Sigma}}^{\mathcal{H}_{p}^{++}},$$
 (9)

nd $\cdot^{\odot t}$ denote the elementwise

geometrical elements are derived

thm

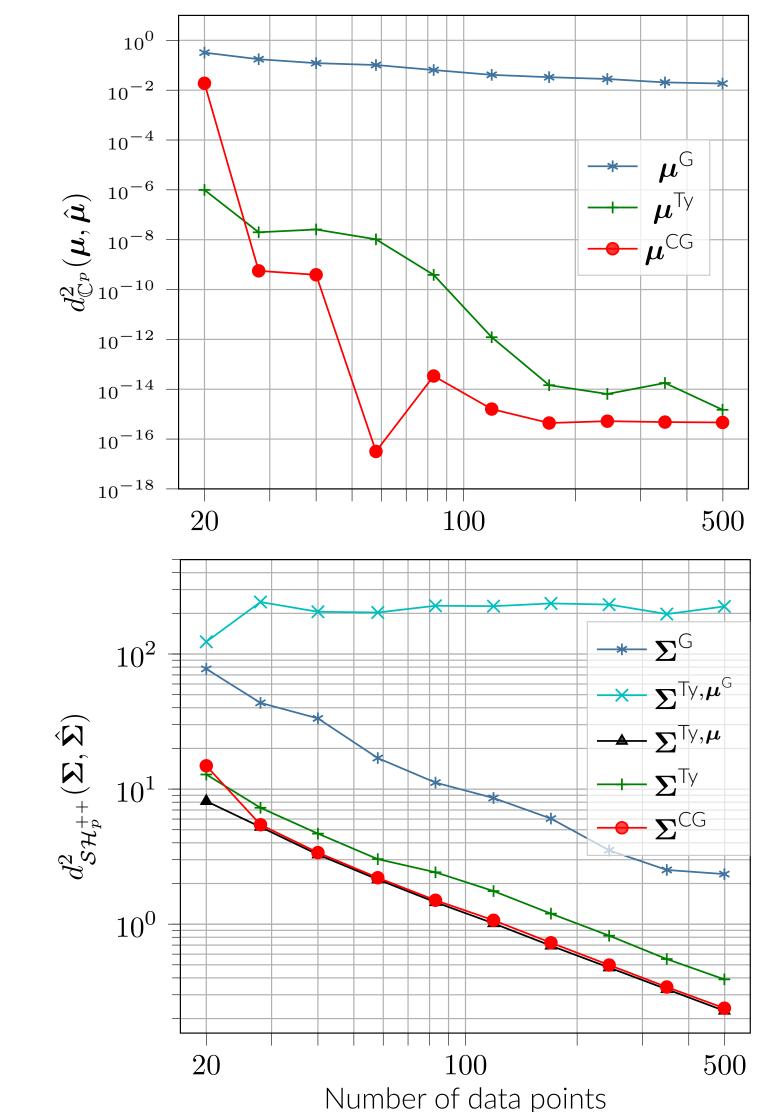
$$\theta_{k+1} := R_{\theta_k}^{\mathcal{M}_{p,n}}(\alpha_k \xi_k);$$

grad $L(\theta_{k+1}) + \beta_{k+1} \mathcal{T}_{\theta_k,\theta_{k+1}}^{\mathcal{M}_{p,n}}(\xi_k);$

gradient [2]

Proposition 1,

10^{-2} 10^{-4} $\widehat{\mathbf{a}}^{10^{-\epsilon}}$ $\underbrace{\mathbf{J}}_{10^{-8}}$



the considered estimators $\hat{\mu} \in \{\mu^{G}, \mu^{Ty}, \mu^{CG}\}$ and $\hat{\Sigma} \in \{\Sigma^{G}, \Sigma^{Ty, \mu^{G}}, \Sigma^{Ty, \mu}, \Sigma^{Ty}, \Sigma^{CG}\}.$

- 1. μ^{G}, Σ^{G} : Gaussian estimators.
- Tyler's M-estimator [4].
- 4. $\Sigma^{Ty,\mu}$: Tyler's *M*-estimator with location known [4].
- $\mathcal{M}_{p.n}$ performed with the library Pymanopt [5].

 μ^{CG} and Σ^{CG} , Riemannian Conjugate Gradient estimators, perform better than other estimators.

- [2] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. Princeton, NJ, USA: Princeton University Press, 2008.
- 06 2005.
- [4] D. E. Tyler, "A distribution-free M-estimator of multivariate scatter," Ann. Statist., vol. 15, pp. 234–251, 03 1987.
- differentiation," J. Mach. Learn. Res., vol. 17, p. 4755–4759, Jan. 2016.

Numerical experiments

Figure 2. Mean squared errors over 200 simulated sets $\{x_i\}_{i=1}^n$ (p = 10) with respect to the number n of samples for

2. Σ^{Ty,μ^G} : two-step estimation, $\{x_i\}_{i=1}^n$ are centered with μ^G then we estimate Σ using

3. μ^{Ty}, Σ^{Ty} : Tyler's joint estimators of location and scatter matrix [4]. These estimators corresponds to (1) with $u_1(t) = \sqrt{p/t}$ and $u_2(t) = p/t$. It converges in practice.

5. Our estimators μ^{CG} and Σ^{CG} : a Riemannian conjugate gradient to minimize (5) on

References

[1] R. A. Maronna, "Robust M-estimators of multivariate location and scatter," Ann. Statist., vol. 4, pp. 51–67, 01 1976.

[3] S. Smith, "Covariance, subspace, and intrinsic Cramér-Rao bounds," Signal Processing, IEEE Transactions on, vol. 53, pp. 1610 – 1630,

[5] J. Townsend, N. Koep, and S. Weichwald, "Pymanopt: A python toolbox for optimization on manifolds using automatic