
ATYLER-TYPE ESTIMATOR OF LOCATION AND SCATTER LEVERAGING RIEMANNIAN OPTIMIZATION
A. Collas1, F. Bouchard2, A. Breloy3, C. Ren1, G. Ginolhac4, J.-P. Ovarlez1,5

1SONDRA, CentraleSupélec, Université Paris-Saclay
2CNRS, L2S, CentraleSupélec, Université Paris-Saclay

3LEME, Université Paris Nanterre
4LISTIC, Université Savoie Mont Blanc

5DEMR, ONERA, Université Paris-Saclay

Introduction

Many signal processing applications require first and second order statistical moments of

the sample set {xi}n
i=1. To be robust to heavy-tailed distributions or outliers, [1] proposed

the M-estimators: 
µ =

( n∑
i=1

u1(ti)
)−1 n∑

i=1
u1(ti)xi , Hµ(µ, Σ)

Σ = 1
n

n∑
i=1

u2(ti)(xi − µ)(xi − µ)H , HΣ(µ, Σ) ,

(1)

where ti , (xi − µ)HΣ−1(xi − µ), u1 and u2 are functions that respect Maronna’s condi-

tions [1].

Under certain conditions [1], {
µk+1 = Hµ(µk, Σk)
Σk+1 = HΣ(µk+1, Σk)

(2)

converge towards a unique solution satisfying (1).

Data model

Let n data points xi ∈ Cp distributed according to the model:

xi =
d

µ +
√

τiΣ
1
2ui (3)

where µ ∈ Cp, τ ∈ (R+
∗ )n, Σ ∈ SH++

p and ui ∼ CN (0, Ip). Hence, τi > 0, Σ � 0 and

det(Σ) = 1. Also, the textures τi are assumed to be unknown and deterministic.

Thus, xi follows a Compound Gaussian distribution, i.e.

xi ∼ CN (µ, τiΣ). (4)

The set of parameters is Mp,n = Cp × (R+
∗ )n × SH++

p .

Likelihood and MLE

Hence, ∀θ = (µ, τ , Σ) ∈ Mp,n the negative log-likelihood is

L(θ) =
n∑

i=1

[
log det (τiΣ) + (xi − µ)HΣ−1(xi − µ)

τi

]
. (5)

By derivation we get that the Maximum Likelihood Estimate (MLE) satisfies

µ =
(

n∑
i=1

1
τi

)−1 n∑
i=1

xi

τi

Σ = 1
n

n∑
i=1

(xi − µ)(xi − µ)H

τi

τi = 1
p

(xi − µ)HΣ−1(xi − µ).

(6)

Thus, (6) coincides with the fixed point (1) for u1(t) = u2(t) = p/t but does not satisfy

Maronna’s conditions. The associated fixed-point iterations (2) generally diverge in prac-

tice !

Riemannian geometry

A tool of interest for constrained parameters

estimation is the Riemannian geometry. Briefly, a

Riemannian manifold is a couple (M, 〈·, ·〉M
θ ) where

M is a smooth manifold (i.e. a locally Euclidean set).

〈·, ·〉M
θ is an inner product, on TθM, called the

Riemannian metric.

The vector space TθM is called the tangent space

and is the linearization of M at θ.

M

TθM

•
θ

Figure 1. A manifold M with its tangent

space TθM.

With the Riemmanian geometry of M defined, we can optimize a function f : M → R.
For a full review on this topic: see [2, 3].

Minimization of the negative log-likelihood L on Mp,n

The goal is to minimize the negative log-likelihood (5):

θ̂ = arg min
θ∈Mp,n

L(θ). (7)

where Mp,n = Cp × (R+
∗ )n × SH++

p .

Mp,n is a product manifold of sets which have well known Riemannian manifolds.

The tangent space of Mp,n at θ denoted TθMp,n is the product of the tangent spaces of

Cp, (R+
∗ )n and SH++

p i.e,

TθMp,n =
{
ξ ∈ Cp × Rn × Hp : Tr(Σ−1ξΣ) = 0

}
, (8)

where Hp is the Hermitian set.

Let ξ, η ∈ TθMp,n, the Riemannian metric at θ is defined as,

〈ξ, η〉Mp,n

θ = 〈ξµ, ηµ〉Cp

µ + 〈ξτ , ητ〉(R+
∗ )n

τ + 〈ξΣ, ηΣ〉H++
p

Σ , (9)

with

〈ξµ, ηµ〉Cp

µ = Re{ξH
µ ηµ},

〈ξτ , ητ〉(R+
∗ )n

τ = (τ �−1 � ξτ )T (τ �−1 � ητ ), where � and .�t denote the elementwise

product and power operators respectively,

〈ξΣ, ηΣ〉H++
p

Σ = Tr
(
Σ−1ξΣΣ−1ηΣ

)
.(

Mp,n, 〈·, ·〉Mp,n
·

)
is a Riemannian manifold and all its geometrical elements are derived

from Riemannian geometries of Cp, (R+
∗ )n, and SH++

p .

Optimization algorithm

Input : Initial iterate θ1 ∈ Mp,n.

Output: Sequence of iterates {θk}
k := 1;
ξ1 := − grad L(θ1);
while no convergence do

Compute a step size αk (e.g see [2, §4.2]) and set θk+1 := R
Mp,n

θk
(αkξk);

Compute βk+1 (e.g see [2, §8.3]) and set ξk+1 := − grad L(θk+1) + βk+1 T Mp,n

θk,θk+1
(ξk);

k := k + 1;
end

Algorithm 1: Riemannian conjugate gradient [2]

grad L(θk) is the Riemannian gradient, computed in Proposition 1,

R
Mp,n

θk
is a retraction provided in Section 3.1.

T Mp,n

θk,θk+1
is a vector transport provided in Section 3.1.

Numerical experiments

We estimate location µ ∈ Cp and scatter matrix Σ ∈ SH++
p from simulated data.
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Figure 2. Mean squared errors over 200 simulated sets {xi}n
i=1 (p = 10) with respect to the number n of samples for

the considered estimators µ̂ ∈ {µG, µTy, µCG} and Σ̂ ∈ {ΣG, ΣTy,µG

, ΣTy,µ, ΣTy, ΣCG}.

1. µG, ΣG: Gaussian estimators.

2. ΣTy,µG

: two-step estimation, {xi}n
i=1 are centered with µG then we estimate Σ using

Tyler’s M-estimator [4].

3. µTy, ΣTy: Tyler’s joint estimators of location and scatter matrix [4]. These estimators

corresponds to (1) with u1(t) =
√

p/t and u2(t) = p/t. It converges in practice.

4. ΣTy,µ: Tyler’s M-estimator with location known [4].

5. Our estimators µCG and ΣCG: a Riemannian conjugate gradient to minimize (5) on

Mp,n performed with the library Pymanopt [5].

µCG and ΣCG, Riemannian Conjugate Gradient estimators, perform better than other es-

timators.
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