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Introduction

@ Frequently used portfolio allocation processes require the estimation
of the covariance matrix of the asset returns [1, 2, 3, 4]:

— The Sample Covariance Matrix (SCM) optimal under the Normal

assumption is the most used estimator, but, financial time series might
exhibit outliers,

— The field of robust estimation intends to deal with outliers [5, 6, 7],

— RMT helps in finding a solution for filtering noise [8, 9], but needs to
be adapted to non-homogeneous and correlated time series [10].

@ In [11] the authors found that considering sub-groups of homogeneous
assets may allow for better performance.

@ This paper focuses on assets classification methods:

— The Affinity Propagation (AP) method [12] that self-determines the
number of classes,

— The Ascending Hierarchical Clustering (AHC) method that requires the
number of classes or determines them using a predefined criterion.
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Problem formulation

Variety Maximum (VarMax) portfolio

@ The VarMax process, also called the Maximum Diversified Portfolio in
[2], allocates assets by maximizing the Variety Ratio (VR ) of the
portfolio.

@ The VR quantifies the degree of diversification of a portfolio.

VarMax portfolio

Optimal weights w* are the weights that maximize the Variety Ratio (VR ):
. w's
w* = argmax

wo(wl ):w)l/2 ’
where X is the covariance matrix and s such that s; = VXj;, i € [1, m].

st.w/ 1,=1and0<w; <1,Vie [1, m],

= We focus on the VarMax process because it is the allocation process
most sensitive to the covariance matrix of the assets returns.

= Problem: X unknown — need to be estimated

Thibault Soler ICASSP 2020 05/05/2020 3/23



Problem formulation

General model and assumptions

Let R = {r:},c;; n) be the m x N-matrix containing the N observations of
the m asset returns, modelled as a K-factor model [13, 14] with an
additive multivariate Elliptic Symmetric distributed noise [15, 16]. For
each observation date t € [1, N] , we then have:

re = B fy + /7 C/2 x,, (1)
r; is the m-vector of returns,
B; is the m x K-matrix of coefficients that define the assets
sensitivities of the K factors,
f: is the K-vector of random factors and common to the m assets,
X; is the m-vector of independent Gaussian white noise with unit
variance and is non-correlated with the factors,
C is called the m x m scatter matrix that is Toeplitz structured [17]
and is time invariant over the period of observation,
T¢ is an i.i.d positive random variables with expectation 7 that is
independent of the noise and the factors and drives the variance of
the noise.

Thibault Soler ICASSP 2020 05/05/2020 4 /23



Problem formulation
Whitening process

Robust Consistent Estimation for C [18]

be the scatter matrix Tyler M-estimator of R.

As m, N — oo such that m/N — ¢ €]0, oo[, we have HT [Cty,] —

where T[] is the Toeplitz rectification operator (T[A]); = — Za,, i1

A consistent estimator Ety/ of the background scatter matrix C is therefore
defined through observations R as E’:ty, =T [éty/]

1/2 5

—> The observations R can now be whitened through Cty,
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Problem formulation
Whitening process

Behavior of whitened data [18]

A /2 A
Let R, = (T [Cty/]) R be the whitened data and X, be the Tyler
M-estimator of R,,. As m, N — oo such that m/N — ¢ €]0, oo], if Ry,
does not contain any factor, then:

. 1
zty,—ﬁxxT S ().

e Without factors, the spectral distribution of the whitened data scatter
matrix of Ry, follows a Marchenko-Pastur distribution [19, 20] (same
spectral distribution of unobservable covariance matrix of X)

characterized by its support [(1 — \E)z , (1 + \E)Z}

o All eigenvalues greater than A = (1 + ﬁ)z can be considered as
significant factors.

v
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Problem formulation

Whitening process

Estimation of K the number of factors

Let (Ak)keq1,m] be the sorted eigenvalues of )A:ty,, then:

A

K = argmax ()\k > 5\)
k

2,000 2,000
[ eigenvalues [ cigenvalues [ eigenvalues
1,000 [ 1 threshold 1500 [ 1 threshold 1,500 [ 1 threshold
1,000 1,000
500
500 500
0 0 0
-4 2 0 2 4 -4 2 0 2 4

log A; log A; log A;

Eigenvalue distributions [10]. Left: RR” /N, Sample Covariance Matrix of observations.
Middle: éty/, Tyler covariance matrix of observations. Right: fty/, Tyler covariance
matrix of observations after whitening process. K-distributed case with shape parameter
v =0.5 p=0.8, m=100, N =1000, K = 3.
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Problem formulation

Non-homogeneous asset returns model

@ The model (1) and the whitening process described above is made
under the implicit assumption that the asset returns are drawn from a
unique multivariate law but this assumption is unrealistic for financial
time series of returns.

@ To take into account the non-homogeneous asset returns, the model
(1) is rewritten for the m assets splitted into p < m groups. Each
group is composed of {mq}Z:1 assets, and composed of assets with
similar distributions. It follows that:

1/2
(Q) B(Q) f + (Q) C(/) (2)
= The complete scatter matrix C is therefore block-constructed,
block-Toeplitz, and the groups are assumed to be uncorrelated to
each other.
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Proposed methodology

Asset classifications

@ Under the assumption of non-homogeneous asset returns, we propose
to form groups of assets before applying the whitening process.

@ Two clustering methods are compared to form the groups of assets:

= The Affinity Propagation algorithm (AP) [12] that does not require to
specify the number of groups,

= The classical Ascending Hierarchical Classification (AHC), where the
number of groups p is determined arbitrarily or with Calinski-Harabasz

(CH) criterion [21].
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Proposed methodology

Asset classifications

The Affinity Propagation algorithm (AP) [12]:

@ an iterative partitioning method similar to the K-means, but it
regroups individuals around exemplar values,

e is based on a similarity matrix S, where s;j = —||v; — v;||2 for i # j,
and with v; and v; the input variables vectors of the asset i/ and j,

@ to moderate, the number of groups p, the parameters are set to a
common value using the median of pairwise similarities as in [12].
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Proposed methodology

Asset classifications

The classical Ascending Hierarchical Classification (AHC):

@ is an iterative and unsupervised method,

@ is based on the distances between the variables (v;);c[1,m used to
represent individuals to be grouped and seeks at each step to build
the groups by aggregation,

@ is used with the Euclidean distance and the Ward measure [22] to
form the p groups.
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Proposed methodology

Detailed whitening procedure

Given R the m x N-matrix of observations, and R(9) the mg X N-matrix of

observations for group (q), the whitened asset returns R,, are obtained
through the following procedure:

@ Compute the p groups using the methods described previously with
(v,-),-e[l’m] composed of the mean p;, the standard deviation o; and of
several quantiles computed from ¥; = (r; — p; 1y) /o the
“standardized” returns, where 1, is the N-vector of ones,

@ Set Eg;’,’ the Tyler-M estimate of R(9),

o Set Eg;’,) =T <E£;’,)>, the Toeplitz rectification matrix built from Eg/’/)

for the Toeplitz operator T,

~ 3\ —1/2
o Set Rs.',:’) = <C(t;’,)> R(9) the mg X N matrix of the whitened
observations of group q,
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Proposed methodology

Detailed whitening procedure

Finally, the de-noised covariance matrix estimate }EW is obtained as
follows:

@ Set )A:ty/ as the Tyler-M estimate of R,,, where
T
R, = [RPT...RPT|" of size m x N,

@ Set Zil',p =UAPUT where U is the m x m eigenvectors matrix and

NP is the m x m diagonal matrix of the eigenvalues ()\iﬁp)ke[Lm]
corrected using the Eigenvalue clipping method [23]:

Ak, if A > (1+/)°
)\Cllp o

k pe— (Z Ak — Z Ak> otherwise

o Finally, &, = (Eiy/f) zor (Eiy/’z)T
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Application

Dataset descriptions

@ Two investment universes are tested:
= European equity indices (m = 43): countries, sub-sectors and factors.
= US equity indices (m = 30): sub-sectors and factors.
@ Optimization settings:
= daily closing prices from July 27th, 2000 to May 20th, 2019,
= the covariance matrix of the assets is estimated using the past daily
returns (N = 260),
=- the portfolio weights are computed every four weeks and kept constant
for the next four-weeks period.
@ Clustering method settings:
= the quantiles used are gy and g;_¢ with 0 € {1%, 2.5%, 5%, 10%,
15%, 25%, 50%},
= for AHC method, p =6 (“AHC-6") as in [11] or set according to the
CH criterion (“AHC-CH").
@ The portfolio performances are net of transaction fees (0.07%) to
take into account the portfolio turnover.
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Application

EU portfolio results

EU VarMax portfolios - net of fees

550 T ‘ |

500l |~ RMT-Tyler (AP) i
—-—- RMT-Tyler (AHC-CH)

450 | RMT-Tyler (AHC-6) ’
—— RMT-Tyler (all) r\
- — -RMT-SCM o

400 Al
~osoM “P‘% V{

B Equi-Weighted \ )
—— MCSI Europe Index
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EU VarMax portfolios’ wealth with 0.07% of fees from July 2001 to May 2019.
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Application

EU portfolio results

EU VarMax | Ann. Ann. Ratio Max VR
Portfolios | Ret. Vol. Ret/Vol | Drawdown | (avg)

RMT-Tyler (AP) | 9.87% | 12.14% 0.81 45.37% 1.46
RMT-Tyler (AHC-6) | 9.65% | 12.03% 0.80 46.84% 1.57
RMT-Tyler (AHC-CH) | 9.58% | 12.45% 0.77 48.16% 1.51
RMT-Tyler (all) | 8.90% | 13.16% | 0.68 51.18% | 1.44
RMT-SCM | 8.94% | 13.79% 0.65 54.15% 1.27

SCM | 8.56% | 13.68% 0.63 54.45% 1.38

Equi-Weighted | 6.60% | 15.37% 0.43 57.82% 1.19

MSCI Europe | 4.71% | 14.87% 0.32 58.54%

Performance numbers for the Europe (EU) VarMax portfolios with 0.07% of fees
from July 2001 to May 2019.
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Application

US portfolio results

US VarMax portfolios - net of fees
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US VarMax portfolios’” wealth with 0.07% of fees from July 2001 to May 2019.
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Application

US portfolio results

US VarMax | Ann. Ann. Ratio Max VR
Portfolios | Ret. Vol. Ret/Vol | Drawdown | (avg)

RMT-Tyler (AP) | 8.76% | 11.11% 0.79 42.82% 1.51
RMT-Tyler (AHC-CH) | 8.57% | 11.53% 0.74 46.57% 1.55
RMT-Tyler (AHC-6) | 7.98% | 10.79% | 0.74 4150% | 152
RMT-Tyler (all) | 8.49% | 12.09% 0.70 49.27% 1.53
Equi-Weighted | 8.92% | 13.83% 0.65 53.70% 1.25
RMT-SCM | 8.03% | 13.13% 0.61 56.53% 1.34

SCM | 7.80% | 13.27% 0.59 55.47% 1.46

S&P 500 | 7.21% | 14.18% 0.51 55.71%

Performance numbers for the US VarMax portfolios with 0.07% of fees from July
2001 to May 2019.
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Conclusion

@ Asset returns have been modelled as a multi-factor model embedded
in a correlated elliptical and symmetric noise by considering that the
asset returns are non-homogeneous in law which is more realistic,

@ Given this model setup, we question the ability of classification
methods (AP algorithm and AHC) to improve whitening process
based on the Tyler M-estimator and the RMT,

@ Our methodology has been tested on the Maximum Variety portfolio
optimization problem and proves the superiority of the AP algorithm
in producing higher performances for both EU and US universes.
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