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Introduction

Frequently used portfolio allocation processes require the estimation
of the covariance matrix of the asset returns [1, 2, 3, 4]:

→ The Sample Covariance Matrix (SCM) optimal under the Normal
assumption is the most used estimator, but, financial time series might
exhibit outliers,

→ The field of robust estimation intends to deal with outliers [5, 6, 7],

→ RMT helps in finding a solution for filtering noise [8, 9], but needs to
be adapted to non-homogeneous and correlated time series [10].

In [11] the authors found that considering sub-groups of homogeneous
assets may allow for better performance.

This paper focuses on assets classification methods:

→ The Affinity Propagation (AP) method [12] that self-determines the
number of classes,

→ The Ascending Hierarchical Clustering (AHC) method that requires the
number of classes or determines them using a predefined criterion.
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Problem formulation
Variety Maximum (VarMax) portfolio

The VarMax process, also called the Maximum Diversified Portfolio in
[2], allocates assets by maximizing the Variety Ratio (VR ) of the
portfolio.

The VR quantifies the degree of diversification of a portfolio.

VarMax portfolio

Optimal weights w∗ are the weights that maximize the Variety Ratio (VR ):

w∗ = argmax
w

wT s

(wT Σ w)
1/2

, s.t. wT 1m = 1 and 0 ≤ wi ≤ 1, ∀i ∈ [1,m],

where Σ is the covariance matrix and s such that si =
√

Σii , i ∈ [1,m].

⇒ We focus on the VarMax process because it is the allocation process
most sensitive to the covariance matrix of the assets returns.

⇒ Problem: Σ unknown → need to be estimated
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Problem formulation
General model and assumptions

Let R = {rt}t∈[1,N] be the m × N-matrix containing the N observations of
the m asset returns, modelled as a K -factor model [13, 14] with an
additive multivariate Elliptic Symmetric distributed noise [15, 16]. For
each observation date t ∈ [1,N] , we then have:

rt = Bt ft +
√
τt C1/2 xt , (1)

rt is the m-vector of returns,
Bt is the m × K -matrix of coefficients that define the assets
sensitivities of the K factors,
ft is the K -vector of random factors and common to the m assets,
xt is the m-vector of independent Gaussian white noise with unit
variance and is non-correlated with the factors,
C is called the m ×m scatter matrix that is Toeplitz structured [17]
and is time invariant over the period of observation,
τt is an i.i.d positive random variables with expectation τ that is
independent of the noise and the factors and drives the variance of
the noise.
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Problem formulation
Whitening process

Robust Consistent Estimation for C [18]

Let Ĉtyl =
m

N

N∑
t=1

rt rTt
rTt Ĉ−1tyl rt

be the scatter matrix Tyler M-estimator of R.

As m,N →∞ such that m/N → c ∈]0,∞[, we have
∥∥∥T [Ĉtyl

]
− C

∥∥∥ a.s.−−→ 0,

where T [·] is the Toeplitz rectification operator (T [A])ij =
1

m

m∑
l=i

al,l−i+1 .

A consistent estimator C̃tyl of the background scatter matrix C is therefore

defined through observations R as C̃tyl = T
[
Ĉtyl

]
.

=⇒ The observations R can now be whitened through C̃
−1/2
tyl R
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Problem formulation
Whitening process

Behavior of whitened data [18]

Let Rw =
(
T
[
Ĉtyl

])−1/2
R be the whitened data and Σ̂tyl be the Tyler

M-estimator of Rw . As m,N →∞ such that m/N → c ∈]0,∞[, if Rw

does not contain any factor, then:∥∥∥∥Σ̂tyl −
1

N
X XT

∥∥∥∥ a.s.−−→ 0 .

Without factors, the spectral distribution of the whitened data scatter
matrix of Rw follows a Marchenko-Pastur distribution [19, 20] (same
spectral distribution of unobservable covariance matrix of X)

characterized by its support
[(

1−
√
c
)2
,
(
1 +
√
c
)2]

,

All eigenvalues greater than λ̄ =
(
1 +
√
c
)2

can be considered as
significant factors.
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Problem formulation
Whitening process

Estimation of K the number of factors

Let (λk)k∈[1,m] be the sorted eigenvalues of Σ̂tyl , then:

K̂ = argmax
k

(
λk > λ̄

)
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Fig. 1. Eigenvalue distributions. Left: SCM of observations. Middle: Tyler covariance matrix of observations. Right: Tyler covariance matrix of observations
after whitening process. K-distributed case with shape parameter ⌫ = 0.5, ⇢ = 0.8, m = 100, N = 1000 (c = 0.1), K = 3, log(�̄) = log(1.7325).

”variance”-free and really reflects the true structure of the
underlying process without power pollution. When the sources
are present in the observations {rt }, the use of this estimator
may lead to whiten the observations and to destroy the main
information concentrated in the K factors.

When the noise is assumed white distributed, several meth-
ods, based on the RMT have been proposed [33] to extract
information of interest from the received signals. One can
cite for instance the number of embedded sources estimation
[34], the problem of radar detection [35], signal subspace
estimation [36]. However, when the additive noise is corre-
lated, some RMT methods require the estimation of a specific
threshold which has no explicit expression and can be very
difficult to obtain [19], [37] while the others assume that the
covariance matrix is known and use it, through some source-
free secondary data, to whiten the signal. According to the
following consistency theorem found and proved in [20], [21],
[22], recent works have proposed to solve the problem through
a biased Toeplitz estimate of bCtyl , let’s say eCtyl = T

⇣bCtyl

⌘
:

Consistency theorem. Under the RMT regime assumption, ie
that N,m ! 1, and the ratio c = m/N ! c > 0, we have the
following spectral convergence:���T ⇣bCtyl

⌘
� C

��� a.s.�! 0. (4)

This powerful theorem says that it is possible to estimate
the covariance matrix of the correlated noise even if the
observations contain the sources or information to be retrieved.
According to this result, the first step is then to whiten
the observations using eCtyl . The whitened observations are
defined as rw,t = eC�1/2

tyl
rt .

Given the set of N whitened observations
�
rw,t

 
and given

the Tyler’s covariance matrix ⌃̂w of these whitened returns,
recent work [22] has shown that this whitening process allows
us to consider that the eigenvalues distribution of ⌃w has
to fit the predicted bounded distribution of Marčenko-Pastur
[38] except for a finite number of eigenvalues if any source
is still present and powerful enough to be detected outside
the upper bound of the Marčenko-Pastur distribution given by

�̄ =
�
1 +

p
c
�2.

Figure 1 compares the eigenvalues distribution of the SCM
Ĉscm = R RT /N , Ĉtyl and ⌃̂w for K = 3 sources of in-
formation embedded in non-Gaussian correlated K-distributed
noise. If no whitening operation is made before applying the
Marčenko-Pastur boundary properties of the eigenvalues, then
there is no chance to detect any of the sources. After whitening
process, the only detected sources above the Marčenko-Pastur
threshold correspond to the K sources. As a matter of fact,
there is no need anymore to adapt the value of the threshold
value regarding the distribution of ⌧t and the estimated value
of IE[⌧] [22]. The robust Tyler M-estimator is ”⌧-free”, i.e. it
does not depend anymore of the distribution of ⌧t .

Once the K largest eigenvalues larger than �̄ are detected,
we set the m�K lowest ones to

⇣
Tr

⇣
⌃̂w

⌘
�Õm

k=K+1 �k

⌘
/(m�

K), and then build back the de-noised covariance matrix to be
used in (2) (or in any other objective function).

V. APPLICATION

This section is devoted to show the improvement of such
a process when applied to the Maximum Variety Portfolio
process. This allocation process (denoted as ”Variety Max”
in the following) is the one designed and used by Fideas
Capital for allocating their portfolios. The investment universe
consists of m = 40 baskets of European equity stocks rep-
resenting twenty-one industry subsectors (e.g. transportation,
materials, media...), thirteen countries (e.g. Sweden, France,
Netherlands,...) and six factor-based indices (e.g. momentum,
quality, growth, ...). Using baskets instead of single stocks
allows to reduce the idiosyncratic risks and the number of
assets to be considered. We observe the prices of these assets
on a daily basis from June 2000, the 19th to January 2018
the 29th. The daily prices are close prices, i.e. the price being
fixed before the financial marketplaces close at the end of each
weekday.

The portfolios weights are computed as follows: every four
weeks, we estimate the covariance matrix of the assets using
the past one year of returns and we run the optimisation
procedure in order to get the vector of weights that maximises

Eigenvalue distributions [10]. Left: R RT/N, Sample Covariance Matrix of observations.
Middle: Ĉtyl , Tyler covariance matrix of observations. Right: Σ̂tyl , Tyler covariance
matrix of observations after whitening process. K-distributed case with shape parameter
ν = 0.5, ρ = 0.8, m = 100, N = 1000, K = 3.
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Problem formulation
Non-homogeneous asset returns model

The model (1) and the whitening process described above is made
under the implicit assumption that the asset returns are drawn from a
unique multivariate law but this assumption is unrealistic for financial
time series of returns.

To take into account the non-homogeneous asset returns, the model
(1) is rewritten for the m assets splitted into p < m groups. Each
group is composed of {mq}pq=1 assets, and composed of assets with
similar distributions. It follows that:

r
(q)
t = B

(q)
t ft +

√
τ
(q)
t C

1/2
(q) xt , (2)

⇒ The complete scatter matrix C is therefore block-constructed,
block-Toeplitz, and the groups are assumed to be uncorrelated to
each other.
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Proposed methodology
Asset classifications

Under the assumption of non-homogeneous asset returns, we propose
to form groups of assets before applying the whitening process.

Two clustering methods are compared to form the groups of assets:

⇒ The Affinity Propagation algorithm (AP) [12] that does not require to
specify the number of groups,

⇒ The classical Ascending Hierarchical Classification (AHC), where the
number of groups p is determined arbitrarily or with Caliński-Harabasz
(CH) criterion [21].
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Proposed methodology
Asset classifications

The Affinity Propagation algorithm (AP) [12]:

an iterative partitioning method similar to the K-means, but it
regroups individuals around exemplar values,

is based on a similarity matrix S, where si ,j = −‖vi − vj‖2 for i 6= j ,
and with vi and vj the input variables vectors of the asset i and j ,

to moderate, the number of groups p, the parameters are set to a
common value using the median of pairwise similarities as in [12].
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Proposed methodology
Asset classifications

The classical Ascending Hierarchical Classification (AHC):

is an iterative and unsupervised method,

is based on the distances between the variables (vi )i∈[1,m] used to
represent individuals to be grouped and seeks at each step to build
the groups by aggregation,

is used with the Euclidean distance and the Ward measure [22] to
form the p groups.
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Proposed methodology
Detailed whitening procedure

Given R the m×N-matrix of observations, and R(q) the mq ×N-matrix of
observations for group (q), the whitened asset returns Rw are obtained
through the following procedure:

Compute the p groups using the methods described previously with
(vi )i∈[1,m] composed of the mean µi , the standard deviation σi and of
several quantiles computed from r̃i = (ri − µi 1N) /σi the
“standardized” returns, where 1N is the N-vector of ones,

Set Ĉ
(q)
tyl the Tyler-M estimate of R(q),

Set C̃
(q)
tyl = T

(
Ĉ
(q)
tyl

)
, the Toeplitz rectification matrix built from Ĉ

(q)
tyl

for the Toeplitz operator T ,

Set R
(q)
w =

(
C̃
(q)
tyl

)−1/2
R(q), the mq × N matrix of the whitened

observations of group q,
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Proposed methodology
Detailed whitening procedure

Finally, the de-noised covariance matrix estimate Σ̂w is obtained as
follows:

Set Σ̂tyl as the Tyler-M estimate of Rw , where

Rw =
[
R
(1)T
w . . . R

(p)T
w

]T
of size m × N,

Set Σ̂clip
tyl = U Λclip UT where U is the m×m eigenvectors matrix and

Λclip is the m ×m diagonal matrix of the eigenvalues (λclipk )k∈[1,m]

corrected using the Eigenvalue clipping method [23]:

λclipk =


λk , if λk ≥

(
1 +
√
c
)2

1

m − K

(
m∑

k=1

λk −
K∑

k=1

λk

)
, otherwise

Finally, Σ̂w =
(

C̃
1/2
tyl

)
Σ̂clip

tyl

(
C̃
1/2
tyl

)T
.
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Application
Dataset descriptions

Two investment universes are tested:

⇒ European equity indices (m = 43): countries, sub-sectors and factors.
⇒ US equity indices (m = 30): sub-sectors and factors.

Optimization settings:

⇒ daily closing prices from July 27th, 2000 to May 20th, 2019,
⇒ the covariance matrix of the assets is estimated using the past daily

returns (N = 260),
⇒ the portfolio weights are computed every four weeks and kept constant

for the next four-weeks period.

Clustering method settings:

⇒ the quantiles used are qθ and q1−θ with θ ∈ {1%, 2.5%, 5%, 10%,
15%, 25%, 50%},

⇒ for AHC method, p = 6 (“AHC-6”) as in [11] or set according to the
CH criterion (“AHC-CH”).

The portfolio performances are net of transaction fees (0.07%) to
take into account the portfolio turnover.
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Application
EU portfolio results

EU VarMax portfolios’ wealth with 0.07% of fees from July 2001 to May 2019.

Thibault Soler ICASSP 2020 05/05/2020 15 / 23



Application
EU portfolio results

EU VarMax Ann. Ann. Ratio Max VR
Portfolios Ret. Vol. Ret/Vol Drawdown (avg)

RMT-Tyler (AP) 9.87% 12.14% 0.81 45.37% 1.46

RMT-Tyler (AHC-6) 9.65% 12.03% 0.80 46.84% 1.57

RMT-Tyler (AHC-CH) 9.58% 12.45% 0.77 48.16% 1.51

RMT-Tyler (all) 8.90% 13.16% 0.68 51.18% 1.44

RMT-SCM 8.94% 13.79% 0.65 54.15% 1.27

SCM 8.56% 13.68% 0.63 54.45% 1.38

Equi-Weighted 6.60% 15.37% 0.43 57.82% 1.19

MSCI Europe 4.71% 14.87% 0.32 58.54%

Performance numbers for the Europe (EU) VarMax portfolios with 0.07% of fees
from July 2001 to May 2019.
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Application
US portfolio results

US VarMax portfolios’ wealth with 0.07% of fees from July 2001 to May 2019.
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Application
US portfolio results

US VarMax Ann. Ann. Ratio Max VR
Portfolios Ret. Vol. Ret/Vol Drawdown (avg)

RMT-Tyler (AP) 8.76% 11.11% 0.79 42.82% 1.51

RMT-Tyler (AHC-CH) 8.57% 11.53% 0.74 46.57% 1.55

RMT-Tyler (AHC-6) 7.98% 10.79% 0.74 41.50% 1.52

RMT-Tyler (all) 8.49% 12.09% 0.70 49.27% 1.53

Equi-Weighted 8.92% 13.83% 0.65 53.70% 1.25

RMT-SCM 8.03% 13.13% 0.61 56.53% 1.34

SCM 7.80% 13.27% 0.59 55.47% 1.46

S&P 500 7.21% 14.18% 0.51 55.71%

Performance numbers for the US VarMax portfolios with 0.07% of fees from July
2001 to May 2019.
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Conclusion

Asset returns have been modelled as a multi-factor model embedded
in a correlated elliptical and symmetric noise by considering that the
asset returns are non-homogeneous in law which is more realistic,

Given this model setup, we question the ability of classification
methods (AP algorithm and AHC) to improve whitening process
based on the Tyler M-estimator and the RMT,

Our methodology has been tested on the Maximum Variety portfolio
optimization problem and proves the superiority of the AP algorithm
in producing higher performances for both EU and US universes.
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