

Metro Toronto Convention Centre

Complex-Valued Neural Network for Classification Perspectives: An Example on Non-Circular Data

J. Agustin BARRACHINA Chengfang REN Christèle Morisseau Gilles Vieillard Jean-Philippe Ovarlez

Mathematical Background

[2] Kuroe et al. "On Activation Functions for Complex-Valued Neural Networks" 2003

Liouville's theorem: "Given f(z) analytic (differentiable) at all $z \in C$ and bounded, then f(z) is a constant function"

Wirtinger Calculus

$$\frac{\delta f}{\delta z} \triangleq \frac{1}{2} \left(\frac{\delta f}{\delta x} - j \frac{\delta f}{\delta y} \right) \qquad \qquad \frac{\delta f}{\delta \overline{z}} \triangleq \frac{1}{2} \left(\frac{\delta f}{\delta x} + j \frac{\delta f}{\delta y} \right)$$

$$7_{Z}(\cdot) = \begin{bmatrix} \frac{\delta}{\delta x_{1}} + j \frac{\delta}{\delta y_{1}} \\ \vdots \\ \frac{\delta}{\delta x_{n}} + j \frac{\delta}{\delta y_{n}} \end{bmatrix} \qquad \qquad \nabla_{z} f \triangleq 2 \frac{\delta f}{\delta \overline{z}} = \frac{\delta f}{\delta x} + j \frac{\delta f}{\delta y}$$

[3] Robert F. H. Fischer *"Precoding and Signal Shaping for Digital Transmission"* 2002

Motivation

Applications	Corresponding Publications				
Radio Frequency Signal	[6], [8], [11], [32], [33], [35], [36], [52],				
Processing in Wireless	[53], [55], [56], [65]–[67], [72], [89],				
Communications	[91], [109], [123]–[128], [133], [149]–				
	[152], [154], [155]				
Image Processing and	[19], [31], [34], [37], [39], [40], [54],				
Computer Vision	[62], [69], [73], [75]–[77], [82], [85],				
	<u>[92],</u> <u>[98],</u> <u>[99],</u> <u>[101]–[103],</u> <u>[119],</u>				
	[130], [141], [142], [156]–[159]				
Audio Signal Processing	[26], [48], [49], [58], [79], [130], [136]				
and Analysis					
Radar / Sonar Signal Pro-	[74], [110], [139], [153], [160], [161]				
cessing					
Cryptography	[162]				
Time Series Prediction	[103], [139]				
Associative Memory	[105], [116]				
Wind Prediction	30, 43, 148				
Robotics	[38]				
Traffic Signal Control	[46], [60]				
(robotics)					
Spam Detection	[59]				
Precision Agriculture (soil	[82]				
moisture prediction)					

APPLICATIONS OF COMPLEX-VALUED NEURAL NETWORKS

[1] Bassey et al. *"A Survey of Complex-Valued Neural Networks"* 2021.

[2] Mönning et al. *"Evaluation of Complex-Valued Neural Networks on Real-Valued Classification Tasks"* 2018.

[3] El-Darymli et al. "On circularity/noncircularity in single-channel synthetic aperture radar imagery" 2014.
[4] Vasile et al. "Circularity of complex stochastic models in polsar and multi-pass insar images" 2012.
[5] Barbaresco et al. "Noncircularity exploitation in signal processing overview and application to radar" 2008.
[6] Wu et al. "Noncircularity parameters and their potential applications in UHR MMW SAR data sets" 2016.

[7] Hirose "Complex-Valued Neural Networks" 2012.[8] Hirose "Complex-Valued Neural Networks: Advances and applications" 2013.

Complex random variable Z = X + jY is *circular* if Z has the same distribution as $e^{j\phi}Z$

$$\begin{split} \varrho_{Z} &= \frac{\tau_{Z}}{\sigma_{Z}} \begin{cases} = 0 \ \rightarrow z \ is \ circular \\ \neq 0 \ \rightarrow z \ not \ circular \end{cases} \\ \bullet \quad \tau_{Z} &\triangleq \mathrm{E}[(Z - \mathrm{E}[Z])^{2}] = \sigma_{X}^{2} - \sigma_{Y}^{2} + 2j\sigma_{XY} \\ \bullet \quad -\sigma_{Z}^{2} - \sigma_{X}^{2} + \sigma_{Y}^{2} \end{split}$$

Two sources of non-circularity [1]:

- 1. Unequal variances
- 2. Correlation $\rho = \frac{E[xy]}{\sqrt{E[x^2]E[y^2]}}$

[4] Ollila "On the Circularity of a Complex Random Variable" 2008

Mathematical Background: Circularity

1 vector of class 0: $|\rho|$ 1 vector of class 1: $-|\rho|$

*Note: Each point on the graph corresponds to one component of the input vector

Model Architecture

Complex-Valued Multi-Layer Perceptron

Model:

- Loss: Categorical cross-entropy
- Weight initialization: Glorot uniform
- SGD (Stochastic Gradient Descent)
 - Learning rate 0.1
 - Wirtinger Derivative

	CVNN	RVNN
Input Size	128	256
Hidden Layer Size	64	128
Activation Function	ReLU Type A [2]	ReLU
Dropout	50%	50%
Output Size	2	2
Output Activation	Softmax over absolute value	Softmax

Dataset:

- Input vector size 128
- 8000 training vectors / class
- 2000 validation vectors / class

Simulation:

- 30 trials each model
- 300 epochs
- Batch size 100

[2] Kuroe et al. "On Activation Functions for Complex-Valued Neural Networks" 2003

Experimental Results

Experimental Results: Without Dropout

Validation Loss

	Dat	a A	Data B		Data C	
Class	1	2	1	2	1	2
ρ	0.3	-0.3	0	0	0.3	-0.3
σ_X^2	1	1	1	2	1	2
σ_Y^2	1	1	2	1	2	1
ϱ_Z	j0.3	-j0.3	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{j - 0.6}{3}$	$\frac{0.6-j}{3}$

Table 1: Dataset Characteristics

		Data A		Data B		Data C	
		CVNN	RVNN	CVNN	RVNN	CVNN	RVNN
1HL	median mean IQR full range	$\begin{array}{c} 96.16 \pm 0.11 \\ 96.20 \pm 0.04 \\ 96.06 - 96.43 \\ 95.65 - 96.60 \end{array}$	$\begin{array}{c} 94.48 \pm 0.06 \\ 94.51 \pm 0.04 \\ 94.38 - 94.59 \\ 94.02 - 95.03 \end{array}$	$\begin{array}{c} 97.39 \pm 0.07 \\ 99.67 \pm 0.02 \\ 97.31 - 97.54 \\ 97.03 - 97.80 \end{array}$	$\begin{array}{c} 96.65 \pm 0.06 \\ 96.66 \pm 0.04 \\ 96.57 - 96.78 \\ 96.25 - 97.07 \end{array}$	$\begin{array}{c} 99.67 \pm 0.04 \\ 96.66 \pm 0.01 \\ 99.61 - 99.73 \\ 99.50 - 99.77 \end{array}$	$\begin{array}{c} 99.48 \pm 0.03 \\ 99.47 \pm 0.02 \\ 99.43 - 99.52 \\ 99.27 - 99.67 \end{array}$
2HL	median mean IQR full range	$\begin{array}{c} 97.83 \pm 0.08 \\ 97.81 \pm 0.04 \\ 97.70 - 97.97 \\ 97.35 - 98.22 \end{array}$	$\begin{array}{c} 95.82 \pm 0.08 \\ 95.86 \pm 0.04 \\ 95.71 - 95.97 \\ 95.53 - 96.30 \end{array}$	$\begin{array}{c} 98.89 \pm 0.05 \\ 98.88 \pm 0.02 \\ 98.77 - 98.94 \\ 98.65 - 99.05 \end{array}$	$\begin{array}{c} 97.83 \pm 0.05 \\ 97.82 \pm 0.03 \\ 97.75 - 97.90 \\ 97.62 - 98.08 \end{array}$	$\begin{array}{c} 99.90 \pm 0.02 \\ 99.90 \pm 0.01 \\ 99.87 - 99.92 \\ 99.85 - 99.98 \end{array}$	$\begin{array}{c} 99.87 \pm 0.01 \\ 99.86 \pm 0.01 \\ 99.84 - 99.87 \\ 99.77 - 99.92 \end{array}$

Table 2: Test accuracy results (%)

Experimental Results: Correlation Coefficient swipe

12 Complex-Valued Neural Network for Classification Perspectives

Conclusions

- Almost 100 cases tested
 - Different source of Non-Circularity
 - Without Dropout
 - Number of layers
 - Amplitude-Phase
 - Size of the hidden layers
 - Activation function
 - Learning rate
- CVNNs generalize better
 - They tend to take more epochs to reach stability
- In general, cases where RVNN outperformed CVNN

ONERA

THE FRENCH APPOSPACE LAP

• Under 60% accuracy

Thank you!

14 Complex-Valued Deep Neural Networks for Radar Applications

