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Abstract: Classical radar imaging generally considers targets as set of isotropic independent sources with a
constant response in the measured frequency band. Nevertheless, new radar capabilities, in terms of signal
bandwidth and angular excursion, may challenge this bright point model. Studies based on multidimensional
time–frequency (TF) analysis, describing the angular and frequency behaviour of a scene’s reflectivity, showed
that some scatterers may have anisotropic and dispersive responses. Polarisation diversity is an interesting
additional source of information in radar imaging, and provides indicators closely linked to some geometric
and electromagnetic properties of the observed objects. In this study, a fully polarimetric TF analysis is
proposed for radar imaging (SAR, ISAR) that characterises the anisotropic and dispersive behaviour of the
polarimetric response of deterministic targets. This method is based on the hyper-image concept, which
describes the response of scatterers as a function of the observation angle, the emitted frequency and
polarimetric canonical behaviours. Polarimetric hyper-images point out that non-stationary behaviours can be
related to physical properties of the target (geometrical shape, relative orientation) and allow a better
understanding of the scattering mechanisms. This polarimetric hyper-image representation is then used to
detect non-stationary scatterers and to classify their behaviour.

1 Introduction
Radar is an instrument traditionally used to pinpoint the
position and velocity of a target from its backscattered
microwave energy. Synthetic aperture radar (SAR) images
represent maps of the spatial distribution of the reflectivity
of a scene. High-range resolution may be obtained in
the range direction by emitting waveforms with a large
bandwidth of the transmitted waveform, whereas high
cross-range resolution is achieved by coherently processing
returned signals from correlated sequences of small
apertures at different aspect angles of the radar in order to
synthesise a large aperture [1].

Conventional radar imaging techniques consider targets
as a set of bright points. Indeed, scatterers are considered
to have an isotropic response, constant over the frequency
band described by the signal waveform [2, 3]. Recent
studies, based on time–frequency (TF) analysis,
demonstrated how to estimate the spatial distribution of
the angular and frequency behaviours of a scene imaged by
a SAR [4–6]. These representations, called hyper-images,
showed that some scatterers were neither isotropic nor
white in the frequency domain. Such non-stationary
behaviours may be particularly frequent over images
acquired by modern high-resolution SAR sensors using
large frequency band width and azimuth beam width. The
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varying response of scatterers may be due to material
dispersion or dispersive or anisotropic effects induced by
their geometry or their orientation.

Polarimetry is another information source about the
geometry and the orientation of scatterers in radar imaging.
We are specially interested in its application on man-made
targets, because they present a dispersive and anisotropic
behaviour. We use polarimetric coherent decompositions
[7], which express the scattering or Sinclair matrix as a
combination of the scattering responses of simpler objects,
as a primary tool to compare the geometry of scatterers
to those of canonical objects, and to get notions on their
orientation.

The goal is to combine TF analysis and polarimetry in
order to obtain a better understanding of the backscattering
mechanisms and to explain the non-stationary behaviour of
scatterers. In this context, two approaches are possible. The
first consists in using TF analysis and polarimetry
separately, and to merge their data in a second time. The
problem raised by this first approach is that data can be
redundant. The second proposes to use TF analysis and
polarimetry jointly. This technique consists in decomposing
processed polarimetric radar images into frequency/
angular/polarisation information of the image scatterers
(called polarimetric hyper-image).

In this paper, a fully polarimetric TF analysis method is
proposed to describe the polarimetric nature relative to the
angle of illumination and the emitted frequency. The
polarimetric hyper-images construction is explained from
the classical radar imaging, the 2D TF analysis and the
coherent decompositions. Then, polarimetric hyper-images
are applied to full polarimetric anechoic chamber data.
Finally, we extract statistics that characterise the dispersive
behaviour, the anisotropic behaviour and the non-stationary
polarimetric behaviour, and use them to process a
classification.

2 Classical radar imaging
The backscattering coefficient H (k) of an object illuminated
byQ2 a radar is defined as

H (k) ¼ lim
R!1

ffiffiffiffiffiffiffiffiffiffiffi
4pR2

p Er

Ei
(1)

where Er and Ei represent the complex amplitude of the
incoming and reflected field, respectively, and R stands for
the distance between the radar and the object.

The squared modulus of H (k) is called the radar cross
section (RCS) and is expressed in squared metres. The
two-dimensional (2-D) wave vector, k, is related to the
frequency f and to the direction u of illumination by
jkj ¼ k ¼ 2pf =c and u ¼ arg(k).

Under the bright point model assumption, commonly used
in radar imaging [8], the object under analysis is considered
as a set of ideal independent reflectors, that is independent
point whose reflection properties remain constant over
the measured frequency domain and for all directions of
presentation. Let S(r) be the complex amplitude of
the bright point response located at r ¼ (x, y)T in a set
of Cartesian axes related to the object. Under far field
conditions, the complex backscattering coefficient for the
whole object is given by the in-phase summation of each
reflector contribution

H (k) ¼
ð
S(r) e"2ik:r dr (2)

After a Fourier transform of (2), one can obtain the spatial
distribution S(r) of the complex amplitude of the scatterers’
response around the centre frequency and mean angle of
presentation

S(r) ¼
ð
H (k) e2ik:r dk (3)

The spatial distribution of the backscattered energy is
denoted by

I (r) ¼ jS(r)j2 (4)

The polarimetric generalisation of the scattering
coefficient is called the scattering matrix S or Sinclair
matrix, defined in the polarimetric horizontal–vertical
basis, as

S ¼ Shh Shv
Svh Svv

# $
(5)

where Spq represents the target response in the polarimetric
axis p to an incoming wave polarised along the axis q.

One may realistically expect that the response of some
scatterers, illuminated over a large frequency domain and/
or a large angular extent, may vary with the acquisition
parameters. The corresponding coherent (complex
amplitude) or incoherent (energy) reflectivity spatial
distributions may then depend on the considered wave
vector k and will be denoted as S(r, k) and I (r, k),
respectively, in the sequel.

3 Extended radar imaging
Extended radar images can be constructed using TF
analysis and physical group theory [5]. The dimension
of the resulting hyper-images is the product of the
dimension of the spatial vector r by the dimension of
the spectral vector k.

The principle of extended radar imaging is based on a
physical group of transformations, the similarity group S,
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that acts on the physical variables r and k through rotation
[R]a, dilatation a and translation dr as

r "! r0 ¼ a [R]a r þ dr
# #
k "! k0 ¼ a"1 [R]a k

(6)

The transformation laws for the reflected signal H (k) and its
extended image I (r, k) are therefore given by

H (k) "! H 0(k) ¼ a exp("2ik $ dr)H (a[R]"1
a k)

# #
I (r, k) "! I 0(r, k) ¼ I (a"1 [R]"1

a (r " dr), a [R]"1
a k)

(7)

This covariance law depicts the invariance of the form of
physical laws under arbitrary differentiable coordinate
transformations.

In radar imaging, the most commonly used changes of
reference coordinates are the shift of the reference origin
(translation dr), the modification of the axis orientation
(rotation [R]a), and the change of scale (dilatation a in
space or time). Two different acquisition configurations, A
and B, characterised by their spatial coordinate system, r
and r0, respectively, have spectral coordinate systems, k and
k0, given by the transformation law in (6). The measured
backscattering coefficients, H (k) and H 0(k), and the
corresponding extended images, I (k) and I 0(k), are related
by the covariance law given in (7).

3.1 General formulation of extended
images
A first approach to derive the energy distribution I (r, k)
consists in representing it as a hermitian and bi-linear form
of the signal H (k) reflected by the target

I (r, k) ¼
ð ð

K (k1, k2, r, k)H (k1)H
%(k2) dk1 dk2 (8)

where the hermitian kernel K (k1, k2, r, k) can be chosen so
as to satisfy physical constraints made on the distribution
I (r, k):

† the distribution can satisfy the property of covariance by
the similarity group S,

† I (r, k) can be considered, in R2, as a spatial density of
energy (for a given k), implying a constraint of positiveness.
Its integration over a spatial region D can, therefore, be
interpreted as the RCS contribution sD(k) of all the
reflectors contained in D

sD(k) ¼
ð

D
I (r, k) dr (9)

† if D represents the whole spatial domain, the distribution
can respect the well known marginal property

ð
I (r, k) dr ¼ jH (k)j2 (10)

† the conservation of energy between the distribution and
the reflected signal spaces leads to an important relation
(Moyal formula) that connects the inner product between
two given reflected signals H1 and H2 and their associated
distributions I1 and I2

ð
H1(k)H

%
2 (k) dk

%%%%

%%%%
2

¼
ð ð

I1(r, k) I
%
2 (r, k) dr dk (11)

Studies on TF analysis have shown that no distribution can
satisfy simultaneously all these properties [9]. As an
example, kernels satisfying property (11) do not always lead
to positive distributions, and are inconsistent with the RCS
nature of the distribution given by (9) or (10).

To overcome this drawback, it is possible to construct a
regularised form by smoothing the general distribution
given in (8). These regularised distributions verify the
covariance property, the RCS property (9) and the Moyal
formula (11) but not the marginalisation property (10).
The construction of such regularised extended images using
a wavelet transform is developed in the next section.

3.2 Construction of extended images
by wavelet transform
Let f(k) ¼ f(k, u) be a mother wavelet representing the signal
reflected by a reference target. The associated distribution
If(r, k) is supposed to be well located around the spatial
origin r ¼ 0 and the spectral location (k, u) ¼ (1, 0). One
can, for instance, use a (2-D) separate Gaussian function

f(k, u) ¼ exp " (k" 1)2

s2
k

 !

exp " u2

s2
u

 !

(12)

where the two free parameters sk and su control the spread in
frequency and in angular domain and relations between spatial
and spectral resolutions.

Using the similarity group, S, a family of wavelet bases
Cr0,k0 (k) can be generated from the mother wavelet f(k, u) as

Cr0,k0 (k) ¼
1
k0

exp("2ikr0)f
1
k0

[R]"1
u0

k
& '

¼ 1
k0

exp("2ikr0)f
k
k0
, u" u0

& '
(13)

A regularised distribution Ir(r0, k0) can be built by
smoothing the general distribution I (r, k) given by (8).
Using the Moyal formula (11), the covariance property
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with H1(k) ¼ H (k), H2(k) ¼ Cr0,k0 (k), I1 ¼ IH and I2 ¼ If,
we obtain

Ir(r0, k0)¼
ð ð

IH (r, k) I
%
f k0[R]

"1
u0
(r" r0),

1
k0

[R]"1
u0

k
& '

dr dk

¼
ð
H (k)

1
k0

exp(2ikr0)f
% 1

k0
[R]"1

u0
k

& '
dk

%%%%

%%%%
2

(14)

The right-hand side of (14) is the wavelet coefficient
F (r0, k0), defined as the scalar product between the
reflected signalH and each elementCr0,k0 of the wavelet basis

F (r0, k0) ¼
ð
H (k)C%

r0,k0 (k) dk

¼
ð2p

0
du

ðþ1

0
kH (k, u)C%

r0,k0 (k) dk (15)

One may note that the wavelet coefficient is invariant by any
transformation of the S group.

The reconstruction property allows one to recover the
signal from its wavelet coefficients as

H (k) ¼ 1
K (f)

ð
dr0

ð
F (r0, k0)Cr0,k0 (k) dk0 (16)

where K (f) is the admissibility coefficient given by

K (f) ¼
ð jf(k)j2

k2
dk , þ1 (17)

From (4), (14) and (15), one can conclude that the wavelet
coefficient F (r0, k0) is equal to the coherent complex image
S(r0, k0)

F (r0, k0) ¼ S(r0, k0) (18)

3.3 Interpretation of the distribution
I(r, k)
Rewriting I (r, k) as I (x, y, f , u) shows that for each
frequency f0 and each angle of radar illumination u0,
I (x, y, f0, u0) represents a spatial distribution of the
backscattered energy for this frequency and angle.

Reciprocally, for a given spatial location, r0 ¼ (x0, y0)
T,

I (x0, y0, f , u) provides the 2-D spectral behaviour of the
corresponding scatterer.

To analyse this 4D structure, a visual display interface
called i4D has been developed and allows one to carry out
an interactive and dynamic analysis.

3.4 Other multidimensional TF
transforms
The hyper-image concept can be generalised to all TF
transforms [10], like the smoothed pseudo Wigner–Ville
transform used to detect targets in [11]. However, TF
techniques dealing with polarimetric data need preserve
the relative phase information between the polarimetric
channels. This coherent constraint is only verified by
atomic decompositions, like the short time Fourier
transform (STFT) and the continuous wavelet transform.
Some examples of TF processing of polarimetric SAR data
using the STFT can be found in [12] and [13]. In this
study, the continuous wavelet transform is preferred since
its covariance property is better adapted to the analysis of
anechoic chamber measurements [5].

Moreover, the proposed TF technique, as a particular case
of atomic decompositions (wavelet and STFT), decomposes
the UWB signal into 2-D sub-spectra that can be

Q3interpreted as frequency sub-bands and angular sub-sectors.

It is not the case of other TF approaches, like in particular
quadratic distributions (Wigner–Ville, smoothed pseudo
Wigner–Ville, the Choi–Williams distribution, the Born–
Jordan, Page or Rihaczek distributions). Indeed, these
distributions may achieve higher performance (resolution,
. . .) that can be used to detect and locate particular signals
(chirps, . . .) but as the expense of physical interpretation
(they might be real-valued, non-positive, have pseudo
energy, . . .).

Anyway, as it uses atomic decompositions, the approach
presented in this paper relies on strong physical
considerations. The use of wavelets or STFT is simply a
matter of representation and does not violate the physical
considerations radar imaging is based on.

3.5 Polarimetric generalisation of
the hyper-image concept
The wavelet transform defined in (15) is applied in a similar
way to each of the four polarimetric channels mentioned
in (5). The resulting scattering matrix is a multivariate
function of the frequency and on the illumination angle
and is called hyper-scattering matrix

S(r, k) ¼ Shh(r, k) Shv(r, k)
Svh(r, k) Svv(r, k)

# $
(19)

Due to the use of a phase preserving TF transform the
hyper-scattering matrix given in (19) can be analysed and
interpreted using traditional polarimetric approaches.

Similarly to the classical polarimetric span, the extended
span is defined as the sum of the squared modulus of each
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element of the hyper-scattering matrix (19).

P(r, k)¼ jShh(r, k)j
2 þ jShv(r, k)j

2 þ jSvh(r, k)j
2 þ jSvv(r, k)j

2

(20)

The extended span does not represent the whole extended
polarimetric information, but is a basic representation of
the energetic polarimetric behaviour in both space and
spectral domains.

The proposed approach is applied to fully polarimetric
measurements acquired in an anechoic chamber. The
observed target is a ‘Cyrano’ weapon scaled model, made

out of steel (length 1.2 m – width 0.60 m) and represented
on Fig. 1. Backscattering coefficients are measured over a
frequency band ranging from 12 up to 18 GHz, with a
sampling rate of 0.75 MHz, and for an azimuthal
orientation varying from 225 to þ258 with 0.58
increments. The evolution of the extended span as a
function of the emitted frequency and the observation angle
is represented on Fig. 2. In the following, scatterers of
interest, whose location is indicated on Fig. 2, are selected
and their TF behaviour is described.

† Head (P1): The response of the weapon model’s head is
characterised by a non-dispersive and isotropic behaviour.

Figure 1 Cyrano weapon model
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Figure 2 Extended span over selected locations
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This stationary behaviour is due to the particular geometry of
the head, whose shape is a semi-sphere known to reflect
electromagnetic waves in an isotropic and non-dispersive
way over the angular-frequency domain used for this
experiment.

† Leading edges (P2, P3): Leading edges are identified by
a directional response in the angle–frequency domain. The
aspect angle corresponding to the maximum of the
backscattered energy, u ¼ +208, indicates the orientation
of the wing edges with respect to the radar beam. As
explained in [14] this directional behaviour expresses a
diffraction phenomenon.

† Trailing edges (P4, P5): Similarly to leading edges, trailing
edges have a directional behaviour in the angle–frequency
plane, due to wave diffraction as well [14]. The
backscattered energy reaches a maximum for an angle of
view of u ¼ +108, which exactly corresponds to the
orientation of this part of the illuminated object with
respect to the horizontal to the radar beam.

† Wings (P6, P7): These particular points demonstrate a
limitation of the proposed TF analysis approach, known as
the Heisenberg uncertainty principle, inherent to the kind
of TF transform used in this study. Indeed, the resolution
of a joint TF analysis using continuous wavelets is limited
by the Heisenberg inequality, which provides a physical
lower bound for the product of the spatial and spectral
resolutions. As a consequence, for a given spectral
resolution, the TF responses of too closely spaced scatterers
cannot be discriminated. This resolution trade-off
phenomenon is well illustrated over the wings, whose
angle–frequency response presents two directional features
(u ¼ +108 and u ¼ +208), corresponding to artefacts
generated by the leading and trailing edges as presented
above.
This case highlights potential limitations, in terms of

signal separation, of the proposed hyper-image approach.

† Air intake (P8): The air intake response appears as
dispersive and anisotropic, indicating the presence of
complex scattering mechanisms that are highly dependent
on the conditions of acquisition.

† Closed air exit (P9): The 2-D characteristic of the close air
exit is highly directive and is centred around u ¼ 08. This
behaviour is due to the specular reflection of the emitted
signal over the closed air exit, which occurs as the radar
faces the exit, that is when the air exit behaves as a waveguide.

† Stabilisers (P10, P11): These responses do not show any
particular angular of frequency behaviours. One may note
that the geometrical symmetry between the left and right
stabilisers can be observed from their 2-D characteristics.

As shown by the results depicted in Fig. 2, the extended
span permits one to highlight scatterers with an anisotropic

or dispersive polarimetric energetic response and may be
used to investigate local scattering phenomena, in terms of
scattering mechanisms and orientation with respect to the
radar beam. In order to characterise the degree of anisotropy
and dispersion of the extended span, one can compute the
marginal densities in the frequency and angular domains as

Pf (r, f ) ¼

ð

u
P(r, k) du

ð
P(r, k) dk

(21)

and

Pu(r, u) ¼

ð

k
k P(r, k) dk

ð
P(r, k) dk

(22)

Frequency and angular marginal densities of the extended span,
computed over particular locations of the Cyrano weapon, are
represented in Figs. 3 and 4. The marginal densities in
frequency indicate that all the selected points are affected by a
similar dispersive behaviour, characterised by a Gaussian-like
shape and centered around the mean frequency. It is likely
that this pattern corresponds to the frequency response of the
radar device itself and not to a frequency-sensitive target
response. The marginal densities in angle relate very well the
sensitivity of the response of some of the target elements to
this parameter, as explained above.

The extended span and its marginal densities are basic tools
that may be used to roughly characterise the polarimetric TF
behaviour of an object. Indeed, the span is a global energetic
indicator, but does not account for phase and amplitude
imbalances between the polarimetric channels, and other
polarimetric approaches, like the decomposition into
scattering mechanisms, might be used to refine the analysis
of the target polarimetric response. Among the wide variety
of polarimetric decomposition approaches, the so-called
coherent decompositions, applying directly onto scattering
matrices, are particularly well adapted to the study of high-
resolution anechoic chamber measurements of deterministic
targets that are not affected by incoherent perturbations from
natural environments. Due to the phase preservation property
of the selected TF transform, coherent polarimetric
decomposition techniques can be directly applied onto hyper-
scattering matrices. The most popular coherent polarimetric
decomposition schemes are presented in the following section.

4 Coherent polarimetric
decompositions
4.1 Pauli decomposition
The Pauli decomposition expresses the measured scattering
matrix S in a modified Pauli basis [15], given by the
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following four matrices

Sa ¼
1ffiffiffi
2

p 1 0
0 1

# $
(23)

Sb ¼
1ffiffiffi
2

p 1 0
0 "1

# $
(24)

Sc ¼
1ffiffiffi
2

p 0 1
1 0

# $
(25)

Sd ¼ 1ffiffiffi
2

p 0 "1
1 0

# $
(26)

In a monostatic system configuration, the reciprocity
principle Shv ¼ Svh applies, and the modified Pauli basis
can be reduced to Sa, Sb and Sc . Consequently, a
symmetric scattering matrix S can be expressed as

S ¼ Shh Shv
Shv Svv

# $
¼ a Sa þ b Sb þ g Sc (27)

Figure 3 Extended span marginal density in frequency
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where the complex coefficients a, b, g are given by

a ¼ Shh þ Svvffiffiffi
2

p , b ¼ Shh " Svvffiffiffi
2

p , g ¼
ffiffiffi
2

p
Shv (28)

The span can be obtained from the decomposition

coefficients a, b, g, as

P ¼ jaj2 þ jbj2 þ jgj2 (29)

This polarimetric processing approach decomposes a
scattering matrix into components associated to orthogonal
canonical scattering mechanisms. The term Sa represents

Figure 4 Extended span marginal density in angle
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the response of a plate observed at normal incidence or a
sphere, whereas Sb is characteristic of a horizontal metallic
dihedral. The last component Sc represents the scattering
matrix of a metallic dihedral oriented at 458 with respect to
the radar line of sight.

The squared modulus of the decomposition coefficients
jaj2, jbj2, jgj2, represents the amount of the scattered
energy that can be associated to each of the canonical
scattering mechanism.

4.2 Krogager decomposition
A more refined alternative approach, proposed by
E. Krogager [16–18] and considering a scattering matrix as
the combination of the responses of a sphere, an oriented
diplane and a helix, can be formulated as

S ¼ ejw{ejws ks Ssphere þ kd Sdiplane(q)þ kh Shelix(q)} (30)

with

Ssphere ¼
1 0
0 1

# $
, Sdiplane(q) ¼

cos 2q sin 2q
sin 2q "cos 2q

# $

Shelix(q) ¼ e(+2jq) 1 +j
+j "1

# $
(31)

where the + sign in the helix component varies its the
handedness, left or right, and has to be fixed during the
estimation of the decomposition components. The
identification of the parameters introduced in (30) and (31)
is generally performed in the right–left circular basis,
where the expression of the scattering matrix is

S(r,l ) ¼
Srr Srl
Srl Sll

# $
¼ jSrr j e

jwrr jSrl j e
jwrl

jSrl j e
jwrl "jSll j e

j(wllþp)

" #

(32)

with

Srr ¼ jShv þ
1
2
(Shh " Svv), Sll ¼ jShv "

1
2
(Shh " Svv)

Srl ¼
j
2
(Shh þ Svv) (33)

The decomposition may then be formulated as

S(r,l ) ¼ ejw ejws ks
0 j
j 0

# $
þ kd

ej2q 0
0 "e"j2q

" #(

þ kh
ej2q 0
0 0

" #)

(34)

from which parameters can be estimated as follows

w ¼ 1
2
(wrr þ wll " p)

q ¼ 1
4
(wrr " wll þ p)

ws ¼ wrl "
1
2
(wrr þ wll )

8
>>>>><

>>>>>:

ks ¼ jSrl j,
kd ¼ jSll j, kh ¼ jSrrj" jSll j if jSrr j . jSll j
kd ¼ jSrr j, kh ¼ jSll j" jSrr j otherwise

8
><

>:

(35)

where the condition jSrr j . jSll j denotes the presence of a
left-handed helix contribution. The absolute phase w is
fixed by the acquisition geometry and calibration and does
not contain any relevant polarimetric information. The
remaining five parameters, ws, ks, kd , kh and q, can be
associated to physical properties of the target. The term ws
is proportional to the path travelled by the radar signal
between the phase centres of the sphere and diplane/helix
contributions. The parameter q stands for the orientation
angle of the diplane and the helix scattering mechanisms
around the radar line of sight. The coefficients ks, kd and kh
represent the amplitude of each canonical scattering
mechanisms contributing to the originally measured
scattering matrix S.

4.3 Cameron decomposition
4.3.1 Principle of polarimetric symmetry: A
scattering matrix may be represented under the form of a
complex four-element scattering vector as

kS ¼ [Shh, Shv, Svh, Svv]
T (36)

For reciprocal scattering responses, Shv ¼ Svh, the
decomposition of a scattering vector on the modified Pauli
basis vector set may be written from (27) as

kS ¼ a kSa þ b kSb þ g kSc (37)

where each coefficient of the decomposition is obtained by
projecting the scattering vector kS onto each element of the
orthonormal Pauli vector set, for example a ¼ kTS kSa .

A scattering mechanism is considered as symmetric if the
projection of its scattering vector onto the cross-polarised
component of the Pauli basis, kSc , can be nullified by
rotating the polarisation basis around the radar line of sight
[19, 20]. Such a scattering vector may then be written as

kSsym ¼ a eir Rc l(z), withl(z) ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jzj2
p [1, 0, 0, z]T

(38)

where l(z) is a scattering vector satisfying lT(z)kSc ¼ 0,
parametrised by the complex valued scalar z, a is the
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amplitude of the scattering matrix, r is the absolute phase,
and Rc is a rotation matrix given by

Rc ¼ R2(c)& R2(c), withR2(c) ¼
cosc "sinc
sinc cosc

# $

(39)

where c represents the angle of rotation and& the Kronecker
product.

A symmetric scattering mechanisms corresponds to a
target having an axis of symmetry around the radar line of
sight, whose orientation, often called the Huynen
orientation, is given by c. Examples of normalised
scattering vectors corresponding to symmetric canonical
scattering mechanisms are given in Table 1.

4.3.2 Decomposition into canonical scattering
mechanisms: A reciprocal scattering vector can be
decomposed as a weighted sum of two symmetric
orthogonal scattering components [19, 20], as

kS ¼ cos t kSsymmax
þ sin t kSsymmin

(40)

The angle t represents the degree to which the scattering
vector deviates from being symmetric

cos t ¼
jkTS kSsymmax

j
jkSj jkSsymmax

j
0 ' t ' p

4
(41)

A scattering mechanism with t ¼ 0 represents a fully
symmetric scatterer like a trihedral or a dihedral, whereas
a scattering matrix with t ¼ p/4 represents a fully
asymmetric scatterer, like a left or right-handed helix.

The symmetric scattering vectors kSsymmax
and kSsymmin

are given
by

kSsymmin
¼ a kSa þ 1 kSb , kTSsymmax

kSsymmin
¼ 0 (42)

where 1 is given by

1 ¼ b cos (j)þ g sin (j), tan (2j) ¼ bg% þ b%g

jbj2 " jgj2
(43)

The minimum and maximum attributes of the symmetric
scattering vectors refer to the relative amplitude of their
contribution to kS, steered by t, which by construction
verifies cos t ( sin t. The orientation of the target is
generally estimated from the representation of kSmax

min
under

the form shown in (38).

Based on the decomposition of the measured scattering
matrix S into symmetric components, Cameron proposed
a classification scheme described on Fig. 5 [19, 20]. The
initial test of reciprocity is verified in the monostatic
acquisition configuration of this study. The input scattering
matrix is then decomposed using (40), (42) and (43). The
characteristic parameter t is used to estimate the degree of
symmetry of the input matrix: if t ' p=8 the scatterer is
considered as mainly symmetric, whereas for t . p=8
it is associated to an non-symmetric object or a helix if
t ’ p=4. Scatterers labelled as symmetric may be further
characterised using the decomposition of kSsymmax

shown in
(38). The complex parameter z is compared to those of
the reference canonical targets shown in Table 1, that is
trihedral, dihedral, dipole, cylinder, narrow-diplane and Q4
quarter wave device. The scatterer under observation is
assigned to the class of the reference canonical response

Table 1 Examples of normalised vectors associated to
canonical symmetric scatterers

Symmetric scatterer Normalised vector

trihedral l(1)

diplane l(21)

dipole l(0)

cylinder l(1/2)

narrow diplane l(21/2)

quarter wave device l(i)
Figure 5 Classification process of the Cameron
decomposition
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minimising the following metric

d (z, zref ) ¼ cos"1 max(j1þ z z%ref j, jzþ z%ref j)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzj2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzref j2

q

0

B@

1

CA (44)

5 Polarimetric TF analysis using
coherent decompositions
5.1 Polarimetric decomposition of
hyper-images
As mentioned in Section 3.5, hyper-scattering matrices may
be obtained by simultaneously applying a phase preserving
TF transform over each polarisation channel. The resulting
multidimensional information may then be analysed
through polarimetric coherent decompositions in order to
generate hyper-images of relevant parameters, that is
images representing values taken by these parameters over
the measured frequency and observation angle domains, as
introduced in [21, 22].

The Krogager decomposition of a hyper-scattering matrix
may be written as

S(r, k)¼ eiw(r,k){eiws(r,k)ks(r, k)Ssphereþ kd (r, k)Sdiplane(q(r, k))

þ kh(r, k)Shelix(q(r, k))} (45)

where the most significant hyper-images are given by
jks(r, k)j

2, jkd (r, k)j
2, jkh(r, k)j

2, the intensity associated to
the sphere, diplane and helix components, respectively, and
q(r, k), the orientation angle of the diplane and helix
components.

The decomposition of a reciprocal hyper-scattering matrix
using Cameron’s approach leads to

S(r, k) ¼ cos t(r, k) Smax
sym(r, k)þ sin t(r, k) Smin

sym(r, k) (46)

The most significant parameters obtained from this
decomposition approach are the classification into canonical
scattering mechanisms, W (r, k), the Huynen orientation
c(r, k), and the measure of symmetry t(r, k).

5.2 Experimental results
The proposed polarimetric hyper-images processing
techniques are applied to the anechoic chamber
measurements of the Cyrano weapon model described
in Section 3.5. Results obtained using the Krogager
decomposition are shown in Fig. 6 under the form of
colour-coded images, computed from the intensity of the
sphere, diplane and helix components. Hyper-images of the
classification map and Huynen oriental angle, obtained

using the Cameron decomposition are depicted in Figs. 7
and 8, respectively. In order to avoid meaningless
classification results, the representation of the parameters
derived from the Cameron decomposition is limited to
frequency and angular domains corresponding to significant
extended span values.

The analysis of TF parameters derived from both
polarimetric decomposition approaches is discussed in the
following over the particular locations indicated in Fig. 2.

† Head (P1): Both decompositions indicate a stationary
TF polarimetric behaviour. The polarimetric behaviour of
the weapon model’s head is stationary. The dominant
scattering behaviour is identified as a canonical sphere or
trihedral reflector response, both characterised by a single
bounce reflection of the electromagnetic wave by this part
of the object. This constant polarimetric patterns observed
at this spatial location is conferred by the geometrical shape
of the head as explained during the analysis of the extended
span.

† Leading edges (P2, P3): These parts of the object show a
very directional response, mainly driven by the span, with a
peak of the backscattered energy, centred on the horizontal
orientation of the edges, that is u ¼ +208. The Krogager
decomposition identifies the corresponding polarimetric
response as a mixture of sphere and diplane contributions,
whereas the Cameron approach more accurately classifies
these narrow and anisotropic scatterers as dipoles. The
Huynen orientation provides a precise estimate of the
orientation of the wings with the radar line of sight,
c ¼ +108. One may note the non-dispersive behaviour of
the extended span and other extended polarimetric
indicators. The edges clearly illustrate the potential of a
polarimetric TF analysis to deeply characterise an object
in terms of canonical scattering mechanism and relative
orientation with respect to both horizontal and vertical
planes.

† Trailing edges (P4, P5): A similar polarimetric behaviour
is observed over the trailing edges. The horizontal
orientation is well estimated with u ¼ +108. The poor
estimation, c ¼ +908, of the vertical orientation is due to
the fact that radar does not see the slope (upper view). Q5

† Wings (P6, P7): The effects of the time and frequency-
limited resolutions, linked to the Heisenberg uncertainty
principle introduced earlier in this paper, are clearly visible
on the TF polarimetric hyper-images, the TF behaviour of
the wings being indeed a mixture of the polarimetric
patterns of the leading and trailing wings.

† Air intake (P8): The polarimetric indicators confirm the
dispersive and anisotropic behaviours observed during the
analysis of the extended span, that are probably linked to
the geometrical complexity of this scatterer.
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& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-rsn.2008.0086

www.ietdl.org



† Closed air exit (P9): The indicators derived from the
Krogager and Cameron decompositions depict relate well
the highly directive behaviour of the closed air exit
centred on u ¼ 08. The non-stationary aspect of the
polarimetric features indicates that the scattering
mechanism may not be a specular reflection over the
closed exit, as previously presented during the analysis of
the extended span, but a more complicated combination
of scattering modes.

† Stabilisers (P10, P11): Similarly to the extended span,
polarimetric decomposition parameters show a quasi-perfect
symmetry between right and left wings. The hyper-images
show that the TF scattering mechanism is clearly a
function of the observation angle u. This non-stationary
behaviour is due to the strong variations of the slant range
geometry as the aspect angle varies: the horizontal, u ’ 08,
dipole contribution with a Huynen orientation c ¼ +458
is caused by the edge of the stabiliser, whereas, as

Figure 6 Colour-coded hyper-images of the Krogager decomposition amplitude coefficients
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u ’+108, the observation of two perpendicular edges
(two dipoles) in the same resolution cell induces a helix
contribution. For u ’+208 the stabiliser is masked by the
body of the Cyrano weapon and the backscattered energy
reaches a minimum.

This analysis shows that the joint use 2D TF analysis and
polarimetric decompositions, may provide efficient and highly
descriptive features of scatterers, related to their geometry and

orientation. Such an approach may be an efficient tool to
improve targets recognition based on physical parameters.

6 Classification based on the
polarimetric anisotropic and
dispersive behaviour of scatterers
Numerous approaches to classify targets using frequency
or angular scattering characteristics may be found in the

Figure 7 Cameron classification of hyper-scattering matrices
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literature. Among them, one may note the method
introduced by Aldhubaib and Shuley [23], based on the
determination of an optimal bistatic angle, for which the
scattered signal has a robust strength level, irrespective of
the target aspect. This optimal bistatic angle concept may
then be used to improve the scattered signal-to-noise ratio
for targets of interest, prior to classification. Another
technique, developed by F. Sadjadi [24], proposes to
improve target classification performance using optimum

polarimetric SAR signatures that minimise the distance
between targets belonging to the same class, while
maximising a between class metric.

The classification method we proposed aims to
characterise the back-scattering behaviour of a target from
characteristic features of its polarimetric hyper-image, that
is according to the frequency, angular and polarimetric
back-scattering properties of its most significant contributors.

Figure 8 Huynen orientation derived from the Cameron decomposition
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As revealed by the TF study of the Cyrano weapon model
response presented in this paper, some typical properties,
like frequency dispersion, angular anisotropy or polarimetric
non-stationary polarimetric features, may be efficiently used
to discriminate targets. Multidimensional representations,
like polarimetric hyper-images, represent a consequent
amount of information and may not be well adapted to
fast and efficient target classification schemes. In the
following, we propose to characterise a target by extracting
relevant, orientation independent and highly descriptive

indicators from its polarimetric hyper-image and to
perform a hierarchical classification of its polarimetric TF
behaviour.

6.1 Characteristic TF parameters
As can be seen in Figs. 2, 6 and 7, two kinds of variations of
the scattering features in the frequency and angular domains
may be considered:

Figure 9 Average density of polarimetric behaviours
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† Energetic variations that modulate the polarimetric signal
level and can be characterised using the extended span
information.

† Purely polarimetric variations that can be measured in a
refined way using output parameters of the Cameron
decomposition.

The level of energetic dispersion or anisotropy of a scatterer’s
response can be quantified by computing the standard
deviation of the marginal density of the extended span as

sq(r) ¼
ð

q
(q " mq)

2 Pq(r, q) dq

" #1
2

with

mq(r) ¼
ð

q
q Pq(r, q) dq, q ¼ u, f

(47)

where the marginal densities, Pf (r, f ) and Pu(r, u) are given
in (21) and (22), respectively. The resulting indicators of

frequency dispersion and angular anisotropy, sf (r) and
su(r), respectively, permit to detect efficiently varying
energetic behaviours over each part of the measured object.

The amount of polarimetric variability over the frequency–
angle domain is estimated from the distribution of the back-
scattered energy over the different canonical targets of the
Cameron decomposition of the polarimetric hyper image

ri(r) ¼

ð
P(r, k) d(W (r, k)" Ci) dk

ð
P(r, k) dk

i ¼ 1, . . . , 10 (48)

whereW (r, k) is hyper-image of the Cameron identification,
Ci the ith canonical scattering mechanism and d the Dirac
function.

The characteristic vector, r ¼ [r1, . . . , r10], is an
histogram that characterises an average energetic polarimetric

Figure 11 TF polarimetric classification results

Figure 10 Propose TF polarimetric classification scheme
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behaviour in the angular and frequency fields [25] and is
illustrated on Fig. 9.

6.2 Classification
The polarimetric TF behaviour of an object may then be
characterised using a hierarchical classification scheme, as
proposed in [26], presented in Fig. 10. Thresholds for the
dispersion and anisotropy indicators are fixed in an
automatic way by considering that, due to the intrinsic
variability of scattering patterns, the marginal densities of
non-dispersive and isotropic scatterers follow a bounded
Gaussian distribution N (m, s) whose support is +3s. For
the case under consideration, the angular support being
Du ¼ 508;su(r) is compared to a threshold equal to 1=6
508, whereasQ6 for a frequency range given by [12, 18] GHz,
the threshold for su(r) is fixed at 1 GHz.

A scatterer is considered as having a stationary polarimetric
response if one of the Cameron class dominates all the others,
that is if there exists ri ( 50%.

The classification results presented in Fig. 11 with legend
given in Table 2 show that the head, the air intake, and the
border of stabilisers are classified as non-resonant (N-R),
non-directional (N-D), and polarimetrically stationary (S)
scatterers. The wings and their edges, the closed air exit are
classified as non-resonant, directional, and polarimetrically
stationary scatterers. The stabilisers are classified as non-
resonant, non-directional, and polarimetrically non-
stationary scatterers.

7 Conclusion
In this paper we proposed a new polarimetric TF method
that allows to describe the polarimetric behaviour of the
scatterers in the frequency and angular domains and is
adapted to polarimetric radar imaging. This method is
based on the multidimensional wavelet radar imaging
method [5] and has been extended to the polarimetric case
using coherent polarimetric decomposition methods, like as
the Pauli, Krogager and Cameron technique.

This method permits one to discriminate scatterers with
a directive,Q7 resonant and polarimetrically non-stationary

behaviour and allows one to provide physical polarimetric
from the extracted scattering mechanisms.

A new classification procedure has been proposed, which
allows one to characterise the global polarimetric behaviour
of scatterers.
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