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ABSTRACT

When dealing with impulsive background echoes, Gaussian
model is no longer pertinent. We study in this paper the class
of elliptically contoured (EC) distributions. They provide a
multivariate location-scatter family of distributions that pri-
marily serve as long tailed alternatives to the multivariate nor-
mal model. They are proven to represent a more accurate
characterization of HSI data than models based on the multi-
variate Gaussian assumption. For data in Rk, robust propos-
als for the sample covariance estimate are the M-estimators.
We have also analyzed the performance of an adaptive non-
Gaussian detector built with these improved estimators. Con-
stant False Alarm Rate (CFAR) is pursued to allow the de-
tector independence of nuisance parameters and false alarm
regulation.

Index Terms— hypespectral imaging, target detection,
elliptical distributions, M-estimators

1. INTRODUCTION

Anomaly detection and detection of targets or activity such as
chemical plumes, aerosols, vehicles, anomalous targets, arise
in many military and civilian applications [1]. Hyperspectral
imaging sensors provide 2D spatial image data containing
spectral information. This information can be used to address
such detection tasks. Hyperspectral imaging sensors measure
the radiance or reflectance of the materials within each pixel
area at a very large number spectral wavelength bands.
It is often assumed that signals, interferences, noises, back-
ground are Gaussian stochastic processes. Indeed, this as-
sumption makes sense in many applications. In these con-
texts, Gaussian models have been widely investigated in the
framework of Statistical Estimation and Detection Theory.
They have led to appealing and well known algorithms as for
instance the Matched Filter and its adaptive variants in radar
detection [2, 3]. The mathematical framework for the design
and evaluation of detection algorithms is provided by the well
known binary hypothesis testing procedure. The basic prob-
lem of detecting a complex signal corrupted by an additive
noise c in a m-dimensional complex vector y can be stated as
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a binary hypothesis test with two competing hypotheses H0

and H1. In practice the c background statistics are unknown
and have to be estimated from K secondary data ci’s. Under
hypothesisH1, it is assumed that the observed data y consists
in the sum of a signal s = αp and background noise c, where
p is a perfectly known complex steering vector (characteriz-
ing for example the spectral material to detect) and α is the
signal amplitude.
Generally, the statistical parameters (covariance matrix M,
mean µ, ...) of the background can be estimated by using
all pixels within an area of interest. The size of the area has
to be chosen large enough to ensure the invertibility of the
covariance matrix and small enough to justify both spectral
homogeneity (stationarity) and spatial homogeneity. In hy-
perspectral imaging, the actual response of a detector to the
background pixels differs from the theoretically predicted
distribution for Gaussian backgrounds. In fact, as stated in
[5], the empirical distribution usually has heavier tails com-
pared to the theoretical distribution, and these tails strongly
influence the observed false-alarm rate of the detector. Since
the two hypotheses contain unknown parameters (for exam-
ple, the covariance matrix of the background) that have to be
estimated from the data, the detector has to be adaptive, and
it is usually designed by using the Generalized-Likelihood-
Ratio Test (GLRT) approach.
One of the most general and elegant impulsive noise model
often used in radar detection schemes is provided by the
so-called Spherically Invariant Random Vectors (SIRV). A
SIRV y is a compound process, it is the product of a Gaus-
sian multivariate process x ∼ N (µ,M) and the square root
of a non-negative random scalar variable τ called the tex-
ture. Thus, the SIRV is fully characterized by the texture
(representing an unknown intensity) and the unknown co-
variance matrix of the Gaussian vector. Another statistical
framework is based on the use of Elliptical Random Process
which generalizes the SIRV processes. In that framework, the
multidimensional vector x (supposed to be Gaussian in SIRV
theory) is here uniformly distributed on the hyper-sphere.
That means that a SIRV is also elliptically distributed
One of the major challenging difficulties in SIRV or Spher-
ically distributed random process modeling, is to estimate
these two unknown quantities. For example, the classical
Sample Covariance Matrix used in adaptive detection in
Gaussian noise is not at all the best estimate and does not



correspond to the Maximum Likelihood estimator. In SIRV
context, these problems have been investigated in [6] for the
texture estimation while [7] and [8] have proposed different
estimates for the covariance matrix. A complete statistical
analysis of these covariance matrix estimates has been real-
ized in [9]. For Elliptical process, the estimation of the mean
and covariance is known as M-estimation theory introduced
by [10, 11].

2. ELLIPTICAL DISTRIBUTION

A m-dimensional random complex vector y is said to have a
complex elliptical distribution if its probability density func-
tion (PDF) has the form

fy(y) = |Σ|−1hy((y − µ)HΣ−1(y − µ)), (1)

where H denotes the conjugate transpose operator and hy :
[0,∞)→ [0,∞) is any function such as (1) defines a PDF, µ
is the mean vector and Σ is the scatter matrix. The function
hy,usually called density generator, is assumed to be only ap-
proximately known. Note that it produces density contours
corresponding to elliptical surfaces. If the second moments
exist, then Σ reflects the structure of the covariance matrix
of the elliptically distributed random vector y, i.e. the covari-
ance matrix equates the scatter matrix up to a scaling con-
stant. We shall denote this complex elliptical distribution by
EC(µ,Σ, h). It is worth pointing that the EC class includes
an infinity of distributions, notably the Gaussian one, multi-
variate t distribution or multivariate Cauchy.

3. M- ESTIMATORS

Let (c1, . . . , cK) be a K-sample of m-dimensional complex
independent vectors with ci ∼ EC(µ,Σ, h), i = 1, . . . ,K.
The complex M-estimators of location and scatter are defined
as the joint solutions to the estimating equations:

µ̂ =

K∑
n=1

u1(tn)cn

K∑
n=1

u1(tn)

M̂ =
1

K

K∑
n=1

u2(t2n)(cn − µ̂)(cn − µ̂)H

(2)

where tn =
(
(cn − µ̂)HM̂−1(cn − µ̂)

)1/2
and u1, u2 are

two weighting functions on the quadratic form tn. Note t2n is
in fact, the widely used Mahalanobis distance. M-estimators
have first been studied in the real case, defined as solution of
(2) with real samples. Existence and uniqueness have been
proven in the real case, provided functions u1, u2 satisfy a set
of general assumptions stated by Maronna [11] . Olilla has
shown in [12] that these conditions hold also in the complex

case. M-estimators are particularly suited for estimating the
mean vector and the scatter matrix of an elliptical population.
When dealing with heavy tailed clutter models, as in HSI, the
use of robust estimates decreases the impact of highly impul-
sive samples and possible outliers.
Remark that if u1 and u2 are chosen to be constant and equal
to one, the arising estimators correspond to the Sample Mean
Vector and Sample Covariance Matrix respectively. They are
indeed the the Maximum Likelihood estimators when Gaus-
sian distributions are considered.
We state below two particular estimates belonging to the fam-
ily of M-estimators. Besides the indicated statistical robust-
ness , they involve some CFAR properties useful for detection
issues.

3.1. The Fixed Point estimates

According to the Fixed point approach, the joint estimation of
M and µ leads to [13]:

M̂FP =
m

K

K∑
k=1

(ck − µ̂)(ck − µ̂)H

(ck − µ̂)HM̂−1
FP (ck − µ̂)

(3)

and

µ̂ =

K∑
k=1

ck

(ck − µ̂)HM̂−1
FP (ck − µ̂)

K∑
k=1

1

(ck − µ̂)HM̂−1
FP (ck − µ̂)

(4)

Obtained when choosing u1(s) = s−1 and u2(s) =
ms−1. For the matrix estimate, existence and uniqueness
have been established in [14]. Although the proof for si-
multaneous scatter and location estimates is still an open
question, they have been found to be useful and reliable for
elliptical contours estimation parameters because of its easy
implementation. They are specified by implicit equations and
can be easily computed using a recursive algorithm. We refer
to [9] for a detailed performance analysis of the Fixed Point
covariance matrix estimate. The main results of the statistical
properties of the M̂FP are summarized: M̂FP is a consistent
and unbiased estimate of M; its asymptotic distribution is
Gaussian and its covariance matrix is fully characterized in
[15]; its asymptotic distribution is the same as the asymptotic
distribution of a Wishart matrix with mK/(m + 1) degrees
of freedom.

3.2. The Huber’s M-estimates

Using the well-known Huber’s ψ function [10] defined as,

ψk(s) = min(s, k) (5)

with k > 0. One can obtain Huber’s M-estimator by taking
u1(s) = ψk(s)/s and u2(s) = ψk2/s. We remark that the
Huber function can be seen as a mix between the Fixed Point



estimate and the conventional SCM estimate. Extreme val-
ues of t2n outside [0, k2] are strongly attenuated by the 1/s
decreasing function (as for the Fixed Point) while normal val-
ues below k2 are uniformly kept (SCM behavior).

4. THE ANMF BUILT WITH THE M-ESTIMATORS

Different types of adaptive non-Gaussian detectors were de-
rived for target enhancement purposes in radar applications.
We focus here on the study of the GLRT-Linear Quadratic
[16], also known as Adaptive Cosine Estimate,

Λ(M̂, µ̂) =
|pHM̂−1(y − µ̂)|2

(pHM̂−1p)((y − µ̂)HM̂−1(y − µ̂))

H1

≷
H0

λ

(6)
where p is the spectral steering vector, y the cell under test
and λ the decision threshold.Note that the mean µ̂ is gener-
ally omitted in radar detection (and therefore not estimated)
as the noise is always zero mean. So, in hyperspectral imag-
ing, as the data represent intensity values and are positive,
we need to estimate it, jointly with the covariance matrix M.
Used with the Fixed Point estimates, this detector has essen-
tial CFAR properties like texture-CFAR (independent of den-
sity generator function), matrix-CFAR (indepedent of M) and
mean-CFAR. Hence, the detector GLRT Λ(M̂FP , µ̂) behaves
according to the same distribution regardless of the elliptical
distribution used and for different covariance matrices. This
is of a major interest in areas of background transition, like
for example, in coastal areas (ground and sea) or at the edge
of forests (fields and trees) because the detector resulting dis-
tribution should be insensitive to the different clutter areas.

4.1. Detector performance

The performance analysis has been realized over the data set
provided by DSO National Laboratories, the normalized hy-
percube is shown in figure 1. The resulting ROC curves (Re-
ceiver Operating Characteristic) compare the output of the
detector built with the Fixed Point estimates, the Huber M-
estimators and the classical SCM. The test conducted con-
sists in placing an artificial target with a fixed SNR through
each pixel of the image. For all the possible threshold values,
both probability of false alarm and probability of detection
are computed. The outcome is illustrated in figure 2.
These preliminary results show the improvement in perfor-
mance introduced by the use of M-estimators regarding the
conventional SCM. The desired robustness properties previ-
ously mentioned lead to a higher Pd for small values of the
Pfa.

4.2. False Alarm Regulation

The ANMF test statistics distribution is well-known for
zero-mean Gaussian model. When M is estimated accord-
ing to the SCM, it follows a complex Wishart distribution
CW(K,m;M). Taking into account that the Fixed Point

Fig. 1. Normalized data set.

Fig. 2. ROC curves depicting the performance of the detector
built with the SCM (in red), the Fixed Point (in blue) and the
Huber type (in black) estimates. Probabilities are given in
log10 scale.

Matrix asymptotic distribution is the same as the asymp-
totic distribution of a Wishart matrix with mK/(m + 1)
degrees of freedom. A theoretical relationship between the
detection threshold λ and the Probability of False Alarm
Pfa = P(Λ > λ|H0) has been stated in [17]:

Pfa = (1− λ)a−1
2F1(a, a− 1; b− 1;λ) (7)

where a = m
m+1K − m + 2, b = m

m+1K + 2 and 2F1 is
the Hypergeometric function. This expression holds when µ
is completely known and can be removed from the data. As
the joint estimation of M and µ is needed, (7) is no longer
valid and a gap is evidenced between theoretical and empiri-
cal curves.

When µ is included in the estimation of the SCM, M
is distributed as a complex Wishart with K − 1 degrees of
freedom. The theoretical Pfa- threshold relationship for the
Gaussian case and SCM estimation has been derived resulting
in an expression as in (7) where a = (K − 1) −m + 2 and
b = (K − 1) + 2. Figure 3 (a) exhibits the regulation of
the false alarm for the detector when Gaussian data model is
considered.
Simulations held in elliptical distributions context show the
early empirical distribution for the detector built with the
Fixed Point estimates, hinting its curve analytical expression
and its CFAR-texture properties. The figure 4 (b) exemplifies



the empirical results for a K-distribution with shape param-
eter ν = 0.1. Although a more detailed analysis need to be
done.
Note that the previous Pfa-threshold has been derived assum-
ing radar data being complex and is not valid for real data. As
the hyperspectral data are real and positive, they have been
passed through an Hilbert filter to render them complex.

Fig. 3. Pfa- threshold relationship for Gaussian model and
SCM estimation.

Fig. 4. Pfa- threshold relationship for K-distribution with
shape parameterν = 0.1 and FP estimation.

5. CONCLUSIONS

We consider the family of elliptical contoured distributions
for impulsive clutter characterization in hyperspectral imag-
ing. In this context, we study different robust estimators for
statistical modeling of the background. Particularly, we de-
scribe two M estimators, so the Fixed Point and the Huber
type, pointing its robust behavior. The main contribution of
this article is the analysis performed on the ACE detector
when built with these newfangled estimates, showing a bet-
ter performance in probability of detection terms. Finally we
introduce a theoretical relationship for false alarm regulation,
when covariance matrix and mean are jointly estimated, fore-
most for the gaussian case. Empirical simulation results are
highlighted for elliptical distribution model.
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