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Abstract

In this paper, a novel method is proposed for detecting Polarimetric Synthetic Aperture Radar (PolSAR) targets. The
proposed method is a combination of the Target Scattering Vector Model (TSVM) and the Generalized Likelihood Ratio
Test - Linear Quadratic (GLRT-LQ) detector. The TSVM provides an unique and roll-invariant decomposition of the
observed target vector by means of four independent parameters. The combination of those two methods will allow the
detection of any oriented targets.

1 Introduction

The new generation of recently launched Synthetic Aper-
ture Radar (SAR) sensors are able to produce high quality
images of the Earth’s surface with meter resolution. The
number of scatterers present in each resolution cell de-
creases considerably and homogeneous hypothesis of the
Polarimetric SAR (PolSAR) clutter can be reconsidered.
Heterogeneous clutter models have therefore recently been
studied.
In 1973, Kung Yao has first introduced the use of Spheri-
cally Invariant Random Vectors (SIRV) and their applica-
tions to estimation and detection in communication. From
a PolSAR point of view, the observed target vectork is
defined as the product of a square root of a positive ran-
dom variableτ (representing the texture) with an indepen-
dent complex Gaussian vectorz with zero mean. SIRVs
describe a whole class of stochastic processes. This class
includes the conventional clutter models having Gaussian,
K, G0 and KummerU PDFs which correspond respectively
to dirac, Gamma, Inverse Gamma and Fisher distributed
texture.
Once the SIRV parameters are estimated (covariance ma-
trix and texture parameters), optimal SAR detectors can
be applied to detect particular targets. Generalized Likeli-
hood Ratio Test - Linear Quadratic (GLRT-LQ) detectors
have been successfully applied to detect trihedral scatter-
ing. In 2007, Ridha Touzi has proposed a new target scat-
tering vector model (TSVM) to extract physical parame-
ters [1]. Based on the Kennaugh-Huynen decomposition,
the TSVM allows to extract four roll-invariant parameters
(independent of the incidence angle). Those parameters

are necessary for an unambiguous characterization of tar-
get scattering. The proposed method consists in applying
the TSVM prior to the GLRT-LQ for target detection (tri-
hedral, dihedral, dipole, helix,. . .).

2 Roll-invariant decomposition

2.1 Problem formulation

Let kdip andkdih be respectively the steering vectors in
the Pauli basis of dipole and dihedral targets. They are ex-
pressed as follows :

kdip =
1√
2





1
cos(2ψ)
sin(2ψ)



 andkdih =





0
cos(2ψ)
sin(2ψ)



 (1)

whereψ is the orientation of the maximum polarization
with respect to the horizontal polarization [1].
Consequently, for a roll invariant-target dipole or dihedral
detection, the tilt angleψ should be removed. In 1993,
Krogager has proposed an algorithm to deriveψ which
uses the phase difference between right-right (SRR) and
left-left (SLL) circular polarizations [2].SRR andSLL are
respectively defined by :

SRR = (SHH − SV V + 2jSHV ) /2

SLL = (SV V − SHH + 2jSHV ) /2 (2)

The orientation angleψKrogager estimated by Krogager is
given by :

ψKrogager = [Arg(SRRS
∗

LL + π)] /4 (3)



This estimated orientation angle (Eq. 3) is valid under cer-
tain condition on the target. To overcome this problem, au-
thors propose to apply the TSVM method which provide
an unique and roll-invariant decomposition of any targets.

2.2 The Kennaugh-Huynen
con-diagonalization

Coherent targets are fully described by their scattering ma-
trix S̃. Kennaugh and Huynen have proposed to apply
the characteristic decomposition on the scattering matrix
to retrieve physical parameters [3] [4] [5]. Under the reci-
procity assumption, it yields :

S̃ = R̃(ψ)T̃(τm)S̃dT̃(τm)R̃(−ψ) (4)

whereR̃(ψ) andT̃(τm) are defined by :

R̃(ψ) =

[

cosψ − sinψ
sinψ cosψ

]

(5)

and :

T̃(τm) =

[

cos τm −j sin τm
− j sin τm cos τm

]

(6)

S̃d is a diagonal matrix which contains the coneigenvalues
µ1 andµ2 of S̃ as :

S̃d =

[

me2j(ν+ρ) 0

0 m tan2 γ e−2j(ν−ρ)

]

=

[

µ1 0
0 µ2

]

(7)
The Kennaugh-Huynen con-diagonalization allows to
characterize any targets by means of six independent pa-
rameters :ψ, τm, m, γ, ν andρ. ψ is the rotation angle
(see Eq. 1). This parameter is used for the subtraction of
the target orientation from the target vector, which leads to
a roll-invariant decomposition. This step is named desy-
ing. τm is the target helicity, it characterizes the symmetry
of the target.m is the maximum amplitude return.γ andν
are respectively the characteristic and skip angles.ρ is the
absolute phase of the target. This term is not observable
except for interferometric applications.

2.3 The Target Scattering Vector Model

The TSVM, proposed by Touzi in 2007, consists in the
projection in the Pauli basis of the scattering matrix con-
diagonalized by the Takagi method [1]. It leads :

−→eT SV = m|−→eT |mejΦs





1 0 0
0 cos(2ψ) − sin(2ψ)
0 sin(2ψ) cos(2ψ)





×





cosαs cos(2τm)
sinαse

jΦαs

− j cosαs sin(2τm)



 (8)

whereαs andΦαs
are derived from the coneigenvaluesµ1

andµ2 by :

tan(αs) e
jΦαs =

µ1 − µ2

µ1 + µ2

(9)

Because of the coneigenvalue phase ambiguity, Huynen’s
orientation angleψ should be reevaluated. To remove this
ambiguity, the following relation is applied to restrict the
interval ofψ to [−π/4, π/4] :

−→eT SV(Φs, ψ, τm,m, αs,Φαs
)

= −→eT SV(Φs, ψ ± π

2
,−τm,m,−αs,Φαs

) (10)

As the last term of Eq. 8 is independent of the target ori-
entation angle, it yields that the four parametersm, αs,
Φαs

and τm allow an unique and unambiguous descrip-
tion of any target. In the following, the TSVM method is
first applied on the original PolSAR data-set to provide a
roll-invariant target vector.

2.4 Comparison between ψ and ψKrogager

According to the TSVM, one can easily prove the fol-
lowing relation between the orientation angleψ estimated
by the TSVM method andψKrogager estimated with the
phase difference between right-right and left-left circular
polarizations (Eq. 3) :

ψ = ψKrogager −

1

4
atan

„

tan(αs) sin(Φαs
)

tan(αs) cos(Φαs
) + sin(2τm)

«

+
1

4
atan

„

tan(αs) sin(Φαs
)

tan(αs) cos(Φαs
) − sin(2τm)

«

(11)

Figure 1 shows a comparison between the orientation an-
gleψ estimated by the TSVM andψKrogager as a function
of the helicityτm for αs = π/3 andΦαs

= π/3, and as a
function of the target scattering phaseΦαs

for αs = π/3
andτm = π/8. For τm = 0, the target is symmetric. It
leads thatψ is equal toψKrogager , as observed in black in
Figure 1. Moreover, according to Eq. 11,ψ andψKrogager
are equal forΦαs

= 0, which correspond to a wide class
of targets including trihedral, dihedral, helix, dipole,. . .
For all other cases, the orientation angleψ should be used
instead ofψKrogager for a roll-invariant target characteri-
zation.
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Figure 1: Comparison betweenψ andψKrogager as a function
of τm for αs = π/3 andΦαs

= π/3 and as a function ofΦαs

for αs = π/3 andτm = π/8.



3 Roll-invariant target detection

The general principle of the proposed roll-invariant target
detection algorithm can be divided into five steps :

1. Estimation of the tilt orientation angle and extraction
of the "roll-invariant" target vector.

2. Estimation of the fixed point covariance matrix esti-
mator.

3. Computation of the similarity measure between the
steering vector and the "roll-invariant" target vector.

4. Choice of the false alarm probability.

5. Thresholding of the similarity image and conclude
or not on the detection.

In this paper, a Generalized Likelihood Ratio Test - Linear
Quadratic (GLRT-LQ) detector is used to detect a particu-
lar target. Letp be a steering vector andk the observed
signal. The GLRT-LQ betweenp andk is given by :

Λ ([M ]) =
|pH [M ]−1k|2

(pH [M ]−1p) (kH [M ]−1k)

H1

≷
H0

λ (12)

where [M ] is covariance matrix of the population under
the null hypothesisH0, i.e. the observed signal is only the
clutter.
In general, the covariance matrix is unknown. One solu-
tion consists in estimating the covariance matrix[M ] by
[M̂ ]FP , the fixed point covariance matrix estimator. It is
the maximum likelihood estimator of the normalized co-
variance matrix under the deterministic texture in a Spher-
ically Invariant Random Process. Its expression is given by
the solution of the following recursive equation [6] [7] :

[M̂ ]FP = f([M̂ ]FP ) =
p

N

N
∑

i=1

kik
H
i

kHi [M̂ ]−1
FPki

. (13)

Replacing[M ] by [M̂ ]FP in Eq. 12 leads to an adaptive
version of the GLRT-LQ detector.
If the covariance matrix is estimated by the fixed point es-
timator (Eq. 13), it has been proved, for largeN , the rela-
tion between false alarm probabilitypfa and the detection
thresholdλ :

pfa = (1 − λ)(a−1)
2F1(a, a− 1; b− 1;λ) (14)

with a = N − p + 2 and b = N + 2. N is the num-
ber of pixels used to estimate the covariance matrix[M ].
2F1(·, ·; ·; ·) is the Gauss hypergeometric function.

4 Detection results

4.1 On synthetic targets

To evaluate the potential of the GLRT-LQ detectors, a real
data-set acquired by the RAMSES sensor at P-band on the
Nezer forest, France is analyzed.Figure 2 shows a colored

composition in the Pauli basis of the target vector. In this
data-set, six synthetic targets have been added (namedA
to F ). TargetsA andB are two dihedral oriented respec-
tively atψ = 0 andψ = π/5. TargetC have the following
characteristics :αs = Φαs

= τm = π/3 andψ = π/5.
TargetD is a pure trihedral

(

ptri = [1, 0, 0]T
)

. TargetE
is an oriented dipole atψ = π/11. TargetF is defined by
αs = π/4, Φαs

= π/5 andτm = π/8 with a tilt angle of
π/6.
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Figure 2: Nezer, RAMSES PolSAR data, P-band (150 × 150
pixels). Colored composition in the Pauli basis of the target
vector [k]1-[k]3-[k]2. Classification results of the Nezer data-
set based on the GLRT-LQ, GLRT-LQ Krogager and GLRT-LQ
TSVM detectors.

Three detectors are implemented : the GLRT-LQ applied
on the original data-set, the GLRT-LQ detectors with tilt
compensation estimated by the phase difference between
right-right and left-left circular polarizations (GLRT-LQ
Krogager) and by the TSVM (GLRT-LQ TSVM). Those
detectors are implemented for the five roll-invariant stud-
ied steering vectors (pure dihedral, trihedral, dipole,. . .).
The false alarm probability is fixed to10−4. According
to Eq. 14, it leads to a detection thresholdλ of 0.99 for
N = 128. Figure 2 shows the detection results into four
classes for the three detectors. Pixels in white are unde-
tected objects. Pixels which belong to the blue, yellow and
red classes are respectively classified to dihedral, trihedral
and dipole withpfa = 10−4. Black and green pixels are
respectively classified toC andF targets.
By analyzingFigure 2, it could be noticed that the six syn-
thetic targets are perfectly retrieved with the roll-invariant
detector GLRT-LQ TSVM. Concerning the GLRT-LQ de-
tector, the trihedral (targetD in yellow) and the non-
oriented dihedral (targetA in blue) are detected. This re-
sults is quite logical because a trihedral has a steering vec-
tor ptri independent of the orientation angleψ. For the



pure dihedral (targetA), the tilt angle doesn’t need to be
removed because it is null in this case. For the GLRT-LQ
Krogager detector, two other synthetic targets are retrieved
compared to the GLRT-LQ detector : the oriented dihedral
and dipole (targetsB andE). As those two targets have a
null target scattering phaseΦαs

, the tilt angleψ estimated
with Eq. 3 is valid. For targetsC andF, the orientation
angle estimated with the Krogager method is not valid. It
leads that only the GLRT-LQ TSVM method is able to de-
tect those targets.

4.2 On a RAMSES X-band data-set

In this section, a real data-set acquired by the RAMSES
sensor at X-band is analyzed.Figure 3 shows a colored
composition in the Pauli basis of the target vector. This
data-set is composed by two particular targets : a dihedral
(in green) and a narrow diplane (in red).

Figure 3: Toulouse, RAMSES PolSAR data, X-band (150×150
pixels). Colored composition in the Pauli basis of the target vec-
tor [k]1-[k]3-[k]2. Images containing a dihedral (left) and a nar-
row diplane (right).

Both GLRT-LQ Krogager and GLRT-LQ TSVM detec-
tors are applied on this data-set.Table 1 and Table 2
show respectively the criterion characteristics for the di-
hedral and narrow diplane. As those two targets have a
null helicity τm, both detectors should have similar perfor-
mance. Nevertheless, it can be noticed that the GLRT-LQ
TSVM detector provide better results than the GLRT-LQ
Krogager. Concerning the dihedral, the false alarm proba-
bility is decreased by a factor of4 for the GLRT-LQ TSVM
(pfa = 2.1 × 10−3) compared to the GLRT-LQ Krogager
(pfa = 8.2 × 10−3).

dihedral
GLRT-LQ ψ αs Φαs

τm

Krogager 0.912 0.761
TSVM 0.956 0.770 -1.453 0.450 -0.178

Pure target 1.571 ∞ 0

Table 1: Detector characteristics for the dihedral.

narrow diplane
GLRT-LQ ψ αs Φαs

τm

Krogager 0.828 -0.023
TSVM 0.849 -0.026 1.210 -0.172 0.052

Pure target 1.249 0 0

Table 2: Detector characteristics for the narrow diplane.

5 Conclusion

In this paper, authors have proposed to combine the target
scattering vector model method and the GLRT-LQ detector
for a roll invariant target detection. The TSVM allows the
extraction of a roll-invariant target vector by means of four
independent parametersm,αs, Φαs

andτm. Those param-
eters provide an unique and unambiguous description of
any target. In the proposed method, the TSVM is first ap-
plied on the original PolSAR data-set. Then, the GLRT-LQ
similarity measure is computed between the roll-invariant
target vector and the steering vector.
Comparisons between the tilt anglesψ and ψKrogager
have been carried out. They are equal for symmetric tar-
gets (τm = 0) and forΦαs

= 0, which corresponds to
a wide class of targets including trihedral, dihedral, he-
lix, dipole, . . . For all other cases, the orientation angle
ψ should be used instead ofψKrogager to provide a roll-
invariant target characterization. Detection results on both
synthetic and real targets have shown that the application
of the TSVM prior to the GLRT-LQ measure allow the de-
tection of any oriented targets.
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