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Change detection

Monitoring natural disasters:

PolSAR images of Ishinomaki and Onagawa areas [Sato et al., 2012], Nov.2010 (le t), Apr.2011 (right).
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Problems to consider

Huge increase in the number of available acquisitions:

• Sentinel-1: 12 days repeat cycle, since 2014
• TerraSAR-X: 11 days repeat cycle, since 2007
• UAVSAR, ...

Detect changes
• Massive amount of data −→ Automatic process
• Unlabeled data −→ Unsupervised detection
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Synthetic aperture radar (SAR)

Principle of SAR
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Advantages:
• All weather and illumination conditions
(active technology)

• Very high-resolution (sub-meter) imaging

Comparison of optical and image
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Multivariate data: natural or pre-processing

pixel

HR SAR image

Polarimetry (p = 3)

Wavelet decomposition
(Spectro-angular diversity)
[Mian et al., 2019b]
(p ≥ 3)

HH
HV
VV

Feature selection
• Leverage diversity to improve the detection
• Requires to process multivariate pixels
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SAR image time series representation
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Figure 1: Sliding windows, the gray pixel corresponds to the test pixel
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Change detection (CD) problem (T=2)

For each patch, decide if a change occured between X1 and X2.

t = 1 t = 2 Ideal CD map

Statistical detection framework
• Can handle the multivariate aspect of the data
• Can account for physical modelling of the data/noise
• Strong theoretical guarantees from statistical litterature
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Parametric change detection

p(x;θ1)

Image at t = 1

Image at t = 2

p(x;θ2)

...

...

x

x

Parametric probability model:

Xt ∼ L(Xt;θt).

Change detection −→ Hypothesis test:{
H0 : θ1 = θ2 (no change)
H1 : θ1 ̸= θ2 (change)

.
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Generalized likelihood ratio test (GLRT)

Statistical decision test derived as:

max
θ1,θ2

L ({X1,X2} ; {θ1,θ2})

max
θ0

L ({X1,X2} ; θ0)

H1
≷
H0

λGLRT.

Problems
• Specify L and θ to model the data

• Good fit
• Robust to a large class of distributions and outliers

• Handy model to compute the ratio efficiently (closed form or optimization)
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Seminal work [Conradsen et al., 2003]

Gaussian model
Assuming x ∼ CN (0p,Σ):

θ = Σ

L(X;Σ) ∝ |Σ|−Ketr
{
−XHΣ−1X

}
.

Detection test:{
H0 : Σ1 = Σ2 (no change)
H1 : Σ1 ̸= Σ2 (change)

.

Corresponding GLRTa

Λ̂G =

∣∣∣ 1
2

(
Σ̂1 + Σ̂2

)∣∣∣2∣∣∣Σ̂1

∣∣∣ ∣∣∣Σ̂2

∣∣∣
H1
≷
H0

λ,

where

∀t, Σ̂t = XtXH
t /K.

a Other Gaussian/Covariance methods
[Ciuonzo et al., 2017, Nascimento et al., 2019].
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Non-Gaussian models in CD [Mian et al., 2019a]

Robust model: Compound-Gaussian distributions
Assuming xk ∼ CN (0p, τkΣ).

θ = {Σ, {τk}}

L(X;Σ, {τk}) ∝
K∏

k=1
|τkΣ|−1exp

{
−xk

HΣ−1xk
τk

}
.

Corresponding GLRTs in [Mian et al., 2019a].

Histogram of UAVSAR data (HH)

−1 0 1
0

1

2

3

4

R(x)

p.
d.

f

Gaussian fit
Compound-Gaussian fit

11/24
Ammar Mian, 30 July 2019



Motivations Data Statistical framework Proposed Approach Experimental results

Structured covariance models in CD [Ben Abdallah et al., 2019]

Low-rank structured covariance
Assuming x ∼ CN (0p,ΣR + σ2I).

θ = ΣR, with rank(ΣR) = R
L(X;ΣR) ∝ |ΣR + σ2I|−Ketr

{
−XH(ΣR + σ2I)−1X

}
Corresponding GLRTs in [Ben Abdallah et al., 2019].

Spectrum of UAVSAR data (wavelets)
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Proposed CD test

Low-rank Compound-Gaussian model
Assuming xk ∼ CN (0p, τk(ΣR + σ2I)).

θ = {ΣR, {τk}} with rank(ΣR) = R

L(X;Σ, {τk}) ∝
K∏

k=1
|τk(ΣR + σ2I)|−1exp

{
−xk

H(ΣR + σ2I)−1xk
τk

}
.

Recalling our problems
• Specify L and θ to model the data ( )
• Compute the ratio efficiently (?)
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Proposed block coordinate descent (BCD) algorithms

Algorithm 1 BCD for MLEs under H1

Input: {xt
k} with t ∈ {1, 2}

repeat
τ t

k =
(
(xt

k)
HΣ−1

t xt
k
)
/p

Σt = T
{

1
K
∑K

k=1
xt

k(xt
k)

H

τ t
k

}
until convergence
Output:

{
Σ̂t, {τ̂ t

k}
}

Algorithm 2 BCD for MLE under H0

Input: {x1
k,x2

k}
repeat

τ0
k =

(
(x1

k)
HΣ−1

0 x1
k + (x2

k)
HΣ−1

0 x2
k
)
/2p

Σ0 = T
{

1
K
∑K

k=1
x1

k (x1
k )

H+x2
k (x2

k )
H

2τ0
k

}
until convergence
Output:

{
Σ̂0, {τ̂0

k }
}

Low-rank Compound-Gaussian GLRT

LH1

(
{X1,X2} ;

{
Σ̂1, Σ̂2, {τ̂1

k }, {τ̂2
k }

})
LH0

(
{X1,X2} ;

{
Σ̂0, {τ̂0

k }
}) H1

≷
H0

λGLRT.
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Dataset
Description
• Polarimetric data −→ wavelet decomp. [Mian et al., 2017] −→ p = 12 dim. pixels
• Image size: 2360px×600px
• Resolution: 1.67 m (Range) and 0.60 m (Azimuth)
• CD ground truth from [Nascimento et al., 2019]

15/24
Ammar Mian, 30 July 2019



Motivations Data Statistical framework Proposed Approach Experimental results

Recall of the considered CD methods

Gaussian
x ∼ CN (0p,Σ)

θ = Σ

Compound-Gaussian
xk ∼ CN (0p, τkΣ)

θ = {Σ, {τk}}

Low-rank Gaussian
x ∼ CN (0p,ΣR + σ2I)
θ = ΣR, with rank(ΣR) = R

Low-rank Compound-Gaussian
xk ∼ CN (0p, τk(ΣR + σ2I))
θ = {ΣR, {τk}}, with rank(ΣR) = R

Side parameters
• Rank R and noise floor σ2 estimated on the whole datacube
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Results with a 5 × 5 sliding windows: Gaussian detectors
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Results with a 5 × 5 sliding windows: Robust detectors
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Performance curves
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Figure 2: Probability of detection PD versus
probability of false alarm PFA with
(p = 12,N = 25,R = 3)
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Figure 3: PD versus the size of window at
PFA = 5% with (p = 12,R = 3)
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Impact of rank estimation
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Figure 4: PD versus the size of window at PFA = 10%



Wavelet decomposition pre-processing
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As studied in [Mian et al., 2017], it is
possible to increase detection
performance by increasing data
diversity using wavelet decomposition.
→ By doing a 2 × 2 decomposition, we
obtain vectors of dimension p = 12.
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