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Robustness of the M-estimators
Adaptwr Robust Detection in Clutter Transition
Prior Information: Covariance Structure
nk Detectors

More properties of the adaptive detectors

Robustness of the M-estimators

Let us suppose that {c;}j—1,k—1 ~ CA(0, M) and the last secondary data
ck contains outlier po:
m Sample Covariance Matrix case:
K—1

IVI‘S’%’M = Z crell + ;l(po P [M?gm] = %Mﬁ— %E [po pg’]

The power of the outlier pg has a big impact on the quality of the
SCM estimation

m Tyler (or FP) Covariance Matrix case:

m Ck cH A m+1
M eppo = Z AN o = E [MFppor] = M + K
1 Sk YVFPpol Ck

H
1
E|l g0 | “m
Py M~ po m

The power of the outlier pp has no big impact on the quality of
the Tyler estimate
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Robustness of the M-estimators
Adaptive Robust on in Clutter Transition

Exploiting Prior Informz C riance Structure
Low Rank Detectors

More properties of the adaptive detectors

Robustness of the M-estimators

Gaussian vectors ¢y polluted by outliers
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. . Robustness of the M-estimators
More properties of the adaptive detectors Adaptive Robust on in Clutter Transition

ploiting Prior Information: Covariance Structure

Rank Detectors

Potential Impact on detection performance

Same target ¢, (SNR 20dB) than those in the cell under test

in the reference cells
SCM Fixed Point

! T T T
/ " Uncontaminated SCM / Uncontaminated PP

—— Contaminated SCM / Contarminated FP.
I gl / il

ﬁ‘\ True SCM |
4 0.7] “v\ 4
| True FPE

| . Contaminated SCM |
Contaminated FPE

20 20 W0

10 10
SNR (08) SNR (08)

AMF + SCM ANMF + FPE

The SCM can whiten the target to detect
The FPE is more robust
(case of convoy for example)
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Robustr of the M-estimators

M til f the adaptive detect q N -
ore properties of the adaptive detectors Adaptive Robust Detection in Clutter Transition
Exploiting Prior Information: Covariance Structure

L Rank Detectors

SIRV-CFAR Properties of ANMF-Tyler Detector in

heterogeneous clutter
False Alarm regulation

@ CFAR-texture property for the ANMF with Tyler's est. . CFAR-matrix property for the ANMF with the Tyler's est.
It
T I ~p=o0r
~ Gaussian p=01
N K-distribution . - p=05
. Student-i . —os
N ~ Caushy = ~ b0
N o Laplace S BERERIE
N —  estimated, n=40, m=10
- N =~ % known (uuiey
N 107
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& AN s \
. & X
107] \\
N 107k
10 AN N
N R
o " 2 e - n s o 107 Ky 0 ry s .
° ° DLotecllon mye;:mm w m " © ' Detection threshold *© *©
(b) CFAR-matrix

(a) CFAR-texture
Figure: lllustration of the CFAR properties of the ANMF built with the Tyler's
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Robustness of the estimators

Adaptive Robust Detection in Clutter Transition

Exploiting Prior Information: Covariance Structure
Rank Dete S

More properties of the adaptive detectors

Properties of ANMF-Tyler Detector on Clutter Statistic
Transitions

Résisationsde S K-ditrbuions Transtons spatdes pour § -dtrioutions

1
ot v w2 -

Ampitucs

© = @
(Cases Distance

m K-distributed clutter transitions: from Gaussian to impulsive noise

m Estimation of the covariance matrix onto a range bins sliding window 10/47
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Robustness of the M-estimators
Adaptive Robust Detection in Clutter Transition

More properties of the adaptive detectors

Exploiting Prior Information: Covariance Structure
Low Rank Detectors

Probability of Detection for Pfa = 0.001 - ANMF-Tyler

Probability of False Alarm - ANMF-Tyler log10(Pta)
- ] L | T T o

>

Detection Threshold (log1o)

20 30 40 70 80

50 60
Range bins Ransge bins *

Probability of False Alarm - AMF-SCM

Probability of Detection for Pfa = 0.001 - AMF-SCM

N

Detection Threshold ((

o

40

50 60
Range bins m

50
Range bins

m ANMF-Tyler: The same detection threshold is guaranteed for a
chosen Pg, whatever the clutter area

m ANMF-Tyler: Performance in term of detection is kept for moderate
non-Gaussian clutter and improved for spiky clutter
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Explomng Prior Information: Covariance Structure
L k Detectors

Outline

More properties of the adaptive detectors

m Exploiting Prior Information: Covariance Structure
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Robust ]

Adapti obus in ( lutter Transition
Exploiting Prior Information: Covariance Structure
Low Rank Detectors

More properties of the adaptive detectors

Motivations

The estimation of M does not take into account any prior knowledge on
the covariance matrix:

How to improve detection performance by exploiting
prior information on M ?

— Use of some prior knowledge on the structure of the covariance matrix:

m Toeplitz: Burg [82] for estimation, Furhmann [91] for detection in
Gaussian case,

m known rank r < m (ex: subspace detector),

m Persymmetry: Nitzberg [80] for estimation, Kai-Wang [92] for
detection in Gaussian case, Conte and De Maio [03, 04], Pailloux et

al. [10] in non-Gaussian noise.
13/47
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imators
/ in Clutter Transition
Exploiting Prior Information: Covariance Structure
Low Rank Detectors

More properties of the adaptive detectors

Using Persymmetry Property

Under persymmetric considerations (ex: symmetrically spaced linear array,
symmetrically spaced pulse train, ...), the Hermitian covariance matrix M
verifies: M = J,, M* J,,, where J,,, is the m-dimensional antidiagonal
matrix having 1 as non-zero elements. If the unitary matrix T is defined

by:
1
— ( .Im/2 J_m/z > for m even
\@ lIm/2 - Jm/2
T = 1
1 Lmype 0 Jmaye ()
ﬁ 0 V2 0 for m odd,
im0 —iJmay2
then:
e s=Tpis a real vector (if p is centrosymmetric, i.e. p =J,p*),
e R=TMT" is a real symmetric matrix. 14/47
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Exploiting Prior Information: Covariance Structure
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More properties of the adaptive detectors

Equivalent Detection Problem

Using previous transformation T, the original problem can be reformulated
as:

Original Problem T Equivalent Problem
Hy:y =c, Yk=Cky Hy:z=n, Zk = Ngl,
Hi:y=Ap-+c, yx=ck, Hi:z=As+n, 2z, =ng|,

where
mz=TyeCm,
m n = /Tx and ng = /T X with x,x, ~ CN(0,R) where R is an
unknown real symmetric matrix,
m s =T p is a real vector.
The main motivation for introducing the transformed data is that the

original persymmetric covariance matrix of the Gaussian speckle M is

transformed into a real covariance matrix R. 15/47
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More properties of the adaptive detectors

The Persymmetric FP Covariance Matrix Estimate

From the estimate f{;:p of the real covariance matrix R, solution of the

following equation: K .
R = R —_—
) nk R-1 nk

the Persymmetric Fixed-Point Covarlance Matrix Estimate can be defined
as:

Rprp = Re(Rep).

Statistical performance of f{p,:p [Pascal et al. 2008|:

° f{p,:p is a consistent estimate of R when K tends to infinity,
e Rprp is an unbiased estimate of R,
e Its asymptotic distribution is the same as the asymptotic distribution

of a real Wishart matrix with _m 2K degrees of freedom.
m+1 16/47
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ators
in Clutter Transition
n: Covariance Structure

More properties of the adaptive detectors

Detectors

The Persymmetric Adaptive Normalized Matched Filter

The resulting P-ANMF for the transformed problem is based on the PFP
estimate and can be defined as:

sT R z[? H
PFP 2 Al (2)

ARprp) = = =
(sT Rppps)(zH Rpppz) Ho

Properties:
= /\(f{ppp) is texture-CFAR,
m A(Rpep) is matrix-CFAR,
m The use of PFP estimate in the ANMF allows to virtually double the
number K of secondary data and improve the performance of the
ANMF detector built with the FP matrix estimate.

A(Rpgp) is SIRV-CFAR and is called the P-ANMF.
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Robustness of the M-estimators

Adaptive Robust Detection in Clutter Transition
Exploiting Prior Information: Covariance Structure
Low Rank Detectors

More properties of the adaptive detectors

Statistical study of the P-ANMF

A(f{ppp) has the same distribution as Fil where
B3>
(o1 o — X tp1)? + | 1+ (u—33> (auzp — bupy)?
F= =Y T (3)
(o u11)? + (tll U22—> = U%l 1+ (—) b?
uss3 uss3

and where: a, b, a1, w1 ~ N(0,1), o ~ X2 _;, B3 ~ X3, 5 U3 ~
m
2 2 2 2 2 : r_
XK’—ITH—].’ U22 "’XK/_m_,’_2, U33 NXK’—ITH—3 W|th K =S m+ 1 2K

18/47

Jean-Philippe Ovarlez Recent Advances in Adaptive Radar Detection



More properties of the adaptive detectors

xploiting Prior Information
Low Rank Detectors

Outline

More properties of the adaptive detectors

m Low Rank Detectors
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Exploiting Prior Information: Covariance Structure
Low Rank Detectors

More properties of the adaptive detectors

Conventional Low Rank Detectors

Principle of Low Rank Matched Filter approaches found for example in [Kirstein et al., 94]
(Principal Component Inverse) and [Haimovich, 96] (Eigencanceler) and [Rangaswami et al., 04].

Let suppose the rank r of clutter covariance matrix M is known. For example, in the case of
Space Time Adaptive Processing for airborne linear phased array radar acquiring M pulses with
N sensors, this rank r is known (Brennan's rule) to be: r =N+ (M —1)3 where  =2v T,/d
is the slope of the clutter ridge, T, the Pulse Repetition Interval , v the platform velocity and d
the inter-element spacing. The idea is to project the data onto the orthogonal subspace of the
clutter. If we note

K
1 z 0
Msem = e kZﬂCk cf = (Ur Uo) ( 0 % ) (Ux Uo)",
where U, and Uy are respectively two (N M X r) and (N M x N M — r) unitary matrices and L,
and Zo are diagonal non-negative matrices. From low rank clutter assumption, we have the
following eigenvalue property: A1,...,Ar >> Ar+1,...,Ayy. Therefore, we obtain the projector
onto the clutter subspace TTgscp = U, Uf’. We obtain the classical LR-ANMF-SCM:

Hq_ 2 H
[p"” (I—Tscm) yl 21?\.

(P (I —TTscum) p)(z" (X —TTsem) y) Ay

ALR—ANME—scm(Y) =

20/47
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More properties of the adaptive detectors tion in Clutter Transition

ng Prior Information: Covariance Structure
Low Rank Detectors

Extended Low Rank Detectors

In a case of heterogeneous and non-Gaussian clutter, we know that 1\7[55M or TMscy are not
good estimates. If we note the Normalized Sample Covariance Matrix as:

K H
NM ckcC z 0
Mpsem = — — T = (U Uo) ( 0 r ) (Ur Up)"
=1 Ck Ck 0

where U, and Uy are respectively two (N M x r) and (N M x N M — r) unitary matrices and Z,
and Xy are diagonal non-negative matrices.

We can prove [Ginolhac et al. , 12] that TTyscy = U» Uf’ is a consistent estimate projector
onto the clutter subspace.

Following the derivation found in the previous slide, we obtain the extended LR-ANMF-NSCM:

H _ 2 H-
[p"” (I—Tnscm) yl 217\‘

ALR— —nsem(y) =
LR—ANMF—NSCM (" (I —Tnsem) P)(zH (T —TTysem) ¥) A

This detector is found to be texture-CFAR and is asymptotically M-CFAR. Moreover, he has
another nice robustness property when outliers and targets are present in the secondary data.
The Normalized Sample Covariance Matrix is a good candidate for adaptive version of
Rangaswami’'s Low Rank Matched Filter and Low Rank Normalized Matched Filter

21/47
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar Data
STAP Data

Outline

Radar applications: Doppler detection/estimation, STAP
m Surveillance Radar Data
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH R Data

Data Description

Pulse n° 1

700

m "Range-azimuth” map from ground clutter data collected by a radar from THALES Air
Defence, placed 13 meters above ground and illuminating area at low grazing angle.

m Ground clutter complex echoes collected in 868 range bins for 70 different azimuth angles
and for m = 8 pulses.
23/47
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar Data
STAP Data

Data processing

m Rectangular CFAR mask 5 x 5 for 0 < k < m different steering

vectors py.

1

/ <2i7t(k71)>

P\ —m

2im(k—1)2

P Pk = exp —m
\\ .

\/ exp <2i71(k7;lr3 (m71)>

Reference cells (CFAR mask)
m For each y, computation of associated detectors Aannr(Z7y/e-) and

Aanmvr(Enscm)
m Mask moving all over the map. sa/a7
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH R )
STAP

False Alarm Regulation Results on Experimental Data
(Surveillance Radar)

Clutter map Curves "PFA-threshold" - CFAR property

N FP

AN Theoretical

PFA

N\ NSCM

True M

10" 10° 10° 10° 107

10 10
Range bins. threshold 7.

Azimut/range bins map Relationship " Py, -threshold"

Figure: False alarm regulation for po = (1...1)7

Black curve fits red curve until PFA = 103!
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Radar applications: Doppler detection/estimation, STAP

False

m=8andK=8

—— theo, ANME
ANME e
.
10 i
\\ P-ANMF
o R
109 1
—— ANMF
—P-ANMF tHieo: P-ANME
——theo. NMF M Known|  theo. NMF.
—o—theo. ANMF Mknown
theo. P-ANMF
10°
10° 10! 10*

10° 10°
Threshold n

K =8 (3 x 3 window)

Surveillance Radar Data
OTH R r Data
STAP D

Alarm Regulation Results on Experimental Data

o m=8andK=20

X
N
I theo. ANMF
.v\\
107

— ANMF \
—P-ANMF N B¢
~——theo. NMF M known| theo. NMP\

—o—theo. ANMF Mknown

theo. P-ANMF

|
10° 10' 10° 10
Threshold n

K =20 (3 x 7 window)

limit of the invertibility of the matrix !!

Figure: False alarm regulation for po = (1...1)7

Black and Red curves fit blue and pink curves until PFA = 103!
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar Data
STAP Data

Detection Performance Results on Experimental Data

1 - - — 1 —
-~ ANMF . - ANMF
o i i 1 O[] - - p-ANMF|
0.8 . // q 0.8
07| X 07| Y
/' P_ANME H P-ANMF 7/ ANMF
06 S 4 0.6] a
| ANMF
T 05 % o5
04f 04
0.3] 03
0.2] 0.2
0.1 0.1
20 15 10 5 0 5 10 15 20 25 30 20 -5 10 5 0 5 10 15 2 25 30
SNR (dB) SNR (dB)
Pr,=10"2m=8,K=28 P, =102, m=8,K =20

Figure: Probability of Detection for ANMF and P-ANMF

m for K = m, the P-ANMF outperforms the ANMF detection
performance,

m for higher K (K >> m), the P~ ANMF and ANMF tend to have the
same performance. 27/47
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ar Data
Radar applications: Doppler detection/estimation, STAP
STAP Data

Outline

Radar applications: Doppler detection/estimation, STAP

m OTH Radar Data
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Radar applications: Doppler detection/estimation, STAP

STAP Data

False Alarm Regulation Results on Experimental Data
(Nostradamus OTH)

ANMEFP

P-ANMF

True M

g 88 3888833

i o8 &8 B E &

Figure: False Alarm Regulation for ANMF and P-ANMF over OTH experimental data: set of

parameters: m =8, K = 13, Pg, evaluation through 343 range profiles 20/47
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r Data
Radar applications: Doppler detection/estimation, STAP oT ada
STAP Data

Outline

Radar applications: Doppler detection/estimation, STAP

m STAP Data
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Radar applications: Doppler detection/estimation, STAP
STAP Data

Space Time Adaptive Processing: Principles

Slhow time (CP1)

(a) STAP principles (b) STAP datacube
1 1
exp(—2i7td sin(0)/A) exp(—2imtfy T,)
p(e) fd) = . ® .
exp(—2i7t(N — 1) dsin(0)/A) exp(—2intfy (M —1)T,)
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Surveillance Radar Data

Radar applications: Doppler detection/estimation, STAP OTH Radar Data
STAP Data

STAP Principles

Problem: estimate the position (angle) and the Doppler frequency
(speed) of the target = use of the ANMF with a particular steering

vector

Data parameters: real clutter with synthetic target

X-Band ~ 10° Hz, wavelength A = 0.03m, flight speed v =100m/s, distance to the
scene 30km, 5deg of incidence, PRF (Pulse Repetition Frequency) of 1 kHz, inter-sensor
distance d = 0.3m, 12 trials with K = 410 range bins, M = 64 pulses and N = 4 sensors.

This means observations of size m = 256 while K < 410!

Clutter more or less homogeneous BUT targets are present in the
secondary data
32/47
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar

STAP Data

No target is present in the secondary data - homogeneous noise

STAP AMF+SCM, data 3, burst 6, range bin 255

STAP ANMF—Huber, Essai 3, burst 6, range bin 255

4
' -2 -2
] -4 -4
-6 -5
y -8 -8
-10
- 12 - 12
- 14 14
15 E
N -16 -16
18 18
-25 i 25
. 20 20
- - 2 2 4 6
)

) -6 -4 -2 [
Speed (m/s) Speed (mis)

Angle (deg)
D
s
Angle (deg)

(c) AMF detector with the SCM (d) ANMF detector with Huber's est. (pa-
rameter g = 0.6)

Figure: Doppler-angle map for the range bin 255 with K = 404 secondary data
(targets and guard cells are removed) and m = 256
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar Data

STAP Data

No target is present in the secondary data - homogeneous noise

STAP ANMF-Student, Essai 3, burst 6, range bin 255 STAP ANMF-FP, Essai 3, burst 6, range bin 255

4
2 -2
-4 4
6 -6
-8 -8
-10 10
-12 -05 12
-14 14
15
-6 16
-18 -18
25
-20
2 4 6 2 4 6
)

0
6 -4 -2 0
Speed (m/s) Speed (m/s)

Angle (deg)
Angle (deg)

-6 4 -2

(a) ANMF detector with the Student est.  (b) ANMF detector with Tyler's est.
(parameter v = 2)

Figure: Doppler-angle map for the range bin 255 with K = 404 secondary data
(targets and guard cells are removed) and m = 256
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar

ata

STAP Data

Two targets (4m/s and -4m/s) are present in the secondary data -
homogeneous noise

STAP AMF+SCM, data 3, burst 6, range bin 255

Angle (deg)
i
s
Angle (deg)

] 0
Speed (m's) Speed (mis)

(a) AMF detector with the SCM (b) ANMF detector with Huber's est. (pa-
rameter g = 0.6)

Figure: Doppler-angle map for the range bin 255 with K = 404 secondary data
(guard cells are removed) and m = 256 35/47
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar Data

STAP Data

Two targets (4m/s and -4m/s) are present in the secondary data -
homogeneous noise

STAP ANMF-Student, Essai 3, burst 6, range bin 255

STAP ANMF-FP, Essai 3, burst 6, range bin 255

Angle (deg)
L
>

Angle (deg)

Speed (m/s)

(a) ANMF detector with the Student est.  (b) ANMF detector with Tyler's est.
(parameter v = 2)

Figure: Doppler-angle map for the range bin 255 with K = 404 secondary data
(guard cells are removed) and m = 256 36/47
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar Data
STAP Data

2 0 2
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Figure: Doppler-angle map for the range bin 255 with K = 404 secondary data
(guard cells are removed) and m = 256 37/47
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Surveillance Radar Data
Radar applications: Doppler detection/estimation, STAP OTH Radar Data

STAP Data

No target-contamination, Target at 4 nv/s, 0 deg

AMF based based on the SCM

© Only one target detection

(e
~

Non contaminated secondary data

N=4 M=64 K=408

K <2MN, K> 2r

g

Figure: Doppler-angle map for the range bin 255 with K = 408 secondary data
(guard cells are removed) and m = 256 38/47
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Surveillance Radar
Radar applications: Doppler detection/estimation, STAP OTH Radar Data

STAP Data

Target-contamination, Target at 4 m/s, 0 deg
Gscut

["HL ‘"F

@ Only one target (4m/s) in the CUT \ 1

2 o
Vitesse ()

Low Rank AMF with SCM Low Rank ANMF with NSCM

Whitened ‘:
target |

@ Contaminated secondary data
(two targets at 4m/s and -4m/s)

Classical STAP

N=4 M=64 K=410

Target in the CUT
K <2MN, K >2r

Target sidelobg

Figure: Doppler-angle map for the range bin 255 with K = 410 secondary data
(guard cells are removed) and m = 256 30/47

Jean-Philippe Ovarlez Recent Advances in Adaptive Radar Detection



Surveillance Radar
Radar applications: Doppler detection/estimation, STAP OTH Radar Data

STAP Data

Applications to STAP data for # values of 3. m = 256 and K = 400

(Trial 10, beta= 0.5, 400 secondary data) (Trial 10, beta= 0.6, 400 secondary data) (Trial 10, beta= 0.5, 400 secondary data) (Trial 10, beta= 0.6, 400 secondary data)
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Surveillance Radar Data
OTH Radar Data
STAP Data

Applications to STAP data for # values of 3. m =256 and K =200 < m
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Conclusions

When the clutter is non-Gaussian and/or heterogeneous, the
conventional detectors (AMF or sub-optimal CFAR tests) are not at
all optimal and lead to poor false alarm regulation and poor
detection performance,

The SIRV and CES clutter model allows to take into account the
clutter complexity: the non-Gaussianity, the temporal clutter
fluctuations and the spatial clutter power fluctuations,

Using this model, the ANMF detector built with the Fixed Point (or
other M-estimators) clutter covariance matrix estimator is shown
to be CFAR-texture, CFAR-matrix and exhibits nice properties
(robustness) and very good detection performance,
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Conclusions

Taking into account additional a priori properties on the covariance
matrix structure (low rank, persymmetry, Toeplitz, ...) can lead to
a appreciable gain for small numbers of secondary data,

These methods can be applied for many problems involving
covariance matrix estimation: STAP detection, SAR detection
(FOPEN), Polarimetric/Interferometric SAR detection and
classification, SAR Change Detection, Hyperspectral Anomaly
detection, Hyperspectral detection.
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Perspectives

Link with Random Matrix Theory: for high dimensionality data
(ex: hyperspectral, STAP), strong statistical connexion with Robust
Estimation theory [F. Pascal, R. Couillet, ...],

Low-rank detection with M-Estimators [G. Ginolhac, F. Pascal, A.
Breloy],

Joint location and scale with M-Estimators (non-centered
multivariate data, e.g. hyperspectral data),

Shrinkage of M-Estimators [A. Wiesel, Y. Abramovitch, O. Besson,
F. Pascal, ...],
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References and other applications

There have been other applications for CES distributions and robust
estimators...
One can cite:

m Multivariate SAR imaging
G. Vasile, J-P. Ovarlez, F. Pascal and C. Tison, " Coherency Matrix Estimation of
Heterogeneous Clutter in High-Resolution Polarimetric SAR Images,” Geoscience
and Remote Sensing, IEEE Transactions on, vol. 48, pp. 1809-1826, 2010.

m Image processing
F. Pascal, L. Bombrun, J.-Y. Tourneret and Y. Berthoumieu, " Parameter
Estimation for Multivariate Generalized Gaussian Distributions,” Signal Processing,
IEEE Transactions on, vol. 61, no. 23, pp. 5960-5971, 2013.

m Hyperspectral Detection
J. Frontera-Pons, J.P. Ovarlez, F. Pascal, " Robust Anomaly Detection and
Detection in Hyperspectral Images”, IGARSS Conference 2011-2014, |IEEE
CAMSAP 2011, IEEE Trans. on SP and GRS (on review)
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