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Motivations

Application reality: only observations ⇒ Unknown parameters

Several SP applications require the covariance matrix estimation, e.g.
sources localization, STAP, Polarimetric SAR classification, radar
detection, MIMO...

The ultimate purpose is to characterize the system performance, not
only the estimation performance ⇒ ROC curves, probability of
detection vs SNR, false alarm regulation, MSE characterization...
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Reminders: Problem Statement

In a m-vector z, detecting a complex known signal s = Ap embedded
in an additive noise y (with covariance matrix Σ) , can be written as
the following statistical test:{

Hypothesis H0: z = y zi = yi i = 1, . . . , n
Hypothesis H1: z = s+ y zi = yi i = 1, . . . , n

where the zi ’s are n ”signal-free” independent observations
(secondary data) used to estimate the noise parameters .

⇒ Neyman-Pearson criterion
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Reminder: Detection generalities

Detection test: comparison between the Likelihood Ratio Λ(z) and a
detection threshold λ:

Λ(z) =
pz(z/H1)

pz(z/H0)

H1

≷
H0

λ ,

λ is obtained for a given PFA (set by the user):

Probability of False Alarm (type-I error):

PFA = P(Λ(z) > λ/H0)

Probability of Detection (to evaluate the performance):

PD = P(Λ(z) > λ/H1)

for different Signal-to-Noise Ration (SNR).
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Reminder: Gaussian/non-Gaussian assumptions

Gaussian case (OGD): if z ∼ CN (0, Σ) then

Λ(y) =
|pHΣ−1z|2

pHΣ−1p

H1

≷
H0

λg

with λg =
√

− ln(PFA).

Heterogeneous case (NMF):

Λ(y) =
|pHΣ−1z|2

(pHΣ−1p)(zHΣ−1z)

H1

≷
H0

λNMF

The False Alarm regulation can be theoretically done thanks to

λNMF = 1 − PFA
1

m−1 .

This comes from a Beta distribution of the test.
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Going to adaptive detection

Generally, some parameters (say Σ!) are unknown.

⇒ Covariance Matrix Estimation

Requirements:

Background modeling: Gaussian, SIRV, CES, K-distribution...

Estimation procedure: ML-based approaches, M-estimation,
Z -estimation, LS-based methods...

Adaptive detectors and adaptive performance
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Standard approches: Gaussian noise/clutter

The Sample Covariance Matrix (SCM)

Ŝn =
1

n

n∑
i=1

ziz
H
i

where zi are complex independent circular zero-mean Gaussian with
covariance matrix Σ, i.e. pzi (zi ) =

1
(π)m |Σ| exp

(
−zHi Σ

−1 zi
)
.

The Shrinkage or Diagonal Loading SCM

ŜSh. = (1 − β)
1

n

n∑
i=1

ziz
H
i + β I or ŜDL =

1

n

n∑
i=1

ziz
H
i + β I
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Standard approches: Gaussian noise/clutter

Properties of the SCM

Simple CM estimator

Very tractable

Well-known statistical properties: constant, unbiased and efficient

Then,
√
n vec(Ŝn − Σ)

d−→ CN (0,C,P)

where
C = (Σ∗ ⊗ Σ)
P = (Σ∗ ⊗ Σ)Km,m
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Motivations
Why non-Gaussian techniques? Examples in Radar processing

Classical radar applications consider the background to be Gaussian.→ The Sample Covariance Matrix

a simple estimator

well-known statistical properties

Robustness: what happens in non-Gaussian models?

High resolution techniques and/or low grazing angle radars

Outliers and other parasites are not been taken into account with the
Gaussian model.

The SCM may give poor results.
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Grazing angle Radar

Terrain visible

Terrain masqué

Lobes principaux

Site-bas

Cases Distance

⇒ Impulsive Clutter⇒ Spatial heterogeneity (e.g. in SAR or HS images)

High Resolution Radar⇒ Small number of scatters in the Cell Under Test (CUT)⇒ Central Limit Theorem (CLT) is not valid anymore
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Figure: Failure of the OGD - Adjustment of the detection threshold -
K-distributed clutter with same power as the Gaussian noise⇒ Bad performance of the OGD in case of mismodeling⇒ Need/Use of CES distributions⇒ Need/Use of robust estimates
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Modeling the background

Let z be a complex circular random vector of length m. z has a complex
elliptically symmetric (CES) distribution (CE (µ, Σ, gz)) if its PDF is

gz(z) = |Σ|−1hz((z− µ)HΣ−1(z− µ)), (1)

where hz : [0,∞)→ [0,∞) is the density generator and is such as (1)
defines a pdf.

µ is the statistical mean (generally known or = 0)

Σ the scatter matrix

In general (finite second-order moment), the CM = αΣ where α is known.
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Attractive clutter modeling

Some important properties

Large class of distributions: Gaussian, SIRV, MGGD, K-dist.,
Student-t....

Closed under affine transformations

All sub-vectors of z have a CES dist.

Stochastic representation theorem

z ∼ CEm(µ, Σ) iff it admits the stochastic representation:

z =d µ+RAu(k) where R ≥ 0, independent of u(k) and Σ = AAH is a

factorisation of Σ, where A ∈ Cm×k with k = rank(Σ)
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Estimating the covariance matrix
M-estimators

PDF is specified ⇒ MLE can be derived
PDF is not specified ⇒ M-estimators are used instead

Let (z1, ..., zn) be a n-sample ∼ CEm(0, Σ, gz) (Secondary data).

M-estimator of Σ

Σ̂ =
1

n

n∑
i=1

u
(
zHi Σ̂

−1zHi

)
ziz

H
i , (2)

Maronna (1976), Kent and Tyler (1991)

Existence

Uniqueness

Convergence of the recursive algorithm...
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Examples of M-estimators

SCM:

u(r) = 1

Huber’s M-estimator:

u(r) =

{
K/e if r <= e
K/r if r > e

FPE (Tyler):

u(r) = m
r
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FPE and comments

Remarks:

Huber = mix between SCM and FPE

FPE and SCM are “not” (theoretically) M-estimators

FPE is the most robust while SCM is the most efficient (in Gaussian
case).

FP Estimate (Tyler, 1987; Pascal, 2008)

Σ̂FPE =
m

n

n∑
i=1

ziz
H
i

zHi Σ̂
−1
FPEzi
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Properties of the M-estimators

Let us set

V = E
[
u(z ′V−1z) zz ′

]
, (3)

where z ∼ CE (0, Σ, gz).

- (3) admits a unique solution V and V = σΣ = σ/αM where σ is
given by Tyler(1982),

- Σ̂ is a consistent estimate of V.
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Asymptotic distribution of complex M-estimators

Using the results of Tyler, we derived the following results (Mahot, 2013):

Theorem 1 (Asymptotic distribution of Σ̂)
√
n vec(Σ̂− Σ)

d−→ CNm2 (0,C,P) , (4)

where CN is the complex Gaussian distribution, C the CM and P the
pseudo CM:

C = σ1(Σ
∗ ⊗ Σ) + σ2vec(Σ)vec(Σ)H ,

P = σ1(Σ
∗ ⊗ Σ)K+ σ2vec(Σ)vec(Σ)T ,

where K is the commutation matrix and where the constant σ1 and σ1 are
completely defined.
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An important property of complex M-estimators

Let Σ̂ an estimate of Hermitian positive-definite matrix Σ that satisfies

√
n
(

vec(Σ̂− Σ)
)

d−→ CN (0,C,P) , (5)

with {
C = ν1Σ

∗ ⊗ Σ+ ν2vec(Σ)vec(Σ)H ,
P = ν1(Σ

∗ ⊗ Σ)Km,m + ν2vec(Σ)vec(Σ)T ,

where ν1 and ν2 are any real numbers.
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e.g.

SCM M-estimators FP

ν1 1 σ1 (m + 1)/m

ν2 0 σ2 −(m + 1)/m2

... More accurate More robust

Let H(V) be a r -multivariate function on the set of Hermitian
positive-definite matrices, with continuous first partial derivatives and
such as H(V) = H(αV) for all α > 0, e.g. the ANMF statistic, the
MUSIC statistic.
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Theorem 2 (Asymptotic distribution of H(Σ̂))

√
n
(
H(Σ̂) − H(Σ)

)
d−→ CN (0r ,1,CH ,PH) (6)

where CH and PH are defined as

CH = ν1H
′(Σ)(ΣT ⊗ Σ)H ′(Σ)H ,

PH = ν1H
′(Σ)(ΣT ⊗ Σ)Km,mH

′(Σ)T ,

where H ′(Σ) =

(
∂H(Σ)

∂vec(Σ)

)
.
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Some comments:

Perfect (but asymptotic) characterization of several objects
properties, such as detectors, classifiers, estimators...

H(SCM) and H(M-estimators) share the same asymptotic
distribution (differs from σ1)

⇓
Link to the classical Gaussian case

Quantification of the loss involved by robust estimator
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Adaptive Gaussian detection

Gaussian model ⇒ Ŝn =
1

n

∑n
i=1 ziz

H
i

AMF test [1]

ΛAMF (y) =

∣∣∣pH Ŝ−1
n y

∣∣∣2(
pH Ŝ−1

n p
) H1

≷
H0

λAMF . (7)

[1] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, ”A CFAR
adaptive matched filter detector”, Aerospace and Electronic Systems, IEEE
Transactions on, vol. 28, no. 1, pp. 208-216, 1992.

Kelly test [2]

ΛKelly (y) =

∣∣∣pH Ŝ−1
n y

∣∣∣2(
pH Ŝ−1

n p
) (

N + yH Ŝ−1
n y

) H1

≷
H0

λKelly . (8)

[2] E. J. Kelly, ”An adaptive detection algorithm”, Aerospace and Electronic
Systems, IEEE Transactions on, pp. 115-127, November 1986.
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CES distribution ⇒ ANMF

ANMF test (ACE, GLRT-LQ) [3,4]

ΛANMF (y, Σ̂) =
|pH Σ̂−1y|2

(pH Σ̂−1p)(yH Σ̂−1y)

H1

≷
H0

λANMF (9)

where Σ̂ stands for any estimators presented before: SCM, M-estimators,
Tyler’s estimator...

One has, conditionally to y, Λ(Σ̂) = Λ(α Σ̂) for any α > 0.

[3] E. Conte, M. Lops, and G. Ricci, ”Asymptotically Optimum Radar Detection in
Compound-Gaussian Clutter”, Aerospace and Electronic Systems, IEEE Transactions on,,
vol. 31, pp. 617-625, April 1995.
[4] S. Kraut and L. L. Scharf, ”The CFAR adaptive subspace detector is a scale-invariant
GLRT”, Signal Processing, IEEE Transactions on, vol. 47, no. 9, pp. 2538-2541, 1999.
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Properties

The ANMF is scale-invariant, i.e.
∀α,β ∈ R , ΛANMF (αy, β Σ̂) = ΛANMF (y, Σ̂)

Its asymptotic distribution (conditionally to y!) is known (tks to
theorem 2)

Considering ΛANMF (y, Σ̂) conditionally to y, i.e. ΛANMF (Σ̂), allows
to directly apply theorem 2. Else see next slide!

It is CFAR w.r.t the covariance/scatter matrix, i.e. its distribution
does not depend on the covariance/scatter matrix

It is CFAR w.r.t the texture (if considering Compound-Gaussian
model)
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Illustration of the CFAR properties

False Alarm regulation

100 101 102 103 104 105 106

10!3

10!2

10!1

100
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A

Gaussian
K!distribution
Student!t
Cauchy
Laplace

Detection threshold 

CFAR-texture property for the ANMF with Tyler's est.

Σ estimated, n=40, m=10
Σ known (NMF)

(a) CFAR-texture
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100
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#
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! = 0.9
! = 0.99

:etection thresho=7 

CFAR-matrix property for the ANMF with the Tyler's est.

(b) CFAR-matrix

Figure: Illustration of the CFAR properties of the ANMF built with the Tyler’s
estimator, for a Toeplitz CM whose (i , j)-entries are ρ|i−j |
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Probability of false alarm

PFA-threshold relation of ΛANMF (Ŝn) (Gaussian case, finite n)

Pfa = (1 − λ)a−1
2F1(a, a − 1; b − 1; λ), (10)

where a = n −m + 2 , b = n + 2 and 2F1 is the Hypergeometric function
defined as

2F1(a, b; c ; x) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a + k)Γ(b + k)

Γ(c + k)

xk

k!
(11)

[5] F. Pascal, J.-P. Ovarlez, P. Forster, and P. Larzabal, ”Constant false alarm rate
detection in spherically invariant random processes,” in Proc. of the European Signal
Processing Conf., EUSIPCO-04, (Vienna), pp. 2143-2146, Sept. 2004.
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Comments

Three possible approaches to characterize the performance:

Use the (very) poor approximation of the FA regulation of the NMF

Use the asymptotics of theorem 2 (but it is conditionally to the dist.
of y!) ⇒ a slight loss of performance

Combine the asymptotics of theorem 9 of Part B and the
finite-distance result on PFA-threshold...

From theorem 1 , one has

PFA-threshold relation of ΛANMF (M-est.) for CES distributions

For n large enough and for any elliptically distributed noise, the PFA is still
given by (10) if we replace n by n/σ1.

The third one seems to provide more accurate results...
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Simulations

Complex Huber’s M-estimator.

Figure 1: Gaussian context, here σ1 = 1.066.

Figure 2: K-distributed clutter (shape parameter: 0.1 and 0.01).
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Simulations: Probabilities of False Alarm

Complex Huber’s M-estimator.

Figure 1: Gaussian context, here σ1 = 1.066.

Figure 2: K-distributed clutter (shape parameter: 0.1).
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Tyler’s estimator: Gaussian context, n = 10, m = 3

PFA-threshold relation of ΛANMF (Tyler’s est.) for CES distributions

For n large and any elliptically distributed noise, the PFA is still given by
(10) if we replace n by n/m+1

m .
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Comments

Conclusions on the detection part:

Accurate approximation of the (theoretical) FA regulation

Cost: having a little bit more data: σ1 n instead of n.

This σ1 can be interpreted as the loss brought by robust estimators
compared to optimal Gaussian estimator BUT performance stability
of the robust estimators in various distributions contexts
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Motivations

Some advantages

Robustness to outliers

May allow to include a priori informations

Case of small number of observations or under-sampling n < m:
matrix is not invertible ⇒ Problem when using M-estimators or
Tyler’s estimator!

It is an active research on this topic:
see the works of Yuri Abramovich, Olivier Besson, Romain Couillet,
Mathew McKay, Ami Wiesel...
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Shrinkage Tyler’s estimators

Chen estimator

Σ̂C = (1 − β)
m

n

n∑
i=1

ziz
H
i

zHi Σ̂
−1
C zi

+ βI

subject to the constraint Tr(Σ̂) = m and for β ∈ (0, 1].

Originally introduced in
Y. Abramovich and N. K. Spencer, ”Diagonally loaded normalised sample matrix
inversion (LNSMI) for outlier-resistant adaptive filtering,” in Acoustics, Speech and
Signal Processing, IEEE International Conference on, ICASSP-07, vol. 3, pp.
1105-1108, 2007.

Existence, uniqueness and algorithm convergence proved in
Y. Chen, A. Wiesel, and A. O. Hero, ”Robust shrinkage estimation of
high-dimensional covariance matrices,” Signal Processing, IEEE Transactions on,
vol. 59, no. 9, pp. 4097-4107, 2011.
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Shrinkage Tyler’s estimators

Pascal estimator

Σ̂P = (1 − β)
m

n

n∑
i=1

ziz
H
i

zHi Σ̂
−1
P zi

+ βI

subject to the no trace constraint but for β ∈ (β̄, 1], where
β̄ := max(0, 1 − n/m).

Existence, uniqueness and algorithm convergence proved in
F. Pascal, Y. Chitour, and Y. Quek, ”Generalized robust shrinkage estimator and its
application to STAP detection problem,” Signal Processing, IEEE Transactions on
(submitted to), 2014 arXiv:1311.6567.

Σ̂P (naturally) verifies Tr(Σ̂−1
P ) = m for all β ∈ (0, 1]
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Shrinkage Tyler’s estimators

The main challenge is to find the optimal β!

One (theoretical) answer is given thanks to RMT in ...

R. Couillet and M. R. McKay,”Large Dimensional Analysis and Optimization of Robust
Shrinkage Covariance Matrix Estimators,” arXiv preprint arXiv:1401.4083, 2014.

where it is also proved that

Both estimators have asymptotically the same performance (achieved
for a different value of beta)

They asymptotically perform as a normalized version of the
Ledoit-Wolf estimator.

O. Ledoit and M. Wolf, ”A well-conditioned estimator for large-dimensional covariance
matrices,” Journal of multivariate analysis , vol. 88, no. 2, pp. 365-411, 2004.
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Context and difficulties

Problem
Now, the statistical mean is non null ⇒ M-estimator of the
mean is required

µ̂ =

∑n
i=1 u1(ti ) zi∑n
i=1 u1(ti )

and Σ̂ =
1

n

n∑
i=1

u2

(
t2
i

)
(zi − µ̂) (zi − µ̂)H ,

where ti =
(
(zi − µ̂)H Σ̂−1 (zi − µ̂)

)1/2
and u1(.), u2(.) denote any

real-valued weight functions (following the conditions of Maronna).

BNo proofs of existence, uniqueness, consistency and
convergence of the recursive algorithm!
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Methodology

Rectangular CFAR mask k × k for different steering vectors p.

For each y, computation of the detector ΛANMF (Σ̂).

Mask moving all over the hyperspectral image.

Assumptions

Pixels of the mask are statistically independent, i.e. spatially independence.

Pixels of the mask are identically distributed.

FA regulation proved in non-zero mean Gaussian case
J. Frontera-Pons, F. Pascal, and J. Ovarlez, ”False-alarm regulation for target detection in
hyperspectral imaging,” in Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), 2013 IEEE 5th International Workshop on, pp. 161-164, IEEE, 2013.
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False Alarm regulation
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(a) AMF-H detector with the SCM
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Figure: Probability of false alarm versus the detection threshold for m = 50 and
n = 168
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Detection performanceFig. 1. Indian pines data set.
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Fig. 2. False alarm regulation and SNR outcome of the AMF built with the SCM (in blue),and the ANMF with the Fixed Point
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