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Introduction

Radar systems detect targets by examining
reflected energy, or returns, from objects

Along with target echoes, returns come from the
sea surface, land masses, buildings, rainstorms, and
other sources

Much of this clutter is far stronger than signals
received from targets of interest

The main challenge to radar systems is
discriminating these weaker target echoes from
clutter

Coherent signal processing techniques are used to
this end

The IEEE Standard Radar Definitions (Std 686-1990) defines coherent signal processing as echo
integration, filtering, or detection using the amplitude of the received signals and its phase
referred to that of a reference oscillator or to the transmitted signal.
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What is the clutter?

Clutter refers to radio frequency (RF) echoes returned from targets which
are uninteresting to the radar operators and interfere with the observation
of useful signals.
Such targets include natural objects such as ground, sea, precipitations
(rain, snow or hail), sand storms, animals (especially birds), atmospheric
turbulence, and other atmospheric effects, such as ionosphere reflections
and meteor trails.
Clutter may also be returned from man-made objects such as buildings
and, intentionally, by radar countermeasures such as chaff.
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Radar clutter

Radar clutter is defined as unwanted echoes, typically from the
ground, sea, rain or other atmospheric phenomena.

These unwanted returns may affect the radar performance and can
even obscure the target of interest.

Hence clutter returns must be taken into account in designing a radar
system.

Towards this goal, a clutter model assumption is necessary!
The function of the clutter model is to define a consistent theory
whereby a physical model results in an analytical model which can be
used for radar design and performance analysis.
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Radar Clutter Modeling

In early studies, the resolution capabilities of radar systems were relatively low, and the
scattered return from clutter was thought to comprise a large number of scatterers,

From the Central Limit Theorem (CLT), researchers in the field were led to conclude that
the appropriate statistical model for clutter was the Gaussian model (for the I & Q
components), i.e., the amplitude R is Rayleigh distributed)

R = |Z| =
q
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Radar Clutter Modeling

In the quest for better performance, the resolution capabilities of radar systems have been
improved

For detection performance, the belief originally was that a higher resolution radar system
would intercept less clutter than a lower resolution system, thereby increasing detection
performance

However, as resolution has increased, the clutter statistics have no longer been observed
to be Gaussian, and the detection performance has not improved directly

The radar system is now plagued by target-like spikes that give rise to non-Gaussian
observations

These spikes are passed by the detector as targets at a much higher false alarm rate
(FAR) than the system is designed to tolerate

The reason for the poor performance can be traced to the fact that the traditional radar
detector is designed to operate against Gaussian noise

New clutter models and new detection strategies are required to reduce the effects of the
spikes and to improve detection performance
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Sea Clutter Temporel Behaviour (30m)

The spikes have different behaviour in the two like-polarizations (HH and VV)

R = |Z| =
q
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The dominant spikes on the HH record 
persist for about 1-3 s.  

The vertically polarized returns appear  
to be a bit broader but less spiky  
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Empirically observed models

Empirical studies have produced several candidate models for spiky non-Gaussian clutter, the
most popular being the Weibull distribution, the K distribution, the log-normal, the generalized
K, the Student-t, etc.
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The Gaussian model

The scattered clutter can be written as the vector sum from N random scatterers
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z =

NX

i=1

p
�i exp(j �i)

RCS of a single scatterer phase term

With low resolution radars, N is deterministic and very high in each illuminated cell. Through
the application of the central limit theorem (CLT) the clutter returns z can be considered as
Gaussian distributed, the amplitude r = |z | is Rayleigh distributed and the most important
characteristic is the radar cross section.

p(r) =
r

σ2
exp

(
−

r2

2σ2

)
u(r)
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The Compound Gaussian model

This is not true with high resolution systems. With reduced cell size, the number of scatterers
cannot be longer considered constant but random, then improved resolution reduces the average
RCS per spatial resolution cell, but it increases the standard deviation of clutter amplitude
versus range and cross-range and, in the case of sea clutter, versus time as well.

A modification of the CLT to include random fluctuations of the number N of scatterers can
give rise to the K distribution (for APDF):

K distributed if N is a negative  
binomial r.v. (Gaussian distributed if N is 

deterministic, Poisson, or binomial) z =
1p
N̄

NX

i=1

ai exp(j �i)
N̄!1����! R = |Z|

N̄ = E[N ], {ai} i.i.d., {�i} i.i.d.
2-D random walk
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In general, taking into account the variability of the local power τ, that becomes itself a random
variable, we obtain the so-called compound-Gaussian model, then

p(r/τ) =
2 r

τ
exp

(
−
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τ

)
u(r)

p(r) =

∫+∞
0

p(r/τ) p(τ) dτ; 0 ≤ r ≤ +∞
According to the CG model:
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binomial r.v. (Gaussian distributed if N is 
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z(n) =
p
⌧(n) x(n)

Texture: non negative random 
process, takes into account the local 

mean power 

Speckle: complex Gaussian process, 
takes into account the local 

backscattering 

x(n) = xI(n) + j xQ(n)
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Particular cases of CG model (amplitude PDF):
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The multidimensional CG model

In practice, radars process M pulses at time, thus, to determine the optimal radar
processor we need the M-dimensional joint PDF

Since radar clutter is generally highly correlated, the joint PDF cannot be derived by
simply taking the product of the marginal PDFs

The appropriate multidimensional non-Gaussian model for use in radar detection studies
must incorporate the following features:

1) it must account for the measured first-order statistics (i.e., the APDF should fit
the experimental data)

2) it must incorporate pulse-to-pulse correlation between data samples

3) it must be chosen according to some criterion that clearly distinguishes it from
the multitude of multidimensional non-Gaussian models, satisfying 1) and 2)

Maria Greco Recent Advances in Adaptive Radar Detection



18/45

Introduction and Background
Clutter Modeling for High Resolution Radars

Optimum and Suboptimum Coherent Radar Detection in Compound-Gaussian Clutter

Radar Clutter Modeling
The Gaussian model
The Compound Gaussian model
The multidimensional CG model

The multidimensional CG model

If the Time-on-Target (ToT) is short, we can consider the texture as constant for the
entire ToT, then the compound-Gaussian model degenerates into the spherically invariant
random process (SIRP) proposed for modeling the radar sea clutter.

By sampling a SIRP, we obtain a spherically invariant random vector (SIRV) whose PDF
is given by

pZ (z) =

∫+∞
0

1

(π τ)M |M|
exp

(
−
zH M−1 z

τ

)
pτ(τ) dτ

where z = [z1, z2, . . . , zM ]T is the M-dimensional complex vector representing the
observed data.

A random process that gives rise to such a multidimensional PDF can be physically
interpreted in terms of a locally Gaussian process whose power level τ is random.

The PDF of the local power τ is determined by the fluctuation model of the number N of
scatterers.
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Properties of a SIRV

The PDF of a SIRV is a function of a non negative quadratic form:

(z −mz)
H M−1 (z −mz)

A SIRV is a random vector whose PDF is uniquely determined by the specification of a mean
vector mz, a covariance matrix M, and a characteristic first-order PDF pτ(t):

pZ (z) =
1

πM |M|
hM (q(z))

where hM (q) = τ−M exp
(
−
q

τ

)
pτ(τ) dτ must be positive and monotonically decreasing.

First-order amplitude PDF: pR (r) =
r

σ2
h1

( r

σ2

)
, σ2 = E [R2] = E [|z |2].

A SIRV is invariant under a linear transformation: if z is a SIRV with characteristic PDF pτ(.),
then y = Az + b is a SIRV with the same characteristic PDF pτ(.).
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Properties of a SIRV

Many known APDFs belong to the SIRV family:

Gaussian, Contaminated normal, Laplace, Generalized Laplace, Cauchy, Generalized Cauchy,
K, Student-t, Chi, Generalized Rayleigh, Weibull, Rician, Nakagami-m. The log-normal can
not be represented as a SIRV.

For some of them, pτ(.) is not known in closed form

The assumption that, during the time that the m radar pulses are scattered, the number
N of scatterers remains fixed, implies that the texture τ is constant during the coherent
processing interval (CPI), i.e., completely correlated texture

A more general model is given by

z [n] =
√
τ[n] x [n], n ∈ [1,N]

Extensions to describe the clutter process (instead of the clutter vector), investigated the
cyclostationary properties of the texture process τ[n]
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The general radar detection problem

Optimum coherent detection in compound-Gaussian clutter

the likelihood ratio test (LRT)
the estimator-correlator
the whitening matched filter (WMF) and data-dependent threshold
(DDT)

Suboptimum detection in compound-Gaussian clutter (based on the
three interpretations of the optimum detector)

Performance analysis - design trade-offs
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The detection problem: the radar transmits a coherent train of m pulses and the receiver
properly demodulates, filters and samples the incoming narrowband waveform. The samples of
the baseband complex signal (in-phase and quadrature components) are:

Observed data: z = zI + j zQ = [z [1], . . . , z[m]]T

Binary hypothesis test:{
H0 : z = d
H1 : z = s + d

Target samples
s[n] = A[n] exp (j υ[n]) p[n]
p is the ”steering vector”

p = (p[1], . . . , p[m])

d = clutter vector
s = target signal vector

Perfectly known;

Unknown:

deterministic (unknown parameters, e.g., amplitude, initial phase, Doppler
frequency, Doppler rate, DOA, etc.)
random (rank-one waveform, multi-dimensional waveform)
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Coherent detection in compound-Gaussian clutter

The optimum N-P detector is the LLRT: logΛ(z) = log
pz/H1

(z/H1)

pz/H0
(z/H0)

H1
≷
H0

T

pz(z/H0) = pd(z) =

∫+∞
0

1

(π τ)M |M|
exp

(
−
q0(z)

τ

)
pτ(τ) dτ, pz(z/H1)?

where M is the normalized clutter (speckle) covariance matrix and q0(z) = zM−1 z.

pz(z/H1) = Es [pz(z − s/H0)] depends on the target signal model:

1 s = perfectly known

2 s = βp with β unknown deterministic and p perfectly known

3 s = βp with β ∼ CN (0, σ2
s ), i.e., Swerling-I target model, and p perfectly known

4 s = βp with β ∼ CN (0, σ2
s ) and p unknown (known function of unknown parameters)

5 s = Gaussian distributed random vector (known to belong to a subspace of dim. r < m)
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Coherent detection in compound-Gaussian clutter
Case 2). β unknown deterministic. A UMP test does not exist. A suboptimal approach is the
Generalized LRT (GLRT):

max
β
Λ(z;β) = Λ

(
z; β̂ML

)
=

pz
(
z − β̂ML p/H0

)
pz (z/H0)

H1
≷
H0

eT

The test statistic is given by the LR for known β, in which the unknown parameter has been
replaced by its maximum likelihood (ML) estimate:

∫+∞
0

1

τm

[
exp

(
−
q1(z)

τ

)
− exp

(
T −

q0(z)

τ

)]
pτ(τ) dτ

H1
≷
H0

0

where q1(z) =
(
z − β̂ML p

)H
M−1

(
z − β̂ML p

)
= zH M−1 z −

∣∣pH M−1 z
∣∣2

pH M−1 p
and where

β̂ML =
pH M−1 z

pH M−1 p
.

When the number m of integrated samples increases, we expect the GLRT performance to
approach that of the NP detector for known signal
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Alternative formulation of the OD: the Estimator-Correlator

The N-P optimum detector (OD) is difficult to implement in the LRT form, since it
requires a computational heavy numerical integration!

The LRT does not give insight that might be used to develop good suboptimum
approximations to the OD

To understand better the operation of the OD, reparametrize the conditional Gaussian
PDF by setting

α =
1

τ

α is the reciprocal of the local clutter power in the range cell under test (CUT)

The key to understanding the operation of the OD is to express it as a function of the
MMSE estimate of α:

logΛ(z) =

∫q0(z)

q1(z)
E [α/x ] dx

H1
≷
H0

T

We note α̂MMSE = E [α/qi (z)], the MMSE estimate of α under the hypothesis Hi (i = 0, 1)
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Alternative formulation of the OD: the Estimator-Correlator

In Gaussian disturbance with power σ2
G , we have α = 1/σ2

G

logΛ(z) =

∫q0(z)

q1(z)

1

σ2
G

dx =
q0(z) − q1(z)

σ2
G

=
SCR

∣∣pH M−1 z
∣∣2

σ2
G

(
1 + SCR pH M−1 p

) H1
≷
H0

T

The structure of the OD in compound-Gaussian clutter is the basic detection structure of
the OD in Gaussian disturbance with the quantity α = 1/σ2

G , which is known in the case
of Gaussian noise, replaced by the MMSE estimate of the unknown random α

This structure is of the form of an estimator-correlator

The quantity to be estimated is not the local clutter power t, but its inverse

This formulation is also difficult to implement, but it is very important because it suggests
that sub-optimum detectors may be obtained by replacing the optimum mmse estimator
with sub-optimum estimators that may be simpler to implement (e.g., MAP or ML)
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Alternative formulation of the OD: the Data-Dependent Threshold

First step: express the PDFs under the two hypotheses as:

pz(z/Hi ) =
1

πm |M|
hm (qi (z)) , i = 0, 1

where hm(q) is the non linear monotonic decreasing function:

hm(q) =

∫+∞
0

1

τm
exp

(
−
q

τ

)
pτ(τ) dτ

The LRT can be recast in the form

q0(z) − q1(z)
H1
≷
H0

fopt (q0(z),T )

where fopt (q0(z),T ) is the DDT, that depends on the data only by means of the quadratic
statistic q0(z) = zH M−1 z:

fopt (q0(z),T ) = q0(z) − h−1
m

(
eT hm(q0(z)

)
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Alternative formulation of the OD: the Data-Dependent Threshold

Gaussian clutter: q0(z) − q1(z)
H1
≷
H0

σ2
G T

C-G clutter: q0(z) − q1(z)
H1
≷
H0

fopt (q0(z),T )

In this formulation, the LRT
for CG clutter has a similar
structure of the OD in Gaus-
sian disturbance, but now the
test threshold is not constant
but it depends on the data
through q0(z).

Perfectly known signal s (case 1): the
OD can be interpreted as the classical
whitening-matched filter (WMF) com-
pared to a data-dependent threshold
(DDT)

2 Re
{
sH M−1 z

}
︸ ︷︷ ︸

WMF

H1
≷
H0

sH M−1 s + fopt (q0(z),T )
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Alternative formulation of the OD: the Data-Dependent Threshold

Signal s with unknown complex amplitude
(Case 2): the GLRT again can be inter-
preted as the classical whitening-matched
filter (WMF) compared to the same DDT

∣∣∣pH M−1 z
∣∣∣2︸ ︷︷ ︸

WMF

H1
≷
H0

(
pH M−1 p

)
fopt (q0(z),T )

Similar results does not hold for the NP detector for Case 3 (Swerling I target signal)!

Example: K-distributed clutter.
In this case the texture is modelled as a Gamma random variable with mean value ν and order
parameter m. For ν −m = 0.5, we have

fopt (q0(z),T ) = q0(z) −

(√
q0(z) − T

√
µ

4ν

)2

u

(√
q0(z) − T

√
µ

4ν

)
In general, it is not possible to find a closed-form expression for the DDT, so it must be
calculated numerically.
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Canonical structure of the optimum detector

This canonical structure suggests a practical way to implement the OD/GLRT

The DDT can be a priori tabulated, with l set according to the prefixed PFA, and the
generated look-up table saved in a memory.
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. . . . . 
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This approach is highly time-saving, it is canonical for every SIRV, and is useful both for
practical implementation of the detector and for performance analysis by means of Monte
Carlo simulation

This formulation provides a deeper insight into the operation of the OD/GLRT and
suggests an approach for deriving good suboptimum detectors
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Suboptimum detection structures

Suboptimum approximations to the likelihood ratio (LR)

From a physical point of view, the difficulty in utilizing the LR arises from the fact that
the power level τ, associated with the conditionally Gaussian clutter is unknown and
randomly varying: we have to resort to numerical integration

The idea is: replace the unknown power level τ with an estimate inside the LR

log Λ̂(z) = m log

(
τ̂0

τ̂1

)
+

q0(z)

2 τ̂0
−

q1(z)

2 τ̂1

Candidate estimation techniques: MMSE, MAP, ML. The simplest is the ML : τ̂i =
qi (z)

m
. We

obtain the NMF in its canonical form, with the adaptive threshold that is a linear function of
q0(z). ∣∣∣pH M−1 z

∣∣∣2 H1
≷
H0

(
pH M−1 p

)
fopt (q0(z),T )

with
fopt (q0(z),T ) =

(
zH M−1 z

) (
1 − e−T/m

)
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Suboptimum approximations to the Likelihood Ratio

The Normalized Matched Filter (NMF) or GLRT-LQ∣∣pH M−1 z
∣∣2

pH M−1 pzH M−1 z

H1
≷
H0

1 − e−T/m

This detector is very simple to implement. It has the constant false alarm rate (CFAR) property
with respect to the clutter PDF

PFA = exp

(
−
T (m − 1)

m

)
PD =

∫+∞
0

(
1 +

τ
(
eT/m − 1

)
τ +m µ γ̄

)1−m

pτ(τ) dτ

where µ = E [τ] and where γ̄ =
σ2
S

µ

pH M−1 p

m
is the SCR at the output of the WMF, divided by

m
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Suboptimum approximations to the ”Estimator-Correlator” structure
The MMSE estimator of α = 1/τ may be difficult to implement in a practical detector.
e.g. for K-distributed clutter:

α̂MMSE ,i 6=
1

τ̂MMSE ,i
α̂MMSE ,i =

√
ν

µ qi (z)

Kν−m−1

(
4ν qi (z)

µ

)
Kν−m

(
4ν qi (z)

µ

) , i = 0, 1

Suboptimum detectors may be obtained by replacing the MMSE estimator with a suboptimal
estimator (e.g., MAP or ML):

α̂MAP,i 6=
1

τ̂MAP,i
α̂MAP,i =

m − ν − 1 +

√
(m − ν − 1)2 +

4ν qi (z)

µ

2 qi (z)
, i = 0, 1

As the number m of samples becomes asymptotically large, the NMF becomes equivalent to the
optimum DDT:

α̂ML,i =
1

τ̂ML,i
→ NMF α̂MMSE ,i , α̂MAP,i

m>>1−→ m

qi (z)
= α̂ML,i =

1

τ̂ML,i
, i = 0, 1
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Suboptimum approximations to the DDT structure

The canonical structure in the form of a WMF compared to a DDT is given by:

∣∣pH M−1 z
∣∣2 H1

≷
H0

(
pH M−1 p

)
fopt (q0(z),T )

the threshold fopt (q0(z),T )
depends in a complicated
non linear fashion on the
quadratic statistic q0(z)

The idea is to find a good approximation of fopt (q0(z),T ) easy to implement,

In this way, we avoid the need of saving a look-up table in the receiver memory,

The approximation has to be good only for values of q0(z) that have a high probability of
occurrence,

We looked for the best k-th order polynomial approximation in the MMSE sense:

fK (q0(z),T ) =

K∑
i=0

ci q
i
0(z) / min

{ci }i

∣∣∣∣∣fopt (q0(z),T ) −

K∑
i=0

ci q
i
0(z)

∣∣∣∣∣
2

fK (q0(z),T ) is easy to compute from q0(z)
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Suboptimum approximations to the DDT structure
Example: K-distributed clutter. The solution can be derived in closed-form.
First order (linear) approximation:

f1 (q0(z),T ) = c0 + c1 q0(z)

The solution is obtained by solving a (K + 1)-th order linear system. For K = 1:

[
c0

c1

]
=

[
1 E [q0(z)]

E [q0(z)] E
[
q2

0(z)
] ]−1 [

E [fopt (q0(z),T )]
E [q0(z) fopt (q0(z),T )]

]

For ν −m = 0.5, the MMSE solution is: c0 =
T µ

4ν

(
8ν2 − 2

4ν + 1
− T

)
, c1 =

T

4ν + 1

Note that when ν→ +∞ (Gaussian noise), we have c1 = 0, so the threshold becomes
constant and we get the conventional WMF

The NMF is obtained as a special case of f1(q0(z,T ) for c0 = 0, c1 = 1 − e−T/m.

For the 1st (linear) and 2nd-order (quadratic) approximations: c0 ∝ µ, c1 independent of µ,
c2 ∝ 1/µ. All ci ’s independent of M.
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Performance Analysis: Sw-I target, K-distributed clutter

In all the cases we examined, the suboptimum detector based on the quadratic (2nd-order)
approximation has performance (i.e., PD) almost indistinguishable from the optimal
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The detector based on 2nd-order
approximation represents a good
trade-off between performance and
ease of implementation

It requires knowledge of the clutter
APDF parameters (ν and µ)

As the number m of integrated pulses
increases, the detection performance
of the GLRT-LQ approaches the
optimal performance

The GLRT-LQ does not require
knowledge of ν and µ

It is also CFAR w.r.t. texture PDF

PFA = 10−5, fD = 0.5, ν = 4.5, µ = 103, ρX = 0.9 AR(1)
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Performance Analysis: Sw-I target, K-distributed clutter

Swerling-I target: it was observed that in this case, PD increases much more slowly as a
function of SCR than for the case of known target signal
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Clutter spikiness heavily affects
detection performance

ν = 0.1 means very spiky clutter
(heavy tailed)

ν = 4.5 means almost Gaussian
clutter

Up to high values of SCR the best
detection performance is obtained for
spiky clutter (small values of ν): it is
more difficult to detect weak targets
in Gaussian clutter rather than in
spiky K-distributed clutter, provided
that the proper decision strategy is
adopted

PFA = 10−5, fD = 0.5, m = 16, µ = 103, ρX = 0.9 AR(1)
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Performance Analysis: Swerling-I, K-distributed clutter (real sea
clutter data)

The gain of the GLRT-LQ over the
mismatched OGD increases with
clutter spikiness (decreasing values
of ν)

Performance prediction have been
checked with real sea clutter data

The detectors make use of the
knowledge of µ, ν, and M (obtained
from the entire set of data)
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