BAYESIAN OPTIMUM RADAR DETECTOR IN NON-GAUSSIAN NOISE
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ABSTRACT

In this paper, a theoretical expression of the optimum non-
Gaussian radar detector is derived from the non-Gaussian SIRP
model (Spherically Invariant Random Process) clutter and a bayes-
ian estimator of the characteristic function of the SIRP. The SIRP
model is used to perform coherent detection and to modelize the
clutter as a complex Gaussian process whose variance is itself a
positive random variable (r.v.). The PDF of the variance charac-
terizes the statistics of the SIRP and after performing a bayesian
estimation of this PDF from reference clutter cells we derive the
Bayesian Optimum Radar Detector (BORD) and its statistical as-
ymptotic form without any knowledge about the statistics of the
clutter. We evaluate BORD performance for an unknown target
signal embedded in K-distributed clutter and compare with opti-
mum detectors performance (such as Optimum K Detector - OKD
- in K-distributed clutter).

1. INTRODUCTION

Coherent radar detection against non-Gaussian clutter has gained
many interests in the radar community since experimental clutter
measurements made by organizations like MIT [4] have shown to
fit non-Gaussian statistical models. One of the most tractable and
elegant non-Gaussian model results in the so-called Spherically
Invariant Random Process (SIRP) theory which states that some
non-Gaussian random processes are the product of a Gaussian ran-
dom process with a non-negative random variable (r.v.) (the vari-
ance of the Gaussian process is itself a r.v.). This model is the
base of many results like Gini et al.’s works [5] in which is derived
the optimum detector in the presence of composite disturbance of
known statistics modeled as SIRP.

In this paper, a bayesian approach is proposed to determine
the PDF of the variance (the characteristic function of the SIRP)
from N reference clutter cells. We use the Bayes’rule and a Monte
Carlo integration given a non informative prior on the variance
PDF. This approach exploits the SIRP model particularity to de-
scribe non-Gaussian processes as compound processes and allows
to derive the expression of the optimum detector called Bayesian
Optimum Radar Detector (BORD). Henceforth, it is no more nec-
essary to have any knowledge about the clutter statistics and the
BORD deals directly with the received data. In section 2 and 3,
we briefly recall the formulation of a detection problem and de-
scribe how the SIRP model clutter allows to derive general and
particular optimum detector. In section 4, we explain the bayesian
approach used to determine a bayesian estimator to the variance

PDF and give the expression of the resulting BORD. Section 5 is
devoted to the simulations description to evaluate BORD perfor-
mance (compared with optimum detectors performance). Conclu-
sions and outlooks are given in section 6.

2. GENERAL RELATIONS OF DETECTION THEORY

We consider here the basic problem of detecting the presence (H:)
or absence (Hp) of a complex signal s in a set of N measurements
of m-complex vectors y = y; +jyq corrupted by a sum ¢ of inde-
pendent additive complex noises (noises + clutter). The problem
can be described in terms of a statistical hypothesis test :

Hy:y = ¢ (D
Hi:y = s+¢ 2)

When present, the target signal s corresponds to a modified
version of the perfectly known emitted signal t and can be rewrit-
tenass = AT(0)t. A is the target amplitude. We suppose deter-
mined all the others parameters (§) which characterize the target
(Doppler frequency, time delay, ...). In the following, we will note
p = T'(0) t. The observed vector y is used to form the Likelihood
Ratio Test (LRT) A(y) which is compared with a threshold 7 set
to a desired false alarm probability (Py,) value :

H;y
Ay) = B ©
py(Y/HO) Hy

The LRT performances follow from the statistics of the data.
Py, is the probability of choosing H; when the target is absent,
and the detection probability (F;) is the probability of choosing
H when the target is present, that is :

Pro=P(AW) > n) and Pi=PAW) ) @

3. NON-GAUSSIAN CLUTTER CASE : SIRV AND
OPTIMUM RADAR DETECTOR

In the case of non-Gaussian clutter, detection strategies can be de-
rived if we consider a particular clutter nature, i.e. if an a priori
hypothesis is made on the clutter statistic. To model non-Gaussian
clutter and derive general detector expressions, we use the SIRP
representation [3, 9, 10].



3.1. Description and general expressions

The SIRV model interprets each element of the clutter vector ¢ as
the product of a m-complex Gaussian vector x (CN (0, 2 M)) with
a positive r.v. 7, that is ¢ = x+/7.

The PDF of the variable 7 is the so-called characteristic func-
tion of the SIRV and the so formed vector c¢ is, conditionally to 7, a
complex Gaussian random vector (CA'(0,2 7 M)) with joint PDF
p(c/7). The marginal PDF of the clutter is then :

oo 1 M te
p(e) = /O @) M| exp <—T> p(r)dr.  (5)

where { is the transpose conjugate operator and |M] is the determi-
nant of the matrix M. This general expression allows to determine,
for a known p(7), the joint PDFs of non-Gaussian random vectors.
For example, the joint K-distributed PDF is obtained if p(7) is a
Gamma PDF (see further).

3.2. SIRP Optimum Detector

Applied to the detection problem,the expression (5) gives pe(y/Ho)
and pe(y/H1) = pe(y —s/Ho) when the target signal s is known.
The LRT becomes (with the same notations as in [5]) :

+o0 H
/ [exp <— _q;(:’)) — exp <)\ - _qg(:’))] p—T(:L) dr %; 0
0
"©
where go(y) = y'M ™y, 1 (y) = qo(y — s) for a known signal s

and A = In(n).

When the target signal s is unknown, ML estimation of A is
performed and the detection strategy is given by (6) where now :

lp'M " 'y|?
piM~'p
With (7), the (6) expression is called Generalized LRT (GLRT).

ay)=yM'y- %)

3.3. Example : Optimum K Detector : the OKD

In the case of K-distributed clutter (size m) with parameters v and
b, the random variable 7 is Gamma(v,8 = 2/ bz)—distributed with
PDF expression :

vt ( T)
p(T)=s—=exp|——]. ®)
= 5
and the PDF of y under Hy hypothesis is given by :

2™

T 7 1) 7 Koo (V).
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where K, (.) is the modified Bessel function of order v, I'(.) is the
Gamma function and g(y) = y' M~'y. The value of v determines
the spikiness of the distribution. Following the same processes
with (6), the expression of the so-called Optimum K-distributed
Detector (OKD) becomes Vm > 2 :

py(y/Ho) =

W) Ko (/)
o) v

where go(y) = y' M1y and ¢, (y) is given by (7) for unknown
signal s. For m = 1, the expression is given by [7] :

(@) T Koer (o) 'S ELZLO

4. BAYESIAN OPTIMUM RADAR DETECTOR

In this section, we propose to use a bayesian estimator for the char-
acteristic function of the SIRV which comes from the Bayes’rule
and Monte Carlo integration. Then, the BORD expression is de-
rived.

4.1. Bayesian Study of the Problem

As it was said in the previous section, for a known variance PDF
p(7), it is possible to derive the associated detector expression.
The idea of a bayesian approach is to determine, from N clut-
ter reference cells of size m, R = [r1,...,ry]7 where r; =
[r:(1),...,7:(m)]%, a bayesian estimator p(r) of the variance
PDF p(7). We write p(7) as follows :

o) = [ o/, (12)

Given rY_; a Monte Carlo estimation of (12) is :

5r) = 5 Yop(r/r). (3

The Bayes’rule provides us :

p(r/ri) = % (14)

where g(7) is the prior distribution of 7 for the reference cells and
the equation (13) becomes :

p(r) = %Zw (15)

The normalization constant p(r;) is obtained by integrating the
numerator in (13) over g(7) and is given by :

+oo
p(r) = / p(ri/ ) g(r)dr. (16)

Replacing p(7) in (6), the expression of the Bayesian Opti-
mum Radar Detector can be derived. It is no more necessary to
have knowledge about the clutter statistics or to estimate the vari-
ance PDF thanks to a Padé approximation as we did in [7] for the
PEOD.



4.2. BORD Expression

The N reference clutter cells [r1,...,rnx]" are supposed to be
modeled as SIRV and so we have :
1 _ r’M~'r;
3 =7 " -, 17
P/ = TP ( o ) a7

As the clutter statistics is unknown, we use a non-informative prior
distribution g(7) = 1/7 to retrieve the a posteriori PDF of 7 given
the NN reference cells and (14) becomes :

N 1 1 rIM’lri
ot = gy o ()

The normalization constant p(r;) is computed as follows :

+oo
) = [ pmer

0
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The equation (18) becomes :

(rfM )™

p(r/r) = s

T
7™ exp (—LM “), (20)
2T

which is exactly an Inverse Gamma PDF h; (7) with parameters m
and 2/r;rM_1ri. So, we have :

1 N
(1) = > hi(r). (21)
i=1

The BORD expression which is given for each observation cell
Y.ps (size ) and given the N reference clutter vectors rj_; be-
comes after the integration of (6) over p(7) :

N -|—M71 m
g [(fh(yobs) ‘H‘TM 'r;)? ] H
N TM_ m
> o v

qO yobs) + rf M_

A(yobs) = /\7 (22)
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where the two quadratic forms go and g; are the same that for OKD
(ctf. 7).

The BORD expression depends only on the reference clutter
cells which provide all the necessary information about the clut-
ter statistics making itself “’self-adaptive”. Moreover, the BORD
structure contains the classical Gaussian matched filter (in the quad-
ratic form ¢1 (y,,,)) that means that it can be implemented in con-
ventional radar systems to improve their detection performance.

4.3. Asymptotical Result of the BORD

The BORD expression comes after a Monte Carlo estimation of
(12) given N reference clutter vector riv;. Given Z; = rIM_lri
which is corresponding to a positive r.v. with PDF p(Z), the
BORD expression can be considered as the Monte Carlo estima-

tion of :
+o0 zm
/ Tolv Vo 7z2m P
0 (q1 (yobs) + Z)_‘

/+oo Zm »
0 ((IO (yobs) + Z)2 m

Given that r = /7 x where x is a complex Gaussian vector of
size m with a covariance matrix 2 M, we have Z = r'M~1r =
7x'M™!x. The quadratic form Q = x'M~'x is x3,, distributed
(X3m = G(m,2)). So, Z/7 is G(m,27) and the PDF of Z is
derived by integrating p(Z/7) over the prior g(7). We obtain :

(2)dz

(23)
(2)dz

llmoo AN (yObS) _ (qo (yobs) ) m (24)

N—+ q1 (yobs )

This asymptotical result [8] coincides with the GLRT given,
for example, in ([11]), which was obtained by replacing, in the
optimum detection structure (6), the two Maximum Likelihood es-
timates of 7 (the one under Hy and the other one under H; ), where
T is considered as an unknown parameter.

5. SIMULATIONS

We consider here uncorrelated clutter, i.e. the correlation matrix
M is diagonal and known. We compare the BORD performances
with those of optimum detectors such OKD and OGD (Optimum
Gaussian Detector, optimum for Gaussian clutter) for an unknown
target signal embedded in K-distributed clutter. In this case, the
OKD is optimum and we see that the BORD performances reach
the OKD performances whatever the value of v is. Different val-
ues of the shape parameter are tested, v = 0.1, 0.5, 2, 20. When
v —+ +o0o K-PDF tends to a Gaussian PDF which is confirmed
on the series of figures (1),(2), (3) and (4). All the curves repre-
sent the detection probability P; versus the Signal-to-Noise-Ratio
(SNR) given for one pulse. As m = 10 pulses are considered, the
total SNR is 10 log,,(m) = 10 dB more than for one pulse.

6. CONCLUSIONS

The present paper has addressed a bayesian approach to the deter-
mination of the clutter statistics when the clutter vector is modeled
as a SIRV. By this way, a bayesian estimator of the characteris-
tic function of the SIRV has been derived from reference clutter
cells and the resulting BORD expression depends only on these
reference cells. For example, in the case of CFAR (Constant False
Alarm Rate) detector, the reference clutter cells are the cells adja-
cent to the cell under test. In this paper, the detection threshold is
derived by Monte Carlo method to reach a desired Py, value. In
further work, we will proceed to a Padé approximation to estimate
the BORD PDF, that is to say the detection test PDF, and we will
study the influence of the number of available cells on detection
threshold value.



Clutter K ;v=0.1; P|a=104 ; m=10 ; OKD-BORD-OGD

Fig. 1. Performances comparison between the OGD, OKD and
BORD for K-distributed clutter (v = 0.1, Py, = 10~ %, m = 10).
OKD and BORD curves are perfectly identical.

Clutter K ;v=0.5; P =1 07; m=10 ; OKD-BORD-OGD
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Fig. 2. Performances comparison between the OGD, OKD and
BORD for K-distributed clutter (v = 0.5, Prq = 1073, m = 10).
OKD and BORD curves are perfectly identical
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OKD and BORD curves are nearly identical
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