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Radar/SAR Imaging

N e e :
ONERA RAMSES Image

RAMSES Image

Radar Imaging allows to build more and more precise images :
B Current use of very high bandwidth and long integration time (high
azimuth bandwidth): Very high spatial resolution (< 10cm),

> B Application to surveillance (detection, change detection),

classification, 3D reconstruction, EM analysis, ...

B Due to the growing complexity of the scene (non stationarity, non-
Gaussianity), need to derive new procedures to exploit these
images.
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2D Image

Cross range

Conventional Fourier Imaging (laboratory,
SAR, ISAR) :

B Assumptions of white and isotropic
bright points,

B does not exploit the potential non-
stationarity of the scatterers.

Range

frequency

e Hypothesis of bright points model: all the reflecting elements of the scene localized in x and
characterized by the spatial repartition function A(x) have the same behavior for any wave

2
vectors k = 2/ (cosf,sin )"

. The backscattering coefficient H (k) acquired by the radar takes
c

the form:

H(k) = /D A(x) g2kl X Iy

e The construction of the radar spatial image A(x) is then given by the inverse classical Fourier
transform of the backscattering coefficient H (k):
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Examples of Applications in Multi-Channel}

For multichannel SAR Images, each pixel of the spatial image is associated to a vector of
important and useful informations:

- polarimetric channels (POLSAR),

- interferometric channels (INSAR),

- polarimetric and interferometric channels (POLINSAR),

- Multi-temporal, multi-passes SAR Image,

Pauli Decomposition
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EM behavior of the terrain Estimation of the height Analysis of the structures displacement in
in POLSAR images in POLINSAR images Shangai with multi-temporal SAR images
(@Telespazio)

Almost all the conventional techniques of detection, parameters estimation and classification in
multichannel SAR images are based on the multivariate Gaussian statistic with additional
hypotheses of stationarity and homogeneity.
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elevation 50°

Sub-band 1 Sub-band 2 Sub-band 3

Scatterers have different behavior with regards to the frequency and direction of
illumination: it means that this diversity can offer useful information to any detector
exploiting it
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Examples of Some Conventional Detection Schem
Channel SAR Images

B Global thresholding (Gaussian hypothesis)
A= — lOg(Pfa)

B Local thresholding (Gaussian hypothesis) Ppo, =107
12
N N (P—l/N_l) \]ﬂ\l?[z’ .\
fa 1 )
N Z ||
ki

W Statistics-based thresholding (K-distribution)

2 L\ Et)/2 Lxv f > A\
n@ = o () K (2 " ) !

MLE estimation of parameters, determination of local threshold

local threshold

Conventionnal SAR detection framework on a monodimensionnal SAR image mainly consists in

locally thesholding the amplitude of the SAR image.
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Examples of Some Conventional Detection and cl ’:'

Schemes in Multi-Channel SAR Images

Many conventional and well known SAR processing techniques such as:
> Non Coherent Polarimetric Decomposition techniques used for classification,
- Speckle filtering techniques (Polarimetric Whitening Filter (PWF), Multilook PWF),

© Adaptive Detection schemes (Adaptive Matched Filter (AMF), Adaptive Kelly’s Detector,
Adaptive Normalized Matched Filter (ANMF), ...),

- Change Detection schemes (statistical tests on the equality of covariance matrices)

usually admit the multivariate zero-mean circular Gaussian statistic for spatial SAR pixels distribution:

1 W H m—1
pg(k):ﬂ-m|T|6 k™ T k

and generally use Maximum Likelihood Estimate of the local covariance matrix T (coherency matrix),
typically the Sample Covariance Matrix (SCM) built with N pixel-vectors k; surrounding the pixel under

test: X 1 N .
Toon = ~ ;k k!

leading to filters, detection tests with steering vector p:

N L 7SNV ik e IR SO Lol | N
pAT-1p 1 (p# T-1p) (N +Kk7T1k) 1 - (p# T-1p) (K T-1k) 1
AMF Kelly ANMF
Ak) =k T 1k % A
PWF (Mahalanobis Zlistance)
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Challenging Problems Related to

¢ The SAR images are more and more complex, detailed, heterogeneous,
¥ The SAR pixels are colored and anisotropic,
¢ The spatial statistic of SAR images is not at all Gaussian !

A

res < 0.5m

@ONERA SETHI

< How to exploit, in adaptive detectors, the dispersive and anisotropic information of SAR pixels ?

< How to derive Multivariate Adaptive detectors (AMF, Kelly, ANMF) on a monodimensionnal SAR
image without multi-channels such as polarimetry, interferometry, multi-passes SAR images ?

< How to enhance the performance of these Gaussian detectors in non-Gaussian environment ?
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Time-Frequency Analysis allows to highlight the coloration and anisotropy properties of
monodimensionnal SAR scatterers by characterizing each pixel of the SAR image with a vector of
information related to angular or/and frequency behaviors [Ovarlez et al. 03].

The hyperimage is defined as a linear Time-Frequency decomposition of the backscattering coefficient
H(k):

Alx, k) = /D Hu) 6" (u, k, x) 271" % gy

where ¢(.) is an analyzing kernel acting on a mother wavelet ¢q(.) by given groups of transformation:

e group of translation in frequency domain and in angular domain: 2D short-time Fourier transform
in angular and frequency domain,

e croup of dilation in frequency domain and translation in angular domain : 2D wavelet transform
in angular and frequency domain.

Backscatterlng Coefficient Frequenc
Angle

Hyper-image
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Frequency Frequency

Frequency

gipsa-lab

Example of theoretical
model of isotropic and
white scatterers
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\Wavefront Spotlight SAR Reconstruction
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Frequency Frequency

Frequency

Example of theoretical
model of anisotropic and
colored scatterers
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Decomposition of the SAR Image into sub-images u
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Time-Frequency Analysis
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Each pixel characterizes now a N-vector of information related to coloration and anisotropy
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Elliptical Distribution for SAR Backgroundz_ f

Complex Elliptically Contoured Distributions [Olilla 2003]:
fe(e) = 2|7 hp (¢ 27 ¢)

¢ C is a random complex m-vector characterizing each pixel of the SAR image,
¢ Y, is the scatter matrix (equal to the covariance T, up to a scalar factor),
¢ hm(.), usually called density generator, is assumed to be known.

-

Subclass of Spherically Invariant Random Vector: Compound Gaussian Process [Yao 73]

c=\Tx = 1 U
-eno ) = [ exp (<2) ptr)ar

¢ For a given set of spatial pixels of the SAR image, ), characterizes the correlation structure existing

within the spectral bands or/and the azimutal bands (colored and anisotropic scatterers),
¢ Conditionally to the pixel, the m-vector is Gaussian. The texture variable 7 characterizes the power

variation of each vector from pixels to pixels (spatial heterogeneity).

Powerful statistical model that allows:
m to extend the Gaussian model (K, Weibull, Fisher, Cauchy, Alpha-Stable, Generalized Gaussian, etc.),

® to encompass the Gaussian model.
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Choice of the Covariance Matrix Estim:
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Assuming K SIRV secondary data ¢, = /7x X\ are available where x; ~ CN (0, X)

¥  The Sample Covariance Matrix SCM may be a «poor» estimator of the Elliptical/SIRV
Scatter/Covariance Matrix Y. because of the texture contamination:

1 & 1 <
¢ H H
MSCM: — Cr Cp — Tk Xk X,
K K
k=1 k=1

1 K
# o D Xk XL
k=1

Y The Normalized Sample Covariance Matrix (NSCM) may be a good candidate of the
Elliptical SIRV Scatter/Covariance Matrix >. estimate:

K
Cr CkH m Z Xk XkH
CkH CL K XkH X

k=1

. K

Mysom = 2=
K

k=1

This estimate does not depend on the texture but it is biased and share the same
eigenvectors but have different eigenvalues, with the same ordering) [Bausson et al. 2006].
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Robust M-Estimators for SIRV and Elliptical

4 =
7 /I/

The complex M-estimators [Huber 64, Maronna 76, Ollila 2012] of Idcation and scatter are
defined as the joint solutions of:

K
[ = ”:Il( : M = ?2“2(%)(07@_“)(0?1_”)
n—
Z “ (tn) u(r) u(r)
n=1 SCM
ANHNar—1 ~\)1/2
where t, = ((c, — 1)" M~ (c,, — 1)). k 1
k r
1 -
uz(.) choice
Y w1, ugare two weighting functions acting on the quadratic form, i.e. Mahalanobis distance,
Y The choice of u1, usresults in different estimates for the covariance matrix and the mean vector,
¢ Existence and uniqueness of the solution have been proven provided 11, U2 satisfy given conditions
[Maronna 1976],
¢ Consistency and Asymptotical Gaussian distribution of these estimates [Mahot et al. 2012]
Y Robust to outliers, to the presence of strong targets or high impulsive samples in the K reference

cells,
& Generalization of Maximum Likelihood Estimators:

us (82) = ui(t) = —hl, (£*) /hm (%)
eP ONERA
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For an unknown but deterministic texture parameter, the Maximum Likelihood Fixed Point

estimate of the Covariance is found [Tyler 87, Conte-Gini 02] to be the solution of the following
implicit equation:

K H K H
. . ~ m Ck Ci m X[ X3
Fixed Point (FP Mpp = I7e — =% ~—

This estimate is an approached MLE in the general SIRV context and is called the
Tyler’s M-estimate.

[F. Pascal et al. 2006]

B This estimate is independent on the texture parameter,

B Consistent, unbiased, robust, asymptotically Gaussian estimate and supposed to
be, at a fixed number K, Wishart distributed with mK/(m+1) degrees of freedom,

B Existence and unicity of the solution are proven. The solution can be reached by
recurrence Mi=f(Mkx-1) whatever the startina point Mo (ex: Mo=I. M1=Mnscwm).
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Robust CFAR Detector for SAR Imag

New detectors called Robust Adaptive Detectors can be derived by replacing in the
Normalized Matched Filter any « robust estimate » of the covariance matrix.

HNA-1 |2 H
ACE : Adaptive Cosine Estimator Alc) = P M ¢ 21 .
ANMF : Adaptive Normalized Matched Filter <pH M—lp) (CH M-1 c) Hy

These detectors, homogeneous of degree 0, are SIRV-CFAR only for some particular
estimates of ). : the test statistic does not depend at all on the texture PDF and on the
unknown scatter matrix >

ACE-FP - Curves "PFA-threshold" — CFAR property

. AMF — Curves "PFA-threshold" — CFAR property 10°
10 T T T T
Fixed Point
—— AMF 1 M chapeau
107k ——— AMF Theo 10 M known
——— 0GD
107 -2
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T
E 107 &
= -3 =
AMF-SCM Pfa regulation 10°F ANMF-FP Pfa regulation |
107
107
107°
10°® 107 102 10° 10° 107 107 10° 10° 107
threshold A threshold A

These detectors can therefore perfectly regulate the False Alarm Rate whatever the
spatial heterogeneity of the SAR image
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Conclusions

& Time-Frequency Analysis can help in caracterizing spectral and
anisotropic behavior of each pixel in monodimensional SAR image (with
phase),

& The SIRV and Elliptically Contoured Distribution clutter model allows to
take into account the clutter complexity:

¢ spatial non-Gaussianity or/and heterogeneity (spatial clutter power
fluctuations) of the SAR image,

¢ spectral and anisotropic behavior of the clutter,

¢ By linking these two models together, the robust ANMF detector built
with the Fixed Point estimator (or any M-estimator)

is shown to be CFAR-texture, CFAR-matrix,

©
s

exhibits nice properties (robustness), good regulation of the Pfa in
highly textured SAR image leading to very good detection
performance.
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