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ABSTRACT

In the general area of radar detection, several detection sche-
mes have been developed for the two last decades. These de-
tectors may be classified into two major families: Gaussian
and non-Gaussian detectors, depending on the clutter assump-
tions. Moreover, methods have been proposed to take into ac-
count the structure of the Clutter Covariance Matrix (CCM)
in order to improve its estimation accuracy. In a STAP (Space
Time Adaptive Processing) context, this paper compares four
Gaussian and non-Gaussian detection schemes on experimen-
tal data. The obtained results clearly demonstrate the im-
proved detection performance brought by a recently proposed
persymmetric non-Gaussian detector.

Index Terms— Adaptive signal detection, Covariance ma-
trices, Radar clutter, Radar detection, Radar data processing.

1. INTRODUCTION

Conventional radars perform separate processing in the spa-
tial and time domains. STAP radars, by jointly processing
spatial and time data, achieve a better clutter rejection and
therefore an improved detection of targets. The radar under
consideration in this paper is a coherent pulsed-Doppler radar
with a N -elements Uniformly spaced Linear Array (ULA).
This radar transmits bursts of M pulses, and L range sam-
ples are collected over each pulse repetition interval [1]. In
this context, the basic problem of detecting a known signal
s = Ap ∈ CMN corrupted by an additive clutter c, in a range
bin under test, can be stated as the following binary hypothe-
sis test:{

H0 : y = c, yk = ck, for 1 ≤ k ≤ K ,
H1 : y = Ap + c, yk = ck, for 1 ≤ k ≤ K ,

(1)

where y is the complex MN × 1 snapshot of the received
space-time data, A is an unknown complex target amplitude,
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and p is a known steering vector. In sidelooking STAP, the
steering vector p is the Kronecker product (denoted ⊗) of a
M×1 temporal steering vector b(f) depending on the doppler
shift and a N × 1 spatial steering vector a(θ) depending on
the target direction:

p(f, θ) = b(f)⊗ a(θ). (2)

Under both hypotheses in problem (1), it is assumed that K
signal-free data yk are available for clutter parameters esti-
mation. The yk’s are the so-called secondary data. In the
STAP theoretical framework, they are assumed independent
and identically distributed with the same distribution as c.

The development of detectors is based on assumptions on
the clutter statistic. Moreover, the adaptive version of these
detectors requires an estimation of the CCM. Various solu-
tions to these problems have been proposed in the literature.
The purpose of this paper is to compare some of them on ex-
perimental data.

The paper is organized as follows. Section (2) presents
the studied detection schemes and section (3) compares these
detectors on experimental STAP data.

In the sequel, H denotes the transpose conjugate, ∗ the
conjugate and > the transpose operator, IN is the N-th order
identity matrix, M denotes the CCM and M̂ an estimate of M
based on secondary data.

2. STUDIED DETECTION SCHEMES

Two types of detectors will be investigated: the Adaptive Ma-
tched Filter (AMF) based on Gaussian assumption for the
clutter [2], and the Adaptive Normalized Matched Filter (AN-
MF) for non-Gaussian clutter [3] also referred to as GLRT-LQ
[4] and ACE [5]. The corresponding detection tests are:

ΛAMF =
|pH M̂

−1
y|2

pH M̂
−1

p

H1

≷
H0

λ , (3)



ΛANMF =
|pHM̂

−1
y|2

(pHM̂
−1

p)(yHM̂
−1

y)

H1

≷
H0

λ′ , (4)

where λ and λ′ are the appropriate detection thresholds to
reach a given Probability of False Alarm.
In the Gaussian case, the widely used estimate in (3) for the
CCM is the Sample Covariance Matrix (SCM) built from the
secondary data and denoted by:

M̂SCM =
1
K

K∑
k=1

yk yH
k . (5)

The resulting detection test will be called the AMF-SCM.

In the non Gaussian case, Conte and Gini in [6, 7] have
shown that a maximum likelihood estimate M̂ of M, which
will be called the Fixed Point (FP) estimate M̂FP , is a solu-
tion of the following equation:

M̂ =
m

K

K∑
k=1

(
yk yH

k

yH
k M̂

−1
yk

)
. (6)

Existence and uniqueness of the above equation solution M̂FP

have been investigated in [8], and its statistical properties have
been studied in [9]. The resulting detection test will be called
the ANMF-FP.

It is clear that the estimation accuracy of M̂ has an im-
portant impact on detection performance. In our STAP con-
text, with an ULA, the CCM M has the persymmetric struc-
ture [10]: M = JMN M∗ JMN , where JMN is the MN -
dimensional antidiagonal matrix having 1 as non-zero ele-
ments. The signal vector is also persymmetric, i.e. it satisfies
p = JMN p∗.

Following the pioneer work of Nitzberg [11] and Cai [12],
we proposed in [13] and [14] two detectors called respectively
Persymmetric AMF (PAMF) and Persymmetric FP (PFP) to
exploit the persymmetric structure for estimating the CCM.
Let T be the unitary matrix defined as:

T =



1√
2

(
IMN/2 JMN/2

i IMN/2 −i JMN/2

)

1√
2

 I(MN−1)/2 0 J(MN−1)/2

0
√

2 0
i I(MN−1)/2 0 −i J(MN−1)/2


(7)

respectively for MN even and odd. The resulting detection
schemes are:

ΛPAMF =
|pHTH [Re(TM̂SCM TH)]−1Ty|2

pHTH [Re(TM̂SCM TH)]−1Tp
, (8)
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Fig. 1. Range-Doppler clutter data
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Fig. 2. AMF-SCM detection results for the range bin 215.

ΛPFP = (9)

|pHTH [Re(T bMFP TH)]−1Ty|2

(pHTH [Re(T bMFP TH)]−1Tp)(yHTH [Re(T bMFP TH)]−1Ty)
.

This method allows to virtually double the number of sec-
ondary data [13, 14]. This is an interesting property in STAP
where few secondary data are available and where conven-
tional detectors performance is limited by the well-known
RMB’s rule [15]: K > 2NM for less than 3 dB detection
loss.

3. COMPARISON ON EXPERIMENTAL DATA

The STAP data are provided by the DGA/CELAR’s simula-
tor that allows to synthetize, in side looking configuration,
STAP datacubes from very high resolution Synthetic Aper-
ture Radar (SAR). The number of ULA sensors is N = 4 and
the number of coherent pulses can be up to M = 64. The
center frequency and the bandwidth are respectively equal to
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Fig. 3. PAMF detection results for the range bin 215.
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Fig. 4. ANMF-FP detection results for the range bin 215.
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Fig. 5. PFP detection results for the range bin 215.
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Fig. 6. AMF-SCM detection results for 10 targets with differ-
ent speeds and located in range bin 256.

f0 = 10 GHz and B = 5 MHz. The radar velocity is given
by V = 100 m/s. The inter-element spacing is d = 0.3 m and
the pulse repetition frequency is fr = 1 kHz. The number of
secondary data used to estimate the CCM is here K = 410
for all the presented results.

Figure 1 presents a clutter map obtained for sensor 1.
In the first studied case, a single target is at range bin 216
with a speed of 4 m/s and azimuth 0. Figure 2 and 3 dis-
play respectively the test statistics of the two Gaussian de-
tectors AMF-SCM and PAMF. As expected, the PAMF out-
performs the AMF-SCM. Indeed, Brennan’s rule is not sat-
isfied by the AMF-SCM, while the virtual doubling of sec-
ondary data brought by the PAMF allows to satisfy this rule:
NM = 256 < K = 410 < 2NM = 512. Figure 4 and 5
display the test statistics of the non-Gaussian detectors: the
ANMF-FP and the PFP. The same conclusion holds for these
detectors. Concerning the clutter model exploited by these
detectors, it is clear that these non-Gaussian detectors lead to
a spectacular improvement in terms of clutter rejection com-
pared to the Gaussian detectors.

The second set of data contains 10 targets at the range bin
255, with speeds from −4 m/s to 4 m/s. Figures 6, 7, 8 and 9
refer respectively to AMF-SCM, PAMF, ANMF-FP and PFP.
Firstly, it may be noted that the AMF-SCM yields very poor
results. Secondly, the best result is again provided by the PFP
which takes into account the non-Gaussianity of the clutter
and the persymmetry of the CCM.

4. CONCLUSION

The experimental data exploited in this paper lead to two main
results. Firstly, non-Gaussian detectors based on the ANMF
and the Fixed-Point CCM estimate, outperform conventional
Gaussian detectors based on the AMF and the SCM. Sec-
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Fig. 7. PAMF detection results for 10 targets with different
speeds and located in range bin 256.
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Fig. 8. ANMF-FP detection results for 10 targets with differ-
ent speeds and located in range bin 256.
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Fig. 9. PFP detection results for 10 targets with different
speeds and located in range bin 256.

ondly, exploiting the persymmetric structure of the CCM yields
an additional improvement in terms of detection. These con-
clusions make the PFP an interesting detector for STAP radars.
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