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ABSTRACT
Conventional radar imaging assumes that all the scatterers are
considered as bright points (isotropic for all observation an-
gle and white in the frequency band). Recent studies based on
multidimensional Time-Frequency Analysis, describe the an-
gular and frequency behavior of scatterers and show that they
are anisotropic and dispersive. Another information source in
radar imaging is the polarimetry. Studies based on multidi-
mensional wavelet and coherent decompositions allow to rep-
resent the angular and frequency polarimetric behavior and
show the non-stationarity of this behavior. The aim of this
paper, is to propose a classification process based on this new
information source.

1. CLASSICAL RADAR IMAGE FORMATION

The classical model used in radar imaging is the model of
bright points (i.e. a target is considered as a set of indepen-
dent sources which are isotropic for all directions of presenta-
tion and white in the frequency band) [1], [2]. Let I(~r) be the
complex amplitude of the bright point located in ~r = (x, y)T .
Under far field conditions, the complex backscattering coeffi-
cient for the whole target is then given by the in-phase sum-
mation of each reflector contribution:

H(~k) =
∫

I(~r) e−2iπ~k.~r d~r. (1)

The wave vector ~k is related to the frequency f and to the
direction θ of illumination (observation angle) by

∣∣∣~k
∣∣∣ = 2f/c

and θ = arg(~k). After a Fourier Transform of (1), one can
obtain the spatial repartition (image) I(~r) of the reflectors for
a mean frequency (the center frequency) and for a mean angle
of presentation:

I(~r) =
∫

H(~k) e2iπ~k.~r d~k. (2)

A full polarimetric radar is generally designed to transmit and
receive microwave radiation which is horizontally polarized
(H) or vertically polarized (V). The polarimetric generaliza-
tion of the scattering coefficient is called the scattering matrix
or Sinclair matrix:

[S] =
[

Shh Shv

Svh Svv

]
(3)

2. 2D TIME-FREQUENCY ANALYSIS

When a target is illuminated by a broad-band signal and/or
for a large angular extent, it is realistic to consider that the
amplitude spatial repartition I(~r) of the reflectors depends on
frequency f and on aspect angle θ. This repartition depending
on the wave vector ~k, it will be noted in the following by
I(~r,~k).

Such images can be built using the multidimensional con-
tinuous wavelet transform extended to two dimensions and
are called hyperimages [3], [4], [5]:

I(~r0, ~k0) =
∫

H(~k)Ψ∗
~r0, ~k0

(~k) d~k . (4)

where Ψ~r0,~k0
(~k) is a family of wavelet bases generated from

the mother wavelet φ(k, θ) localized around (k, θ) = (1, 0)
and located spatially at ~r = ~0 according to:

Ψ~r0,~k0
(~k) =

1
k0

e−2iπ~k.~r0 φ

(
k

k0
, θ − θ0

)
. (5)

The scattering matrix will now depend on frequency and
on angle of presentation and is called hyper-scattering matrix:

[S](~r,~k) =

[
Shh(~r,~k) Shv(~r,~k)
Svh(~r,~k) Svv(~r,~k)

]
(6)

The span is generally defined as the sum of the squared
modulus of each element of the matrix (3). The extended
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Fig. 1. The Cyrano weapon model.

span is now defined as the sum of the squared modulus of
each element of the hyper-scattering matrix (6).

Span(~r,~k) = |Shh(~r,~k)|2 + |Shv(~r,~k)|2
+|Svh(~r,~k)|2 + |Svv(~r,~k)|2. (7)

The extended span has been tested on full polarimetric
data from anechoic chamber between -25 and 25 degrees for a
frequency band [12,18]GHz. The target is a ”Cyrano” weapon
model see fig 1..
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Fig. 2. Evolution of the span versus the emitted frequency
and the illumination angle.

The span evolution of the cyrano weapon model shows
that some scatterers are anisotropic and dispersive (see fig 2.).

3. CAMERON DECOMPOSITION

The aim of polarimetric coherent decompositions is to express
the Scattering or Sinclair matrix (3) as a combination of the
scattering responses of simpler objects [6]. The Cameron de-
composition is based on two target properties: reciprocity and
symmetry [7], [8].

A radar target is considered as reciprocal when the diago-
nal terms of the measured scattering matrix are equal i.e. the
reciprocity theorem applies. For a scattering matrix measured
in the orthogonal linear basis, it means, Shv = Svh whereas
for the orthogonal circular basis Srl = Slr. The reciprocity
principle divides scattering matrix space into two subspaces,
one containing only scattering matrices of reciprocal scatter-
ers and the other only containing scattering matrices of non-
reciprocal scatterers. A Sinclair matrix [S] whose the associ-
ated vector is

−→
S , is decomposed in the Pauli basis following:

−→
S =




Shh

Shv

Svh

Svv


 = α

−→
Sa + β

−→
Sb + γ

−→
Sc + δ

−→
Sd (8)

[S]a =
1√
2

[
1 0
0 1

]
(9)

[S]b =
1√
2

[
1 0
0 −1

]
(10)

[S]c =
1√
2

[
0 1
1 0

]
(11)

[S]d =
1√
2

[
0 −1
1 0

]
(12)

So, the vector
−→
S , can be expressed on the two subspaces de-

fined by the reciprocity rule following:

−→
S = A

(
cos(θrec)

−→
S rec + sin(θrec)

−→
S nr

)
(13)

where
−→
S rec is the unit vector carrying the projection Prec of−→

S on the reciprocal subspace.

−→
S rec = Prec

−→
S (14)

where
−→
S nr is the nonreciprocal component of the vector

−→
S .

It is collinear to
−→
Sd.

−→
S nr =

(
−→
S ,
−→
Sd)

|(−→S ,
−→
Sd)|

−→
Sd (15)

where A is the norm of the vector
−→
S .

A = ||−→S || (16)

and where θrec represents the degree to which a scattering
matrix obeys reciprocity. It is the angle between the scattering
matrix and the reciprocal subspace.

θrec = cos−1 ||Prec
−→
S || 0 ≤ θrec ≤ π

2
(17)



Scattering matrices with θrec = 0 correspond to scatterers
which strictly obey the reciprocity principle. It is the case in
SAR monostatic systems. Whereas scattering matrices with
θrec = π

2 lie entirely in the subspace orthogonal to the recip-
rocal subspace and hence violate the reciprocity principle.

A scattering is considered symmetric when the target has
an axis of symmetry in the plane orthogonal to the direction
between the radar and the target. The symmetry of a scatterer
can be also considered in the frame of the Pauli decomposi-
tion. Hence, a scatterer is considered as symmetric if it exists
a rotation of angle ψd, which cancels the projection of the
vector

−→
S in the component

−→
Sc of the Pauli decomposition. A

scattering matrix which corresponds to a reciprocal scatterer−→
S rec can be decomposed into a maximum symmetric com-
ponent

−→
S sym

max and a minimum symmetric component
−→
S sym

min:
−→
S rec = cos(τ)

−→
S sym

max + sin(τ)
−→
S sym

min (18)

The angle τ represents the degree to which the reciprocal
component of the scattering matrix deviates from belonging
to the set of scattering matrices corresponding to symmetric
scatterers:

cos(τ) =
|(−→S rec,

−→
S sym

max)|
||−→S rec||||−→S sym

max||
(19)

A scattering matrix with τ = 0 represents a fully symmetric
scatterer such as a trihedral or dihedral, whereas a scatter-
ing matrix with τ = π

4 represents a fully asymmetric scat-
terer such as a left helix or a right helix. Both vectors

−→
S sym

max

and
−→
S sym

min are ideal symmetric scatterer scattering matrices.
Minimum et maximum refer to the relative amplitude contri-
butions of

−→
S sym

max and
−→
S sym

min to
−→
S rec. The projection of

−→
S rec

onto
−→
S sym

max has a magnitude equal to cos(τ) and the projec-
tion of

−→
S rec onto

−→
S sym

min has a magnitude equal to sin(τ). A
scatterer is considered as symmetric if τ has a value between
0 and π

4 . By this fact, the magnitude of the projection onto−→
S sym

max is always greater than or equal to the magnitude of the
projection onto

−→
S sym

min .
−→
S sym

max is defined by:
−→
S sym

min = α
−→
Sa + ε

−→
Sb (20)

where ε is given by:

ε = β cos(θ) + γ sin(θ) tan(2θ) =
βγ∗ + β∗γ
|β|2 − |γ|2 (21)

The Cameron decomposition expresses the Sinclair ma-
trix [S] as a sum of two symmetric components and a non-
reciprocal component:

−→
S = A

(
cos(θrec)

(
cos(τ)

−→
S sym

max + sin(τ)
−→
S sym

min

)

+sin(θrec)
−→
S nr

)

(22)
An arbitrary symmetric scatterer

−→
S sym can be decomposed

according to:
−→
S sym = a eiρ [R(ψ)]

−→
Λ(z) a ∈ R+ ρ, ψ ∈ (−π; π]

(23)

where a is the amplitude of the scattering matrix, ρ is the nui-
sance phase and ψ is the scatterer orientation angle (Huynen
orientation). The matrix [R(ψ)] denotes the rotation operator.
Finally, the normalized vector

−→
Λ(z) expressed in the linear

polarization basis is:

−→
Λ(z) =

1√
1 + |z|




1
0
0
z


 z ∈ C, |z| ≤ 1 (24)

Consequently, the complex quantity z can be used to charac-
terize the symmetric scatterer under consideration. The fol-
lowing list presents the values of z for some canonical targets.

Symmetric Scatterer Normalized Vector

Trihedral
−→
Λ(1)

Diplane
−→
Λ(−1)

Dipole
−→
Λ(0)

Cylinder
−→
Λ( 1

2 )
Narrow Diplane

−→
Λ(− 1

2 )
Quarter Wave Device

−→
Λ(i)

Table 1. Examples of normalized vectors associated to some
canonical scatterers.
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Fig. 3. Classification process of the Cameron decomposition.

On the basis of the factorization of the measured scatter-
ing matrix [S], Cameron proposed a classification scheme for
the Sinclair matrix (see fig 3.). The first decision to make is
to choose if a scatterer is reciprocal or none. The character-
istic parameter of this sort of measure is the angle θrec. If
it is lower than π

4 we will take the decision that the scatterer
is reciprocal, if it is greater, the scatterer will be considered



as nonreciprocal. If the scatterer is reciprocal, it can be sym-
metric. The characteristic parameter of the symmetry is the
angle τ . If it is lower than π

4 , we will consider the scatterer
as symmetric, otherwise it will be classified as asymmetric,
i.e. whose the response is an helix. In the case where the
scatterer is symmetric, a new classification scheme based on−→
S sym

max can be proposed. This classification scheme is based
on the comparison of the the quantity z of the matrix under
study with those corresponding to the reference targets zref

i.e. trihedral, dihedral, dipole, cylinder, narrow-diplane and
quarter wave device. In order to compare the measured z and
the scattering responses of the targets of reference, the fol-
lowing metric must be considered:

d(z, zref ) =
|1 + z∗zref |√

1 + |z|2√1 + |zref |2
(25)

Finally, the measured scatterer z is classified according to the
shortest distance d(z, zref ).

4. POLARIMETRIC HYPERIMAGE CONCEPT

By applying the polarimetric Cameron decomposition to the
hyper-scattering matrix (6), we obtain, on the one hand, a po-
larimetric evolution of the scatterers versus emitted frequency
and observation angle, on the other hand a polarimetric spatial
response for each frequency and angle of presentation. This
defines the polarimetric hyperimage concept [9], [10].

[S](−→r ,
−→
k ) = A(−→r ,

−→
k )

(
cos(θrec(−→r ,

−→
k ))(

cos(τ(−→r ,
−→
k )) [S]sym

max(−→r ,
−→
k ) + sin(τ(−→r ,

−→
k ))

[S]sym
min(−→r ,

−→
k )

)
+ sin(θrec(−→r ,

−→
k )) [S]nr(−→r ,

−→
k )

)

(26)
From the cameron decomposition of the hyper-scattering ma-
trix, we extract two polarimetric hyperimages, the huynen ori-
entation ψ(−→r ,

−→
k ) and the classification Classification(−→r ,

−→
k ).

These polarimetric hyperimages have been tested on the Cyrano
weapon model and allow to describe the backscattering phe-
nomena.

n Leading edges (P2,P3) : Their directional responses
in the angle-frequency fields and their polarimetric nature, di-
pole, express diffraction phenomena caused by the backscat-
tering edges. Their orientation in the horizontal plane (θ =
±20) and in the vertical plane (ψ = ±10) are perfectly found
again. So, polarimetric hyperimages globally describe the
backscattering phenomena (fig 4.).

n Trailing edges (P4,P5) : Their directional responses
in the angle-frequency fields and their polarimetric nature, di-
pole, express diffraction phenomena caused by the backscat-
tering edges. Their orientation in the horizontal plane (θ =
±10) are perfectly found again (fig 4.). The fact, that the
radar does not point out the inclination in the vertical plane
(upper view), explains the Huynen orientation (ψ = ±90).

n Wings (P6,P7) : There are two directional polarimetric
responses (θ = ±10 and θ = ±20). Theses responses are not

-0.200.2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

R
an

ge
 X

, m
et

er
s

Cameron Classification

Cross-range Y, meters

Angle θ ( ) 

Fr
eq

ue
nc

y 
(H

z)

Legend

(ts
)

(n
-r 

s)
(a 

s)
(r 

h)
(l 

h)
(s 

s) (t) (d
)

(d
p) (c) (n

 d)
(w

 d)

Fig. 4. Evolution of the polarimetric nature versus the emitted
frequency and the illumination angle.

produced by the wings but they are the result of the Heisen-
berg incertitude. Indeed, there is a melting of polarimetric
contribution between leading and trailing edges. This case,
characterizes the limitations of the polarimetric hyperimages.

n Stabilizers (P10,P11) : Their polarimetric response is
anisotropic. Indeed, their polarimetric nature depends on the
observation angle. We can explain this non-stationary behav-
ior by the fact that radar does not see the same geometry for
all angles of presentation. So, the dipole response with an
orientation in the vertical plane (ψ = ±45), in the horizontal
plane (θ ' 0), is caused by the edge of the stabilizer (fig 4.).
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The joint use of 2D time-frequency analysis and the po-
larimetric Cameron decomposition, allows to build polarimet-
ric hyperimages. These representations describe the scatter-
ers by their nature (geometry), their relative orientation in the
horizontal plane and their absolute orientation in the vertical
plane. Despite the limitations caused by the Heisenberg in-
certitude, they give us a best understanding of backscattering
mechanisms and can be an efficient tool to improve targets
recognition based on physical parameters.

5. CHARACTERISTICS PARAMETERS

Polarimetric hyperimages are too dense information sources
to be used directly for classification of scatterers. So, the aim
now is to search parameters which characterize the polari-
metric dispersive and anisotropic behavior. These parameters
must release from the orientation to allow to classify scatter-
ers of the same nature but with a different orientation. The
first considered parameter is the entropy. Indeed the entropy
can be defined from the polarimetric contributions: the max-
imum symmetric component, the minimum symmetric com-
ponent, the nonreciprocal component (30).

P1 =
cos(θrec) cos(τ)

cos(θrec) cos(τ) + cos(θrec) sin(τ) + sin(θrec)
(27)

P2 =
cos(θrec) sin(τ)

cos(θrec) cos(τ) + cos(θrec) sin(τ) + sin(θrec)
(28)

P3 =
sin(θrec)

cos(θrec) cos(τ) + cos(θrec) sin(τ) + sin(θrec)
(29)

H = −
∑

i

Pi log(Pi) (30)

A lower entropy means that one polarimetric contribution dom-
inates the two others. A greater entropy means that the re-
sponse is a melting of the three contributions.

Entropy is not a good parameter in our case (see fig 6).
Indeed we work on man-made targets and this class of targets
presents an important symmetry contribution. So, the entropy
will be always lower. Moreover, the entropy does not release
from the orientation. We must search for other parameters.

From the polarimetric hyperimage defined by multidimen-
sional wavelet and Cameron decomposition, we extract a pa-
rameter defined by :

ρi(−→r ) =
∑

k Span(−→r ,
−→
k )δ(class− i)

∑
k Span(−→r ,

−→
k )

(31)

This characteristic vector is an histogram which defines an
average energetic polarimetric behavior in the angular and
frequency fields. If it presents a dominating component, it
means that the scatterer is stationary and otherwise it is non-
stationary. It seems to be a good indicator which moreover is
not dependent from the orientation.
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Fig. 6. Evolution of the entropy versus the emitted frequency
and the illumination angle.

6. CLASSIFICATION

From this parameter we process a supervised classification.
We select reference scatterers whose reference histograms de-
fine classes. Then the classification is processed by a simple
euclidian distance. On the SAR image (fig 7) there are two
fighters. We select on the first plane three reference scatter-
ers, the stabilizer, the body, and the wing, whose characteris-
tics vectors are represented on the figure 7.

Fig. 7. Characteristics vectors of reference scatterers

Then a classification is made by an euclidian distance. We
can see that the stabilizer and the body are identified. How-
ever, there is a confusion between the stabilizer class and the
wing class for the wings. It can be explained by the fact
that wings and stabilizers have a near non-stationary behav-
ior. This classification improves the Cameron classification
results which cannot distinguish between the stabilizer, the
wing and the body. Cameron classification classifies the sta-
bilizer, the wing and the body as dipole.



Fig. 8. Classification based on the anisotropic and dispersive
behavior of scatterers

7. CONCLUSION

The joint use of multidimensional wavelet and Cameron de-
composition allow to represent the polarimetric behavior of
scatterers versus emitted frequency and illumination angle.
The backscattering phenomena can be interpreted according
to their nature, their relative orientation in the horizontal plane
and their absolute orientation in the vertical plane. From these
representations a characteristic parameter has been extracted
to highlight the average polarimetric behavior of scatterers. A
classification based on this parameter is processed by a sim-
ple euclidian distance. This classification has been tested on
SAR images and allow to distinguish different structures that
the Cameron decomposition cannot differentiate.
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