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Application to Target Detection
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Abstract—High resolution in synthetic aperture radar (SAR)
leads to new physical characterizations of scatterers which are
anisotropic and dispersive. These behaviors present an interesting
source of diversity for target detection schemes. Unfortunately,
such characteristics have been integrated and have been naturally
lost in monovariate single-look SAR images. Modeling this
behavior as nonstationarity, wavelet analysis has been successful
in retrieving this information. However, the sharp-edge of the
used wavelet functions introduces undesired high side-lobes for
the strong scatterers present in the images. In this paper, a new
family of parameterized wavelets, designed specifically to reduce
those side lobes in the SAR image decomposition, is proposed.
Target detection schemes are then explored using this spectro-
angular diversity and it can be shown that in high-resolution
SAR images, the non-Gaussian and robust framework leads to
better results.

Index Terms— High resolution, robust adaptive detection, syn-
thetic aperture radar (SAR), wavelet packets.

I. INTRODUCTION
A. Motivations

ADAR systems play a major role in modern military

applications, air and ground traffic control, autonomous
vehicles, observation of earth and other planetary sys-
tems, monitoring of dynamic objects such as forests,
glaciers, meteors, and so on. An intelligent operational
radar vision system involves self-tuned parameterization of
the radar waveform emission (pulsewidth and repetition
interval, transmitter power, etc.) and optimal target detec-
tion/characterization for automatic perception of a monitored
environment. This requires self-coordination of the transmitter
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and receiver which can operate in open or closed loops.
This also requires integrating in radar-based machine intel-
ligence frameworks, the capability of learning new/unknown
radar waveforms. On the contrary, when considering
earth observation from satellites using synthetic aperture
radars (SARs), mainly artificial intelligence frameworks are
developed in order to process the data obtained for various
applications.

The SARs are moving radars systems capable of producing
high-quality images of the earth’s surface [1]. They consist
in emitting an electromagnetic wave that is reflected on the
earth’s surface. The backscattered signal, which is affected
by the scatterers on the surface, is then processed to build
an image of the scene. SAR systems are known for their
usability in all weather and illumination situations. They are,
thus, capable to monitor all kind of areas of interest. Recent
years have seen an increase in the number of SAR systems.
Missions such as Sentinel-1 or TerraSAR-X have, for example,
a global coverage of the earth’s surface with SAR electronic
imaging technology.

New missions in peculiar have a large bandwidth and an
increased spatial resolution. In this context, specific responses
of the scatterers have been observed. They are anisotropic
and dispersive [2], [3] in contrast to the usual isotropic and
whiteness assumption made in traditional SAR reconstruction
algorithms. When considering high-resolution (HR) mono-
variate SAR images, a dispersion of the energy is observed.
A single scatterer may have many side lobes on the recon-
structed image. Moreover, the specific spectroangular response
of the scatterer is naturally lost during the conventional SAR
processing. This information is of interest and can be exploited
as an additional source of diversity in many applications.

In SAR images processing, depending on the application,
three important techniques are usually relied upon: target
detection, segmentation, and classification. Target Detection
schemes [4] consist in deciding if a target of interest is present
at a given position of the image. Segmentation [5], [6], aim’s
is to delimit the image into segments which are conceptually
meaningful such as the boundary between land and sea.
Finally, classification [7]-[10] allows to label part of the
images with regards to an application of interest. This paper
focuses on target detection schemes and more specifically,
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on schemes which respect the constant false alarm (CFAR)
property [11]. This property allows detecting targets while
guaranteeing a certain probability of false alarm.

B. Relation to Prior Works

Classic schemes usually rely on a diversity of some sort
to characterize the target and to separate it from the clutter.
The literature on the subject concerning SAR images is vast as
many kinds of diversities can be exploited. For example, in [4],
a spatial template model of the target is used in likelihood ratio
schemes to derive detectors. Polarimetric diversity has been
used in [12] and [13] to detect vehicles under foliage, in [14] to
detect ship in sea clutter, or in [15] and [16] for segmentation
purposes. In, [17] a diversity coming from successive pulses is
used to detect range-spread targets. In [18]—[20], time-division
multiplexing of the antennas is exploited to create diversity
for ground moving targets identification. An extension to non-
Gaussian model has been explored in [21]-[23].

In this paper, the spectroangular behavior mentioned ear-
lier as a source of diversity is considered. Several works
have investigated the methods for retrieving the spectroan-
gular diversity. For example, approach such as steerable
pyramids [24], [25], curvelets [26], or subspaces [27], [28]
are possible. However, they are usually heavy methods. For
example, subspace methods have high-computational cost and
are not adaptive. They also assume the knowledge of a
physical model, which makes them specific to an application.
Time—frequency analysis is a simpler approach that allows
analyzing the SAR data to retrieve nonstationary information
such as spectral and angular behaviors. This approach was
used in [39] and [40], where the azimuth bandwidth has
been separated in two subbands for ship detection. In the
following, we restrict only on the linear time—frequency
distributions (LTFDs) as they allow to keep the phase
information and the possibility to apply the reconstruction
property.

Wavelet decomposition of SAR images has been studied
for many applications. In [30] and [31], wavelet frames have
been used in order to derive a measure of the polarimetric
texture used in segmentation and target detection schemes.
Wavelet transforms on SAR images have been used in [32] to
retrieve wind fields. In [33], wavelets have been used to reduce
speckle noise in interferometric SAR images. Fusion tech-
niques on wavelet coefficients have been used in [34] in order
to compute a change detection map. Wavelet decomposition
associated with kurtosis statistics have been exploited in [6]
and [7] for both segmentation and classification purposes.
In [35] and [36], multiresolution information is used for
target detection schemes in Gaussian context. Retrieval of
spectroangular diversity using wavelet decomposition have
in peculiar been investigated in work such as [37], [38].
More precisely, these methods have been used for target
detection applications in [39] or for change detection in [40].
In those works, the spectroangular information has presented
promising results. However, in those works, the decomposition
induced side lobes on the subimages which may decrease the
performance.
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This paper proposes a wavelet packet formalism (as a
generalization of LTFD) and designs a new family of wavelets
aimed at decreasing these side lobes. Then, the multivariate
image resulting from the wavelet decomposition is modeled
by a multivariate statistical framework. This framework allows
retrieving the properties of the clutter through a covariance
matrix parameter. Using this modeling, classic adaptive meth-
ods can be used in order to detect a target embedded in clutter
disturbances. The spectroangular behavior of the target is
assumed to be known through a steering vector. These adaptive
methods have been extensively studied in [41] and [42], where
the disturbances are modeled as a realization of a Gaussian
random variable parameterized by an unknown covariance
matrix. Classically, secondary data, assumed to be free of
the target, corresponding to surrounding pixels are used for the
estimation of the covariance matrix. Since in this paper the
images are the result of wavelet decomposition, the size of
the vector is expected to be large. Clearly, when the size of
the vectors is large, the number of secondary data needed
increases. This is problematic in HR SAR images where
heterogeneity of the data is naturally present. In this case,
the hypothesis of homogeneity of the surrounding pixels is
not evident and the Gaussian model reflects poorly the obser-
vations. Robust methods have been developed using broader
families of distributions than the Gaussian one [43], [44].
In this paper, both Gaussian and robust methods will be studied
and compared.

C. Contributions of this Paper

The different contributions of this paper are summarized as

follows.

1) A parametrized wavelet family is proposed to analyze
SAR Images. The new family is an extension of Shannon
M-Band filters that are adapted to take into account SAR
geometry. The new family is designed to reduce side
lobes on the wavelet coefficients. A criterion is proposed
for the choice of its parameters.

2) The spectroangular diversity, obtained through wavelet
decomposition, is used in robust target detection
schemes. Target detection schemes are explored in both
Gaussian and elliptical noise assumption and are studied
through two alternatives CFAR detectors: the adap-
tive matched filter (AMF) and the adaptive normalized
matched filter (ANMF). The behavior of those detectors
in terms of regulation of false alarm and performance
of detection are compared using two separate data sets.

D. Paper Organization

This paper is organized as follows. In Section II, the acqui-
sition geometry of SAR is recalled and it is explained how the
information about anisotropy and dispersivity of scatterers is
lost in the processing of the single-look monovariate image.
Then, in Section III, Shannon M-band wavelets are adapted
for the purpose of retrieving spectroangular diversity in SAR
images. In Section IV, an application of wavelet decomposi-
tion to target detection is presented and in Section V, simula-
tions and results are presented. Finally, some conclusions are
drawn in Section VI. Proofs are given in Appendices.
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Fig. 1. SAR acquisition geometry. A reflector is viewed at two different
angles of illumination d; and 6, in a given frequency. This information is
summarized through the wave vectors ki and kj.

The following conventions are adopted: matrices are in bold
and capital, vectors in bold. RY and CV refer to the sets of
N-dimensional real and complex vectors. L (C?) is the set of
the functions having values in C? for which the nth power of
the absolute value is integrable. For a given complex scalar, ®
denotes the conjugate operator, | e | is the module operator.
For any given vector or matrix, e/ denotes the transpose
operator, ¢/ denotes the transpose conjugate operator, || e ||
is the Euclidean norm. For any matrix, | e | denotes the deter-
minant. Given a 2-D function g € L'(C?) U L?(C?), the 2-D
Fourier transform (respectively inverse Fourier Transform) is
denoted by Fg(wy, wp) = fR g(xy, xp)e i@ 1Tl X2dx dx,
(respectively F~!g) and define T[p.q18(x,y) = glx—p, y—¢q).
For a function, (e, ) is the inner product on L' (C?)UL?(C?)
and || e || is the L? norm. llx denotes the indicator function
of a given set K.

II. SAR IMAGE AND NONSTATIONARITIES

In this section, we describe the geometry of acquisition for
a SAR system and give the definition of relevant physical
parameters. We then explain how algorithms such as range
migration algorithm (RMA) result in a loss of information
when considering HR SAR image.

A. SAR Acquisition Geometry

Fig. 1 presents the geometry of acquisition for an SAR
system. The moving radar transmits an electromagnetic wave
represented by the wave vector kK = [k, ky]T and recovers
the backscattering signal in order to obtain a map of the
reflectors of the scene. k is related to the emitted frequency
f by |Ik|]| = 8 = 2f/c, ¢ being the celerity of the light, and
to the angle of illumination @ by 6 = arctan(k,/ky).

The emitted signal is located in a certain range of frequen-
cies defined by: [fo — B/2, fo + B/2], fo being the carrier
and B being the bandwidth of the radar. This translates in
terms of spatial frequencies R to: [Ro — Rp/2, Ro + Rp/2]
with Ry = 2 fp/c, Rp = 2B/c. The angles 6 of illumination
lies in [—0p, Op] angular domain. The spatial SAR resolutions
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Fig. 2. ONERA RGB color-coded SAR image acquired for three consecutive
frequency bands.

are given, respectively, in azimuth by Jy, = ¢/(4 fo0p) and
in radial range by dy = ¢/(2B). We define D = [Ry —
Rp/2, Ro + RKp/2] x [0, 0], and US:£ as the space of
functions having spectroangular features in D.

B. Anisotropy and Dispersivity of Scatterers

In HR SAR Images, the hypothesis of isotropy and nondis-
persivity of the scatterers is no longer obvious. When a target
is illuminated using a large bandwidth and a large range of
angles, it is more reasonable to assume that its response is
dependent on the wave vector. Recent studies of the spectral
and angular behavior of the scatterers have shown the variation
of the scatterers’ response for several angles of illumination
and several frequencies [2], [45].

Fig. 2 presents an ONERA SAR image in X-band. The
responses of the scene relative to three consecutive frequency
bands have been coded in RGB color-coding. Red points are
responding only on the first band, green ones on the second
band, and the blue ones on the third band. They are called
colored scatterers. Gray points are called white scatterers as
they are responding equivalently in the three subbands. This
image perfectly illustrates how some scatterers have different
behavior given the band used. Similar results can be achieved
when looking at the scene at a different range of angles. This
diversity is of interest as it can be interpreted in terms of
target characteristic: given the spectroangular behavior of an
object of interest, one can adapt target detection schemes on
multivariate SAR images to this specific behavior.

Unfortunately, for complex monovariate SAR images, this
information is lost during the processing. In algorithms such
as RMA [1], the aim is to collect a backscattering reflection
coefficient I(k) and then perform Fourier-based spectral esti-
mation in order to build the conventional complex single-look
(monovariate) SAR image I (r) for each point r = [x, y]” on
the ground

I(r):/pf(k) exp(2i 7= k! r)dk (1)
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where the integration is performed on the whole spectral and
angular domains. When colored scatterers are present, their
spectroangular behavior is effectively lost.

Works such as [37] or [38] have proposed to model the
nonstationarities of the scatterers of the image / in the space of
spectral and angular features [ &, #]. Using this model, wavelet
analysis is a powerful tool for analyzing the behavior of the
colored scatterers. For instance, an hyperimage representing
the reflectivity of the scene for any subspace £ C D is given
as

e = [ 70050 dk @

where ‘I’g(k,r) is a wavelet function with spectro-angular
support £. When considering several subsets &1, yr, a wavelet
packet {‘I—‘gi (k,r)/i = 1,..., M} can be defined. The prob-
lematic is then to choose the shape of the wavelets and a
relevant partition of D in terms of & as to decompose the
image in separate frequency bands and range of angles for a
given purpose.

This approach was used in [39], [40] where good results in
both target detection and change detection have been obtained.
However, in those works, the problem of side lobes has not
been considered. We propose in Section III to design new
wavelets aimed at reducing the dispersion of energy on the
subimages.

IIT. NEW WAVELET DESIGN FOR SAR ANALYSIS

In this section, new wavelet packets adapted to SAR geom-
etry are developed. The particularity of this new packet with
regards to existing literature is the choice of polar represen-
tation which better describes the data with regards to the
spectroangular diversity of interest. To this end, we use classic
Shannon M-band filters that we adapt to take into account the
spectral support of SAR Images and then we correct the edge
effects of those wavelets.

The adaptation of wavelet packets in this geometry
can be done using many classic wavelets packets (Gabor,
Debaucheries, etc.). However, Shannon M-band filters have
been chosen as a basis of our design for the following
reasons.

1) They are separable with regards to the two dimensions
(R, 0) of the decomposition, which makes them ideal
when we want to choose the number of subbands and
sublooks (as in looking angle) separately.

2) Since we expect to exploit the decomposition in clas-
sic target detection scheme, there is a need for each
coefficient to deliver different information than the oth-
ers. Otherwise, correlations between subbands/sublooks
would be introduced due to the shape of the wavelets
and may deteriorate detection performance. This leads
to a choice of an orthogonal wavelet packet.

3) To better describe the behavior of a possible target as a
function of the frequencies and looking angle, we con-
sider wavelets corresponding to a connected subset of
the frequency/angular domain.
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A. Shannon M-Band Wavelets Theory

Let M; and M, be natural numbers that are both greater
than or equal to 2. The Shannon 2-D M; x M, multiband
wavelet filters used in this paper follow from a separable
2-D extension of 1-D filters presented in [46] and [47]. These
filters give a multiresolution framework for decomposing any
image.

We define US as the 2-D Paley—Wiener (PW) space
composed by elements of L2(R?) whose Fourier trans-
form is supported within [—z,7]?. Any element of this
space satisfies Shannon’s sampling theorem. Therefore,
when the M| x M, multiband decomposition concerns the
PW space US, the input data for the decomposition of
any element g of this functional space are the samples
{glk, €1}k, cez of g (corresponding to the pixels of the image to
decompose).

The 2-D Shannon wavelet packet function at resolution level

j and 2-D shift parameters (n1, n2), with n, € {0, ..., M{ —1}
for ¢ € {1, 2}, is given as
¥, = MMl 3
Jny,na] — 71 2 A?G 1y Aj,G[Z](nz) (3)
where
. {_(kﬂ)n, kﬂ} ! [k_ir (k+1_)n} @
: M Mm! Ml M

and (G[‘“‘])ge{ljz} are the permutation maps defined, respec-
tively, for & € {1, 2}, by G!¥1(0) = 0 and by recursively setting,
fork=0,1,.... M, —1and £ =0,1,2,...

MGY() + k,
MGUEI() —k+M—1,

if GI#1(¢) is even
if GI#1(¢) is odd.
(5)

G[S](Mf—i-k):{

—1wS
Define (I)] ] = & Yo A 2D wavelet packet
subspace <I>f3[n1 o] is generated as the closure of the space

spanned by the following translated versions of (D 1)

@S Clos< pel,qe Z> 6)

S (DS
Jilm,n] = [M-I/ij-zfq] J,lm,n]

These subspaces are such that for any fixed j
- @

m=0,1,...,MJ -1
n=0,1,..,M3j —1

q,S

mn

where @ denotes the direct sum of functional subspaces.

As an illustration, the Shannon 2 x 3 multiband wavelet
packet tree is given by Fig. 3 as a tree product resulting from a
2-band and a 3-band 1-D trees, where the tree product involves
all combination of nodes given at a fixed resolution level j.
In this figure, the positive part Aijr of Aj-, « 1s given for each
resolution level j under consideration.

The Shannon M; x M, multiband coefﬁ01ents of the projec-

tion of g on a 2-D wavelet packet subspace S S i | defines
the wavelet coefficients
S
Cj,[nl,nz][P,CI]z//Rzg(z,t)r[M/ M_z/q] n1 np1(2, )dzdr.
(N
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A% +, positive part of A2 .

Shannon 2 x 3 multiband decomposition tree associated with j = 2. The positive part of Al”L of Al o

are given at the right-side tree. The frequency tiles associated with the decomposmon are the intervals A1

are given in the left-side tree whereas

x A2 for every
Jj-e

hxed j: the whole tree involves all combination of nodes given at a fixed resolution level j.

Proposition 1: The coefficients of the projection of g on

a wavelet packet subspace <I>]S-[n1 ny) 18 @ discrete sequence

Cj tnmal = (C5 ) 1[5 41 p.gezs Where
Cotmnilps a1 = MMy PF U T p. M g) ()
with
Ujimn =Fgl x lle 0 Gm X /G(n). )
Proof: See Appendix A. (]

In practice, g is a discrete image to be decomposed. This
proposition shows how wavelet coefficients can be easily
obtained in practice through a simple fast Fourier trans-
form (FFT). [p, q] are the pixels of the wavelet coefficient
for shift parameters [n1,n>] at a fixed resolution j. Note
that a decomposition at a given resolution j assume that the
wavelets coefficients correspond to a decimated version of the
image (by a factor of M/ i and Mz) This methodology allows
computing efficiently the coefficients with a low-complexity.
Indeed, since only a Hadamard product and an FFT are
necessary, the complexity is linear with regards to the number
of coefficients desired.

The wavelets presented here are designed for images
respecting Shannon sampling theorem. The decomposition is
done on functions whose frequencies are contained in the
space [—, 7 ]%. We adapt hereafter Shannon wavelets from the
Cartesian space [—x, 7 ]> to the polar space D corresponding
to the physical diversity of interest for SAR images.

B. Adaptation of Shannon Wavelets to SAR Geometry
Define

kIIJS [fl n] (R,0) = RIZLIP HA/ K XD j.0n (8, 0) (10)
where
mRp (m+ 1)Rp
Aj,ﬁm—ﬁo—ﬁBJr[ IR (11)
nfg (n+ 1)03
Ajo, = [Lj | (12)
From this, we define the wavelet functions @77, | (x y) =

F- lLI’js [‘,fl (R, 0). Here, the variables x and y correspond
to the range and cross-range position as in Fig. 1. Note that
this definition requires computing the Fourier transform on

spectral and angular variables. Among the different possible

solutions of this problem, we will use interpolation from
the fractional FFT (3FT) in order to fill the Polar grid
[Ro — Rp/2, Ro + Rp/2] x [—0Op,0p] from the Cartesian
one corresponding to variables kyandk,. Among the 3FT
implementations, we recommend using that of [48].

The wavelets thus defined constitute a wavelet packet as per
the following proposition.

Proposition 2 (Vanishing Moments): For any nonnegative
integers j,m,n, p,q, we have

//R xpyq(DS;énn (x,y)dxdy =0.

Proof: See Appendix B. 0

Functions @ Py [m q) defined above have, thus, an infinite
number of vanishing moments. Since they are well localized
in space/frequency/angle, they are wavelet functions.

Define the wavelet subspaces <I> similar to (6). Then,
we have the following.

Proposition 3 (Orthogonality of Wavelet Packet Sub-
spaces): For any given j and any (m, n) # (m’,n’), we have

mn

(DS,A L <I)S £
i Jolm’,n']
where L denotes orthogonality symbol.
Proof: See Appendix B. 0
Proposition 4 (Completion of Wavelet Packet Subspaces):

For any given j, and any (m, n), we have

U <I)§[§1n] = US4,
m=0,1,...,R/ — 1
n=0,1,...,L/ — 1
Proof: See Appendix B. 0
Propositions 2, 3 and 4 highlight that wavelet subspaces
@ iz lm=0,1,.. R —1n=0,1,.. L -1

can thus be used to define several multiresolution frameworks
(specific subselection of j, m, n) for analyzing SAR data.
Analyzing SAR data is done by computing the wavelet
coefficients as previously stated in (2). We have the following.
Proposition 5 (Wavelet Coefficients): In practice, at a reso-
lution level j, we obtain the wavelet coefficients by computing
the following:

S&

Climmlp -l =R7PLTIPFW, 0 (R p, LY q) (13)
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splitting ‘i‘s

f/ m, l’l
are glVCﬂ or

illustration.

Fig. 5.
(Right) C}”

Example of bright point decomposition.
with R =L =2.

(Left) Image 1.
S, £
LIL1]

where Vj . follows from the backprojection of the SAR
image with respect to spectral and illumination features

Viima(R,0) = 1(8,0) la, o xa,5 (R,0).  (14)

Proof: Similar to proposition 1. U
Again, the complexity of this methodology is linear with
regards to the number of coefficients (R x L) since coefficients
are obtained from a Hadamard product and a 3FT. In practice,
any SAR data can efficiently be analyzed using this method-
ology.
An example of a multiresolution analysis is given in Fig. 4
for spectral features and angular illumination in [fy —
B/2, fo+ B/2] x [—0p,0p5] = [1,5] GHz x [—45, 45] deg.

C. Bell-Shaped Wavelets Design for SAR Geometry

When considering Shannon wavelets, the decomposition is
subject to hard transition in the sense that each filter is an ideal
bandpass filter. When considering the wavelet coefficients, this
results in convolution with a sinc function which has high
side lobes (see Fig. 5 for an illustration). This dispersion of
energy is problematic in detection schemes when secondary
data, corresponding to the surrounding pixels, are needed.

To limit the side lobes on the wavelet coefficients which are
due to the sharp edge of the Shannon wavelets, we look for
alternatives that are subject to smooth transitions. We derive
hereafter, a new family of parameterized R-band/L-look
wavelet functions including the Shannon wavelets as limit
case.

We propose the following criteria for the design of the new
family of wavelets.

(ﬁ 6) defined by (16) when considering [ fo — B/2, fo+ B/2]1 x [—0p,0p] = [1 GHz, 5 GHz] x [—45 deg, 45 deg]. The intervals represented

Fig. 6.
slope parameters b € {1, 3, 10, 50}.

Bell-shaped function with width @ = 3, center ¢ = 0, and different

1) Well located in frequencies and angles (wavelet func-
tion).

2) Similar behavior to Shannon wavelets to preserve the
framework presented in III-B.

3) Smooth transition with a parameter controlling the decay
(for adaptability purposes).

Many functions respect the two first criteria. However, Bell-
shaped membership functions appear to be a good choice as
they allow to control both center, extent, and slope (and thus
smoothness). They are a family of 1-D functions defined by

Bell( )_ 1

éabc (15)

where the parameter a stands for the width of the function,
the parameter b controls the slope, and the parameter ¢ is a
location parameter.

Fig. 6 gives an example of Bell function with different
slopes and shows that these functions are good candidates for
our problem. Using them as a basis, we define

di,da1,4 dy,ds]
il (R,0) = R>L> H[ whlLRo1p  (16)
dy,dr],£ .
where H; .. " is defined as a product of two Bell
functions
[dy,da], 4 d,
HYLEE 4R, 0) = B A(R) HZA0) (17
with
d17 (R) Bell
8s fy , eminsy (R)
]m 2ledﬁ0 b’+ 7RJB
H24 gBell 0
jn ( ) = ()B ,d2,7<93+(2”;/)03( ).
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The definition is similar to that of (10): the center and width
of Bell functions have been adapted to span the SAR geometry
domain D through R/ translations along & and L/ translations
along . The slope parameters d; and d, are let open as a
parametrlzatlon of the wavelet famil 2/

Define @ dl’dz]f F- 1‘1’ dl’dz (R, 0), the wavelet func-
tion. We have the following propertles

Proposition 6 (Vanishing Moments): For any nonnegative
integers j,m,n, p,q, we have

ffos

Proof: Similar to 2. The null derivative in (0, 0) is assured
by the indicator lp. U

Proposition 6 indicates that the functions presented by (16)
define wavelets.

Proposition 7 (Convergence to Shannon Wavelets): The R-
band L-look wavelet transform obtained by using (16)
is associated with the Shannon wavelet transform when
di,dr) > +00

[d1,d2], £
10; Em n]

(x,y)dxdy =0.

lim lim ¥
dy—+00 dy—>—+o0

d[],d2 KaelPSK (18)

[
Jj,m,n] [m,n]

where equality holds true almost everywhere (a.e).
Proof: See Appendix C. (]
Proposition 7 highlights that the Bell-shaped wavelets have
similar behavior than Shannon wavelets for high value of d;
and d» and can thus be used for analyzing SAR images.

For convenience purposes, we use alternatively the notation
‘P[OO ool, £ _ ‘P
Jslm,n] Js [m nl:
A problem arises in the choice of these slope parameters.

One can intuit that given their value, the properties of orthog-
onality and completion of wavelet packet subspaces are not
assured. Unfortunately, given the expression of the wavelets,
finding an interval of values using orthogonality or comple-
tion properties is not possible to our knowledge. As such,
we propose to consider the wavelet packet in terms of frames
(see [49] for details) which relax the conditions of orthogo-
nality and completion. As suggested in [50], a wavelet packet
has good reconstruction property if the energy of the signal is
preserved when doing the decomposition and reconstruction.
In practice, this can be ensured if the following condition is
respected [51]:

[di,d2],& 2

0(8,0) _Z\H] bEL Lo g))|

[m,n]

~1 VAYO. (19)

This criterion can be used to grasp qualitatively how the
decomposition will treat the frequencies present in the image.
If O > 1, the energy increase which means that the packet
is redundant. When Q < 1, there is a loss of energy and
thus information. We propose to use this criterion to select
the values of d; and d, which preserve energy the most.

Since the expression in (17) is separable in & and 6, we can
treat both separately and solve the problems: V(R&, 6) € D, find

dy subject to Qa(R) =Y, |H]d'[’m (@ ~ 1 and find d;
subject to Qp(0) =37, |H”12;;<n O~ 1.

Fig. 7 gives the values of Q for several values of dy and d»
for a given set of (j, R, L, fo, B, 0p). We note that for small
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Fig. 7. Redundancy of wavelet packet for fy = 9.6 GHz, B = 640 MHz,
Op =025rad, j=1,and R=L =2.

values of deeq1,2), there is a loss of energy at the transitions
between the filters. For values of dceq1,2) € [10, oo, this loss
is acceptable. Indeed, since the wavelet packet is developed
for target detection schemes, there is a need to know the
spectroangular behavior in a vector of a fixed size. This means
that if the energy of most of each band is preserved in the
coefficients, this will not impact much the detection scheme.

Finally, we can compute the wavelets coefficients simply
by taking expression at (13) and using Vjun(R,0) =
[(R,0) H 20

IV. APPLICATION TO TARGET DETECTION

In this section, we propose to use the wavelet decomposition
of Section III in order to detect a target in a noisy SAR image.
First, we give a statistical model for noise disturbances. Then,
we present the target detection problem.

A. Data Model

In the following, each pixel location (p,q) of the SAR
image will be represented, at a resolution level j, by a set
of R-radius and L-look wavelets features encapsulated in the
random complex vector

{C dl,d2] £

) N
[m,n] LRI—1 eC

Lfel

[p.q }m =0,1,.
n=0,1,...

cilp.ql =

where N = R/ x L/.

In standard applications, the vector ¢;[p, ¢] is modeled as
a multivariate Gaussian vector: ¢;[p, g] follows a Gaussian
distribution CN'(0, R) where R is the unknown covariance
matrix of the data. This model is accurate for SAR images
where each pixel is the sum of the contributions of all the
scatterers inside its range.

However, when considering HR SAR images, the number of
scatterers present in any pixel of the image is small, meaning
that the Central Limit Theorem may no longer be applicable.
Moreover, there are many nonstationarities inherent to this
kind of images where the backscattered power can vary greatly
spatially inside the analysis windows. Thus, the Gaussian
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hypothesis may no longer be applicable. To generalize the
Gaussian statistic, we assume that ¢;[p, ¢] follows a complex
elliptical symmetric (CES) distribution CE(0, g, R) where the
scatter matrix R is unknown and where g stands for any
characteristic function generator [52]. This model extends
the Gaussian distribution and better characterizes HR SAR
images.

In both models, the matrix R characterizes the angular
and the spectral behavior of each scatterer. To estimate this
matrix, the following K secondary vectors surrounding the
pixel (p, ¢g) under test (supposed homogeneous in terms of
angular and spectral behavior) are used:

{cj[P_fl,CI_fZ]}é’]:fK] ..... K
(h=—K»,...,.K»
(€1,£2)#(0,0)

with K = QK| +1)2 Kx + 1) — 1.

We consider two covariance matrix estimators on wavelet
feature vectors: the standard sample covariance matrix (SCM)
which can be written, under the zero-mean wavelet coefficient
assumption, in the form

~ 1
RSCM,j[PJ]]:? cilp—1£1,9 — (2]

(1=—Ki,....K}
th=—K>,...,.K>
(£1,62)#(0,0)

xcf’[p—fl,q —{2] (20)

and, as an alternative to SCM (which can have poorer perfor-
mance under generalized CES model assumption), the Tyler’s
estimator (TE), which has proven some robustness in both
Gaussian and non-Gaussian cases and which is defined as the
solution of the fixed-point equation [53] as shown in bottom
of this page.

The TE estimator is robust to nonstationarities that are
naturally present in HR SAR images.

For both SCM and TE estimators, the number K has to
be around K ~ 2N for a good estimation [41]. For high
values of R or L, the vectors become very large. Some-
times, it would be impossible to have a sufficient number
of secondary samples for the estimation of the covariance
matrix. In those cases, regularized versions of SCM and TE
exist in the literature and have shown good results for many
applications [54]-[56].

Note that both estimators are used to estimate the covari-
ance matrix of the clutter around a target. Hence, the test
pixel (namely, (£1,¢2) # (0,0)) is excluded in the
process.
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B. Detection Schemes

We assume that a target with a known steering vector
p € CV could be present in some pixels in the SAR image.!
We have for each pixel I[p, g] to solve the standard binary
hypothesis test

Hy:cj[p,q] =n, ¢, =n; Yk e [1, K] 22)
Hi:cjlp,ql=ap+n, ¢ =n; Vk €[l, K]
where (n, ng) both represent a noise with the same distrib-
ution, a is an unknown complex amplitude of the potential
target with spectroangular steering vector p to be detected and
{ck)ker1, k) being the K secondary data.

In this detection issue, we decide to test different adaptive
detectors like the well-known adaptive matched filter which
corresponds to a two-step generalized likelihood ratio test in
homogeneous Gaussian noise [41]

AMF

Hp-1 2
Ip? Rgey i glejlp, ql|” m
Aj[pa Q] = J ‘

= z A
p# RSCM,j[p’ qlp Ho
where A is the detection threshold.

For partially homogeneous Gaussian noise or for CES
distributed noises [52], the derivation of the detection problem
leads to the ANMF [59], [60]

(23)

ANMF
Ajlp. 4]
D — 2
f— ~ —— < .
(p" RTé,j[P’CI]P)(C}H[P»q]RTé,,-[p,q]cj[p,q]) Ho
(24)

The AMF detector has the CFAR property relative to the
Gaussian distribution, while the ANMF is CFAR for both
Gaussian and CES distributions. This is an important property
since it allows to select a detection threshold to ensure a
probability of false alarm (Pg,) independently of the data being
tested.

Concerning the complexity of these methods, the limiting
factor is the need to compute the inverse of the covariance
matrix for both AMF and ANMF schemes. Then, if the number
of coefficients is high, this operation becomes time-consuming
[typically O((R x L)*)].

As for the implementation, the target detection schemes
can be implemented using parallel computation: by splitting
the image into several subimages and treating each one by
a given thread, the computation time is greatly reduced. The
simulations presented in Section V were done using a machine
with two Intel Xeon CPU E5-2670 v3 at 2.30-GHz processors,

INote that when the steering vector is not known, it is possible to develop
Bayesian target detection schemes using works such as [57], [58].

¢jlp —t1,q — Ll lp— 1,9 — (2]

Ree[p q] =
TE,jLP> 4 4

(h=—K»,...,.K»
(€1,62)#(0,0)

ek p— g — LIRS [p.qlejlp — L1, q — 2]

21
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Fig. 8. Coefficients for Shannon and Bell-shaped wavelets on SDMS Image with R = 2 and L = 2. The improvement in terms of linear patterns (side lobes

of bright points) for d; = dy = 3 are highlighted using dashed boxes.

that makes 24 cores in total, and 32 Gb of RAM, the com-
putation time for an image of size 2510 x 1638 and R = 5,
L =5, was 3.35 s for the AMF algorithm and 28.34 s for the
ANMF one.

V. SIMULATION AND RESULTS

Some simulation results and discussions on several aspects
of wavelet analysis and target detection are presented here.

A. Data Set

Two data sets have been used to test the wavelet decompo-
sitions and their impact on target detection schemes.

1) SANDIA data set, available at http://www.sandia.
gov/radar/complex_data/. The image referenced as Min-
iSAR20050519p0010image002 is selected.

2) Sensor data management system (SDMS) data set [61],
available at https://www.sdms.afrl.af.mil/index.php?
collection=ccd_challenge. The image referenced as
FPO0120 is selected.

Table I summarizes the information on both data sets.

B. Simulation Description

For a given SAR image, an artificial target with a given
steering vector (representing its spectroangular behavior)



3928

TABLE I
DESCRIPTION OF DATA SET

Dataset Band  Frequency  Resolution Scene description
SANDIA Ku 16.8 GHz 0.10 m Stationary aircraft, trees
SDMS X 9.6GHz 0.20 m Foliage, buildings, vehicles

is embedded. This allows controlling both position and
signal-to-noise ratio (SNR) of the target to be detected. For
a given image I, steering vector p € CRxL 4 pixel [i;, j,]T
corresponding to position r; = [x(i;), y(j,)]T and a given SNR
in decibels, an image with the target is obtained through

I =1 10”2 25)
t = —|— o 20
1T 1lz,
with
T — Z f71 {p[m’ f’l] HAijm XA_/,gn ei27T kT l‘r}
m=0,.,.,Rj71
n=0,...,L7 —1
and

ol= Y IG+iji+i)
i=—10,...,10
the variance of the noise on a window around the target.

This process is done as follows.

1) Choose a steering vector p.

2) Build spectrum according to the steering vector and
create an image of the targets using (25).

3) Perform the wavelet decomposition and create the hyper-
image using (13).

4) Apply the detectors (23), (24) with the given steering
vector.

C. Results

1) Spectroangular Behavior: Fig. 8 shows a 2-Band 2-
Look decomposition of a portion of SDMS Image. First,
the spectroangular behavior of the data can be analyzed; given
the subimage considered, different patterns emerge. Indeed,
for example, the object in the bottom right corner of the
figure (0 > x > 100 and —50 < y < 0), is not present in
the coefficients Cy (2] and Cy [2,2).

2) Quality of Decomposition: Next, the wavelet decompo-
sition is compared with two parameters d; and d;. When
comparing both Shannon and Bell decomposition in Fig. 8§,
we observe for Shannon wavelets linear patterns (side lobes for
the strong scatterers present in the scene). When considering
di1 = dr = 3, the undesired linear patterns are less prominent.
This result was expected as Bell-shaped wavelets make a more
concise decomposition in the spatial domain.

3) Pra-A Curves: Next, we plot in Fig. 9, the Ppa-4
(probability of false alarm versus threshold of detection) plots
for both AMF and ANMF detectors to study the CFAR
behavior of the detectors on the data sets. We choose a random
steering vector and apply detectors on the image without any
target. It can be observed that the ANMF detector fares a lot
better in terms of regulation of false alarm than the AMEF.
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Fig. 10. Target near a bright point. Data set is SANDIA, R = L = 5. The
target has an amplitude of —60 dB when compared to the bright point.
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Fig. 11.  Results at Pry = 1073, (Top) di = d» = oo. (Bottom)
dy = dy = 10. Data set is SANDIA, R = L = 5. The target has an amplitude
of —60 dB when compared to the bright point.

When compared to the theoretical relationship, the AMF
detector has an experimental threshold higher at low Prg
whereas the ANMF detector stays close to its theoretical
performance. This can be interpreted by the heterogeneous
nature of the data sets which is not well modeled by Gaussian
assumption.
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TABLE II

RESULTS OF DETECTION WHEN RANDOMIZING STEERING VECTOR.
SNR =0 dB, 100 DIFFERENT SIGNATURES HAVE BEEN TESTED
FOR 100 DIFFERENT TARGET POSITIONS ON EACH IMAGE

SDMS SANDIA
mean min  max mean min  max
AMF di =10 081 0.67 091 | di =10 0.04 0 0.11
di =00 055 042 070 | di =00  0.02 0 0.10
ANMF d; =10 0.95 089 1 dp =10 0.50 034 0.71
di =00 079 068 092 | di =00 046 022  0.66

4) Detection Near Bright Point: We choose R = L = 5
and j = 1 and we place the target to be detected, with an
SNR of 20 dB, near a synthetic bright point with Gaussian
spectro-angular behavior. Fig. 10 gives the steering vector of
the target to detect, the specter of both targets and the image
obtained by the procedure presented at V-B. The data set used
here is the SANDIA one.

Then, we apply both detectors on the wavelet coefficients
characterized by di = d» = oo and d; = d» = 10. Fig. 11
shows the result of the detection at Pr4 = 1073. The threshold
guaranteeing the Pr4 was taken from the experimental curves
of Fig. 9.

Discussion: We focus first on the test of detection with
di = d» = oo (top of the figure). It can be observed that
that for both detectors, the target is not detected. The AMF
detector gives a false alarm at the position of the bright point,
which is expected given that this detector is mostly a power-
based detector. However, the ANMF detector does not detect
the bright point as it does not have a similar spectroangular
behavior as the steering vector. However, a false alarm is
still present which can be explained by a similar of the
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Pd-SNR plots for several values of d| = dp. (Top) AMF Detector. (Bottom) ANMF Detector.

scene signature than the steering vector. If we take a look
at detection tests for di = dy = 10 (bottom of the figure),
we observe that the target is detected with the ANMF detector
but not the AMF one. This can be explained by the fact
that with di = d>» = 10, we have reduced the side lobes
of the bright point which does not pollute the pixel of
the target any more resulting in better detection. The AMF
detector does not yield better results for the same reason as
previously.

These results are interesting since they confirm that the
parameterization of the wavelet decomposition impacts the
performance of detection.

5) Pp-SNR Curves: By randomizing the spatial location of
the target for Monte Carlo trials, we obtain Pp-SNR plots for
both detectors presented in Fig. 12. The steering vector is set
to a fixed value for all the trials.

Discussion: We first observe that the ANMF detector
performs better in terms of detection than the AMF one
for both data sets: if we look at Pp = 0.7, a gain of
almost 7 dB is observed for the ANMF for SDMS data set
and 10 dB for SANDIA data set. This can be interpreted
by the non-Gaussian nature of the data which makes reg-
ulation of false alarm difficult for the AMF detector and
by the fact that ANMF is better suited for heterogeneous
data.

The plots for the SANDIA data set show overall lower
performance than the SDMS data set. This can be explained
by the different nature of the data sets: the SANDIA image
is more heterogeneous than the SDMS one and the speckle
noise is more important.

Next, the different plots for each di = d», lead to a
significant gain when considering d; = d = 3 or 10 compared
to di = dy = oo for the SDMS data set (about 8 dB at



3930

Pp = 0.6). This result is coherent with the observations
done previously in V-C4. Indeed, the side lobes are contained
in the secondary data that is used for the estimation of the
covariance matrix. These outliers lead to a loss of accuracy
in the estimation which, in turn, decrease the performances
of detection. It can be also observed a loss in detection for
d1 = dp = 1. This is coherent with the analysis of the previous
section.

The gain using the new wavelet is lower on the SANDIA
image (about 1 dB at Pp = 0.6). It is to be expected since
the SANDIA data set contains few bright points spread over
the scene.

6) Impact of the Steering Vector: In order to assess the
impact of the steering vector, another Monte Carlo simulation
has been done by setting the SNR to 0 dB and randomizing
the target signature at each trial. For each trial, the target has
been set to 100 different locations to compute a probability
of detection. Table II gives the performance of detection for
two values of di = d> and for both data sets. The same
conclusions as previously can be drawn: the ANMF detector
performs better than the AMF one on both data sets and using
a Bell-shaped wavelet with a parameter d; = d» = 10 allows
improving the detection rate.

VI. CONCLUSION

This paper presented an adaptation of Shannon wavelet
packets to SAR geometry in order to retrieve a physical diver-
sity of interest. To reduce the side lobes, which are inherent
to wavelet decomposition, a new family of parameterized
wavelets has been proposed. These wavelets have the Shannon
wavelets as a limit case and are tuned using a redundancy
criterion.

This wavelet decomposition has been used in target detec-
tion schemes. It has been shown that the spectroangular
diversity, inherent to HR SAR Images, can be used in classic
adaptive detection framework. First, the robust framework has
proven to be more effective over the Gaussian one in both
false alarms regulation and performance of detection. Then,
the reduction of side lobes with the new family of wavelets,
yields significantly gain in the performance of detection when
the image contains numerous bright points.

In this paper, we restrained ourselves to a fixed resolution-
level for the statistical analysis. It may be interesting to use
the multiresolution framework to selection a decomposition
which yields the best possible diversity of a given image while
keeping the size of vector low. To this end, a solution can be
for example the use of an entropy-based criterion when doing
the decomposition.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Defining the wavelet coefficients from the fol-
lowing integral:

nl,nz] [p,ql = // g(z, t)T Ml p.Miq } nl ny1(2, 1)dzdt
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we have (through Parseval)

1
S S
i / ]Z'g(a)l,a)z)fr[M{p,M_z,q} (Dj,[m,n]
x (w1, w)dw;dw)).

S
Cj,[m,n][p, ql =

As (Fourier transform property on the translation)

}—T[M'{P,M‘zjq] (D?,[m,n](wl’ ) =é (] pon) o (M] g )

xf@?im,n](wl, @2)

we obtain

1 Lo )
C?,[m,n][p’q] - E//el(M1 pwl)el( 2"“’2)}"5’}"(1)1 [m,n]

X (w1, w2) dojdw,.

The integral Corresponds to the 2-D inverse Fourier trans-

form of [Fg] ‘I—’] (m.n]- |

APPENDIX B
PROOFS OF III-B

Proof of Proposition 2: Function (D (m.n] (x, y) being sep-
arable with respect to x and y, we have

//R2 x? yq (Di[m,n](X, y)dxdy

d d
_ _iptg S S i /
P er Limm B[ o

Proposition 2 follows by noting that ¥$ 7 (m,ny has null deriva-
tives. |
Proof of Proposition 3:

£
(DS [m’ n’]>

://R CDS’( (& y)CDJ (m > y) dxdy.

By using Parseval formula, we derive

<(D] [m,n]>

S.«&

<(Dj [m,n]> SA >

[m’,n']

// Fo (.ﬁ 0) f(D (R,0)drdo
471, m ,n] [m',n']
which reduces to

S, £ S, £
(@ s o)
R/LJ

_ 3 //R2 IA; g, %A, g (R, H)HA_,,Rm,xA,,on, (R, 6)dKRd0.

For m # m’ or n # n’, intersection Aj g X Ajg N Ajg, X
Ajp,, of the supports of .7-'(D (m.n) and ]:(Di[m’,n’](ﬁ’ 0) are
either disjoint, or reduce to a null set. This ends the proof. W

Proof of Proposition 4: The proof is a consequence of Shan-
non band-limited function representation and the fact that for
any j > 1, the sets A_jjgm x Ajg,, form :O,l,...,Rj —1
and n =0,1,...,L/ — 1, are constructed so as to form a
partition of D. |
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APPENDIX C
PRrROOFS OF III-C
Proof of Proposmon &7 It suffices to show that
[d1,dr],£
dl,d1211_1)1+00 o, '0 g] = \Po,[o,oy From (17), we have
1
dy,d.
HiT6 (R, 0) = o (26)
1+‘(ﬁym\1+%

As a consequence, if |[R — Ro| < (Rp/2) and |0] < 05, then

: [dl,dz
lim 0 0.0]

R,0)=1.
dy,dy—+00 ( )

In contrast, if |8 — Ky| > (Rp/2) or |#| > Op, then

which ends the proof.
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