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Abstract—Under Gaussian assumptions, the sample covariance
matrix (SCM) is encountered in many covariance based processing
algorithms. In case of impulsive noise, this estimate is no more ap-
propriate. This is the reason why when the noise is modeled by
spherically invariant random vectors (SIRV), a natural extension
of the SCM is extensively used in the literature: the well-known
normalized sample covariance matrix (NSCM), which estimates
the covariance of SIRV. Indeed, this estimate gets rid of a fluctu-
ating noise power and is widely used in radar applications. The aim
of this paper is to derive closed-form expressions of the first- and
second-order moments of the NSCM.

Index Terms—Estimation, normalized sample covariance ma-
trix (NSCM), performance analysis, spherically invariant random
vectors (SIRV).

I. INTRODUCTION

GIVEN independent identically distributed observations
of a zero-mean complex Gaussian random vector, the

sample covariance matrix (SCM) is the maximum likelihood
estimate of the data covariance matrix. It is well known that
the SCM is complex Wishart distributed, unbiased, and its
second-order moments have simple expressions. The full
statistical characterization of the SCM allows performance
analysis of numerous algorithms relying on this estimate. How-
ever, this widespread estimate is no more appropriate when
observations are not Gaussian. This is, for instance, the case
for radar clutter returns [1], [2], radio fading analysis [3], or
sonar interferences [4]. In these contexts, spherically invariant
random vectors (SIRVs) have been appropriately used in mod-
eling non-Gaussian problems. A SIRV is a complex compound
Gaussian process with random power. More precisely, a SIRV

[5] is the product of the square root of a positive random
variable , called the texture, and a -dimensional independent
zero-mean complex Gaussian vector with covariance matrix
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normalized according to , where is the trace
of a matrix

The notation means that is a zero mean com-
plex Gaussian vector with covariance matrix . In this paper,
we consider the estimation scheme of from independent
SIRV observations, , for . In this
context, we analyze the statistical properties of the well-known
normalized sample covariance matrix (NSCM), introduced in
[6], defined by

(1)

where denotes the transpose conjugate operator. Notice that
the NSCM does not depend on the texture. The central limit
theorem ensures that the NSCM is asymptotically Gaussian but
first and second order moments of this estimate never appeared
in the literature. Thus the goal of this paper is to fill these gaps
when the -eigenvalues are distinct, i.e., the most common and
realistic case.

II. FIRST- AND SECOND-ORDER MOMENTS OF THE NSCM

In this section, we present the main results while computa-
tional details are provided in the Appendix.

Let us introduce the eigenvalue decomposition of

(2)

where is the diagonal matrix of the -eigenvalues,
, and is the unitary matrix of the -eigen-

vectors. Notice that we assume that all eigenvalues ,
are strictly positive and different, i.e. their multiplicity order is
1. We note the statistical mean.

Theorem: The first-order moment of the NSCM is given by

(3)

where

(4)

(5)

1070-9908/$25.00 © 2007 IEEE



426 IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 6, JUNE 2007

and where is the diagonal matrix of the ’s, with
.

Proof: See Appendix I.
Remark 1: This theorem provides as a by-product the eigen-

decomposition of . It shows also that and share the
same eigenvectors but have different eigenvalues. Consequently,
the NSCM is a biased estimate of .

Remark 2: The NSCM preserves the ordering of the
eigenvectors.

Let us denote the operator which reshapes a
matrix elements into a column vector. Let us note

and introduce the two matrices

(6)

from which the covariances of the real and imaginary parts of
the NSCM are straightforwardly derived.

Theorem 2: The NSCM is asymptotically Gaussian and

(7)

(8)

where

(9)

(10)

with

(11)

where and are, respectively, defined in (4) and (5).
Proof: See Appendix II.

III. CONCLUSION

The closed-form expressions of the first- and second-order
moments of the NSCM for SIRV modeling have been pro-
vided in this paper with full detailed proofs. These analytical
equations are essential for analyzing performance of signal-pro-
cessing methods based on NSCM: detection schemes in radar
applications and direction of arrivals estimation in array
processing.

APPENDIX I

PROOF OF THEOREM 1

Using the eigen-decomposition of (2), let us whiten ac-
cording to . Hence, and

The NSCM (1) statistical mean can be rewritten as

(I.12)

Each component of is a zero-mean unit variance circular
complex Gaussian variable and can be expressed as

where is Chi-squared-distributed with two degrees of
freedom, is uniformly distributed on . All the ’s
and ’s are two-by-two independent. It follows that (I.12)
yields

Let us set

(I.13)

where and .
The pdf of has to be derived to complete the proof. Since

all ’s are independent, the characteristic function of is

where . Thus, the pdf of

follows

(I.14)

So, the density of is obtained by the weighted sum of the
densities of by the coefficient . Now, the pdf of the ratio

is a weighted sum of Fisher-Snedecor (F) laws

(I.15)

and after some manipulations, (I.13) yields

It remains to show that . First, the ’s,
defined in (I.13), are strictly positive. Now, let us consider the
following function for and :
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It follows from (I.13) that we have and
, for , and where

stands for the statistical mean related to . To show that
, we prove that for all , assuming

. Let us define the functions

which verify , , and . To
demonstrate that , we show hereafter that and are,
respectively, strictly decreasing and strictly increasing functions
of on the interval [0,1]. We have

from which we obtain

In summary, for any , such that . This
completes the proof of Theorem 1.

APPENDIX II
PROOF OF THEOREM 2

By expressing the variance of the NSCM as a linear combina-
tion of functions of the -eigenvectors, we compute the statis-
tical means of the coefficients. Equations (1), (3), (6), and (I.12)
lead to

where

and is the Kronecker delta. The ’s being independent uni-
form variables, the last term of previous equations is zero unless

, or , , which leads to

where

(II.16)

This is (7) of Theorem 2 and (8) is derived from the same rea-
soning. Concerning (9), one has, from (II.16), for ,

, where and are defined in (I.13). Thus
. Equation (10) is derived

further. The proof needs some results related to exponential in-
tegrals introduced hereafter.

EXPONENTIAL INTEGRALS AND RELATED FUNCTIONS

From [7, p. 228], let us recall the definition of the exponential
integral

(III.17)

where denotes the real part of and is Euler’s gamma
constant. Let us introduce the real function

(III.18)
Let us show that the integral involved in the definition of

is well defined for and . From [7, p.
229], we have for , which leads
to

where the function , , is defined
for , see [7, p. 228]. In conclusion, function is
well defined for and , i.e., for and

.
We are interested in the limiting values of when

tends to zero. Integration by parts leads to

(III.19)

where is given by [7, p. 228]

Equation (III.19) combined with for
which results from the series expansion (III.17) with

, see [7, p.
230], and with the above expression of , leads to

(III.20)
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END OF PROOF OF THEOREM 2 ( FOR , SEE (10))

It remains to compute (II.16) to complete the proof of The-
orem 2. Let us write with

and . A pdf decomposition

similar to (I.14), but for , provides

(IV.21)

where is

An analytic expression of is obtained by computing the
above integral. The previous equation is rewritten as

(IV.22)

where . Then,
by setting , is rewritten as

where and are defined in (III.17). Now, by replacing
in (IV.22), we obtain

(IV.23)

Integrating firstly along in allows to rewrite as

(IV.24)

where the function is defined in (III.20). Now, let us com-
pute as

with
By a change of variable, is rewritten as

and can be simplified with (III.19) and with
. The simplified expression of

allows to rewrite as

where , for , . Finally, combining the
previous result with (III.20), (IV.23) and (IV.24), one has

Thanks to (IV.21), the previous equation provides (10) and (11).
This concludes the proof of Theorem 2.
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