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Motivations

The Model Order Selection is a fundamental problem in Signal Processing:

m Radar, Sonar: Direction of Arrival, Source Localization, STAP, Date of Arrival,
Spectral Analysis (ARMA), etc.

m Hyperspectral: Unmixing, etc.

m Finance: portfolio optimization, efficient portfolio composition, etc.

In spite of the multitude of techniques available for solving this problem, most of them
use information theoretic approaches, such as:

m the Akaike Information Criterion (AIC),
m the Minimum Description Length (MDL).
Recently, the Random Matrix Theory (RMT) based-approach has also been proposed.

All these methods are classically based on white Gaussian noise assumption. )
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Problem formulation

Model under study
Akaike Information Criterion

Outline

Problem formulation
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Problem formulation

Model under study
Akaike Information Criterion

Problem formulation

Let {y,-}l.e[1 v be N observations of size m characterizing the p < m mixed sources
corrupted by additive noise:

P
y;:Zs;ij+ni, i€l[L, NI, (1)
j=1

which can be rewritten more compactly as:
Y=MS+N, (2)
where
m Y =[y,y2,...,yn € C™N are the observations,
m M € C™*” is the mixing matrix containing steering vectors of the p sources,
m S € C”*V is the channel gain matrix,
L]

N € C™ " is the additive noise matrix, independent of the source signal.

Generally, p < m is unknown, M and S unknown and N is zero-mean white
Gaussian noise.

£
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Problem formulation

Model under study
Akaike Information Criterion

Recall of Akaike Information Criterion and MDL

Goal: Given a set of N observations Y = [y1,y>2,...,yn] and a family of models, (e.g.,
a parametrized family of pdf {f(Y|®)},), select the model k that best fits the data.
Akaike [Akaike, 1974] proposal was to select the model which gives the minimum AIC
defined as:

AIC(k) = —2 log f (Y|Ok) + 2k,

where © is the MLE of vector @« and k is the number of free adjusted parameters in
vector Q.

Schwartz [Schwarz, 1978] and Rissanen [Rissanen, 1978] approaches yield the same type
of criterion, given by:

MDL = —log f (Y|©,) + % k log N .

v
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Problem formulation

Model under study
Akaike Information Criterion

Applications for Model Order Selection (1)

Let us consider the theoretical covariance matrix R of complex observations y; with n;
white Gaussian noise:

R=E[yiyl] =Ms;s/ M"+’I,, = ® + 0’ I,
We assume here M full column rank ({m;}, linearly independent) and s; s non singular.
We have:
m rank(®) = p, the m — p smallest eigenvalues of @ are equal to zero,
m eig(R) = {A1,A2,...,Ap,0%,...,0°}.
We can define a family of covariance matrix R¥ =™ 4+ 621, as:
k
Model (k): R = Z (7\; - 02) vivi +0° I,
i=1
where A1, ..., A¢ are the k highest eigenvalues of R and where Vi,..., Vg are their
corresponding eigenvectors. We can define also the vector @ of unknown parameters
as: ,
®k=()\1,...,7\k,0'2,V1,...,Vk) .
7/48
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Problem formulation

Model under study
Akaike Information Criterion

Applications for Model Order Selection (2)

\/
1 _
—logf (YIOk) = —log][— R &P (_y'H R®) y’) :
i=1

~ Nlog’R ‘—i—Trl( Zylyl‘|’

Nlog |R¥ |+Tr[( Wy Nﬁ} (3)

Q

where R = N Zy, yi'. Maximizing (3) with respect to each parameter of @

[Anderson, 1963] leads to:

m A =/and ¥, =uielk, 6 _kZ/
i=k+1
where i > h...> |, and uy,...,un are the eigenvalues and eigenvectors of the Sample
Covariance Matrix R.
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Problem formulation

Model under study
Akaike Information Criterion

Applications for Model Order Selection (3)

The number of free parameters is obtained by counting the number of degrees of
freedom spanned by @, = (7\1,...,Ak,oz,vl,...,vk)T [Wax and Kailath, 1985]:
k + 1 reals + 2 k m reals — 2 k normalizations — 2 k (k — 1)/2 mutual orthogonalizations
Substituting the Maximum Likelihood Estimates in the log-likelihood (3) leads to:

I

AIC(k) = —2Nlog =k —+2k(2m—k),
1 m
i=k+1
I
MDL(k) = —Nlog =k I % k(2m—k) logN.
1 m
i=k+1

9/48
Jean-Philippe Ovarlez 9/48



Problem formulation

Model under study
Akaike Information Criterion

Applications for Model Order Selection (4)

m AIC is shown to be not consistent and has a problem of over-estimation of the
number of sources,

m MDL is consistent and is generally prefered to AlC,

m Both techniques are based on white Gaussian noise. They do not perform well for
correlated noise or non-Gaussian noise,

m Both techniques may have some problems for high dimensional data.
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Problem formulation

Model under study
Akaike Information Criterion

Examples (1)

SNR = 3dB

N =100, m = 10, p = 4, SNR=3dB
T T T T

SNR = 10dB

N =100, m = 10, p = 4, SNR=10dB
400 T ‘ ‘ ‘ ‘

Likelihood
Likelihood

100 L L L L L L

0 1 2 3 4 5 6 7 8 9
Number of sources Number of sources

AIC and MDL model order selection (white Gaussian noise, N = 100, m = 10).
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Problem formulation

Model under study
Akaike Information Criterion

Examples (2)

SNR = 3dB SNR = 10dB

N =100, m =10, p = 4, SNR=3dB N =100, m = 10, p = 4, SNR=10dB
2500 T T T T T T T T

3000

2500
2000

2000
1500
. -
3 8
= £ 1500
E <
x 2
1000
1000
500
500
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Number of sources Number of sources
AIC and MDL model order selection (correlated Gaussian noise, p = 0.9, N = 100,
m = 10). 12/48
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Random Matrix Theory A few words about RMT for detection schemes

RMT key ideas

Outline

Random Matrix Theory
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Random Matrix Theory A few words about RMT for detection schemes

RMT key ideas

Some RMT-based results for detection schemes

The RMT (ex: [Couillet and Debbah, 2011]) allows 1) to understand the statistical
behaviour of expressions involving estimate of large covariance matrices (ex: quadratic
forms, ratios of the quadratic forms, SNIR Loss, performances of detection tests as
ANMF, LR-ANMF, etc.) and 2) to correct it. At a finite distance (practical m, N
values), the corrected results are often valid.

m Sources localisation applications [F. Pascal, R. Couillet, ...]: the based-RMT Music
algorithm (G-Music) is known to have higher performance than those of
conventional algorithms when using all the eigenvalues of the covariance matrix.

m MIMO-STAP: the goal of A. Combernoux PHD thesis [Combernoux, 2016] was to
analyse/improve the detection and filtering performances of low-rank detectors.

m Adaptive Radar Detection: when secondary data are correlated
[Couillet et al., 2015].

m Hyperspectral Anomaly Detection - Unmixing: the goal of E. Terreaux PhD thesis
[Terreaux et al., 2017] is to better analyse the rank of the anomalies space (model
order selection) in Hyperspectral Imaging (high dimensional problem) for

heterogeneous, correlated non-Gaussian environment. 14/48
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Random Matrix Theory

A few words about RMT for detection schemes
RMT key ideas

RMT key ideas (1)

Let {yi}ic 1,v) be independent and distributed according to CN (0m,M). The Maximum
Likelihood Estimate of M is the Sample Covarlance Matrix given by
Zy, yi = fY Y.

Asymptotic Regime

If N — oo, then the strong law of large numbers says (or equivalently, in spectral norm):

‘ —

a.s.
—0.

| \

Random Matrix Regime

m No longer valid if m, N — oo with m/N — c € [0, col: HK/I\—MH - 0,

m For practical large m, N with m ~ N, it can lead to dramatically wrong
conclusions (even m = N/100).
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Random Matrix Theory

A few words about RMT for detection schemes
RMT key ideas

RMT key ideas (2)

Let {nf}ieu,/\/] be distributed according to CA/ (Om, C =0 I,,,). We analyze the

1 & 1
eigenvalues distribution of ¢ = N ; n; n,’-" = NNNH where ¢ = m/N € [0, oo

Random Matrix Regime

The distribution of the eigenvalues of C tends almost surely toward the
Marcenko-Pastur distribution

1 1

where A_ = ¢° (1 — ﬁ)2 and A, = o? (1 + ﬁ)2
Not restricted to Gaussian statistics !

16/48
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Random Matrix Theory

A few words about RMT for detection schemes
RMT key ideas

RMT Examples (1): classical asymptotic regime

N = 1000, m =10, ¢ =0.01 = 10000, m = 100, c = 0.01

N =1000, m =10, ¢ = 0.01 N= 10(]0(] m =100, ¢ = 0.01

4 T T T 35 T
Histogram
Marcenko-Pastur
35t 1 sl 1
3F 1
251 1
25 1
2F 1
w w
o 2 B a
o o
15F 1
15} }
1k 1
1k 1
05 g osr ]
0 . . . 0 . . .
0 05 1 15 2 25 0 05 1 15 2 25
Eigenvalues support Eigenvalues support

Eigenvalues support for white Gaussian noise (0° =1, C = 0 I,)).
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Random Matrix Theory

A few words about RMT for detection schemes
RMT key ideas

RMT Examples (2): same RMT regime

N =100, m =95, ¢ =0.95 N =1000, m =950, c =0.95

N =100, m =95, ¢=0.95 N =1000, m = 950, ¢ = 0.95

0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Eigenvalues support Eigenvalues support

Eigenvalues support for white Gaussian noise (0° =1, C = 0 I,)).
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Random Matrix Theory

A few words about RMT for detection schemes
RMT key ideas

RMT Examples (3): from where does start RMT regime 7

N=10, m=4 N=25 m=10 N = 1000, m = 400

Yotn-te-os P — -
o o o
o o o
o iy o
o o o
o o 0
o o o
" 0
" " ”

T N s 1 as o2 oasos s 12 o2 s

Eigenvalues support Eigenvalues support

Eigenvalues support

Eigenvalues support for white Gaussian noise (0° = 1, C = 0°I,,) and ¢ = 0.4.
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Random Matrix Theory

A few words about RMT for detection schemes
RMT key ideas

Key ideas (3)

The behavior of the spectral measure brings information about the vast majority of the
eigenvalues but is not affected by some individual eigenvalues behavior (like sources !).
Whatever the perturbations (sources), the spectral measure converges toward

Marcenko-Pastur distribution.
N =100, m=280, c=0.8 N = 1000, m =800, c =0.8

N =100, m = 80, c = 08 N = 1000, m = 800, ¢ = 0.8

0 1 2 3 4 5 6 0 1 2 3 4 5
Eigenvalues support Eigenvalues support

SCM eigenvalues support for white Gaussian noise (62 =1, C=0¢? I,) and sources. ,
20
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Random Matrix Theory

A few words about RMT for detection schemes
RMT key ideas

Source Detection with RMT

We consider N observations {yk = \/5u + nk}
kell,

the source is large enough, then the limit of Ay« (
right edge of the bulk.

m if 8 < 0°/c, then

: with |[u]| = 1. If the power 0 of

N
1
N YYH) is strictly larger than the

1 a.s.
Amax (NYYH) 25 6? (1+40)”,

N,m—oo

m if 8 > 0°\/c, then

1 H a.s. 2 c 2 2
il > .
AmaX(NYY )N,TJM" (1+0) (1+9) > o (1+ /<)

Above the threshold 02 v/, Amax (% YYH) asymptotically separates from the bulk. J

s}
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Random Matrix Theory

A few words about RMT for detection schemes
RMT key ideas

Source Detection with RMT

1000, m = 350, ¢ = 055, 6 = [1,3,10,15], A = [3.10,473, 1160, 165§ 000, m = 540, ¢ = 0,55, 6 = [3,4,7,8), A = [473,5.68,862,9.61]
140 T T T T T T T T %0 T T T T
L af 4
2 [ 1
r ot f 4
100 [fY ) "
sof (| 4
s ({1 1 sof [REH 4
s [FHf “ n
k) [l 4
s (R 4 il
1 2 ill 1
20+ [ 1 il
10 il 4
0 . . . . . . Loy o H s L gl
0 2 4 6 8 10 12 4 15 o 1 2 3 4 5 78 9 10
A \lambda_i




Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Outline

Application of the RMT for Model Order Selection
m Gaussian case
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Model with correlated Gaussian noise

Let {y,-}l.e[1 v be N observations of size m characterizing the p < m mixed sources
corrupted by additive noise:

P
yi=) s,;m;+C"n;, i€l N,

j=1
which can be rewritten more compactly as:
Y=MS+C’N,

where N
B Y =[y1,y2...,yn] € C"*" are the observations,
m M € C™*" is the mixing matrix containing steering vectors of the p sources,
m S € CP*V is the channel gain matrix,
m N € C™N is the white Gaussian noise (E [nﬁ n,-] = 1), independent of the source
signal,

m C € C™" a Toeplitz Hermitian covariance matrix (Tr(C) = mo?). 228
4/4

Jean-Philippe Ovarlez 24 /48



Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Problems due to the correlation

c=08 p=4 p=0.9 c=08 p=4p=0

N =100,m =80, p=1, p=09, SNR=[ 9 12 15)dB, 10 runs N =100, m =80, p =4, p =0, SNR=[6 9 12 15,dB, 10 runs
T T T T

0 T T

SCM eigenvalues support for Gaussian noise and 4 random sources (SNR= [6 9 12 15]
dB. Left): colored noise. Right): white noise.
25/48
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Consistent Estimation for C: Gaussian Case

Proposition: [Terreaux et al., 2017]

As my N — oo such that m/N — c € [0, 00], if Y does not contain sources, then:

3] -of o

1 m
where T[] is the Toeplitz rectification operator: (T[X]); = = Z Xk, ket liil -
k=1

v

A consistent estimator € of the background noise covariance matrix C characterizing the

background noise is therefore defined through observations Y as C = 7~ [% YYH} .

We can now whiten the observations Y by c 12y,

26/48
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Behavior of whitened data: Gaussian Case

1

—1/2
Let Y, = (T {N YYHD Y be the whitened data

Proposition: [Terreaux et al., 2017, Terreaux et al., 2018]

As m, N — oo such that m/N — c € [0, 0], if Y., does not contain sources, then:

a.s.

Ly, v Lnn” 2250,

|7y vi-

m Without sources, the spectral distribution of the whitened data covariance matrix
of Y, follows a Marchenko-Pastur distribution (same spectral distribution of
unobservable covariance matrix of IN) characterized by its support

2 2
[(1=ve)", (14 Vo).
m All eigenvalues greater than (1 + \[)2 can be considered as sources,
2
s; m m;
i M NS Je.
27/48
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Some RMT results: Gaussian Case with no-sources

N =100, m =80, p=08
T T

N = 1000, m =800, p =08
T T T

T T 157 T

PDF

o . . . o
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Eigenvalues support Eigenvalues support

1 1
HNYWYﬁ—NNNH

a.s.

2550, E[NN”}:I,,,
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Example: Gaussian noise and 4 random sources

c=0.8 p=4,p=0, 10 runs c=0.8 p=4 p=0.9, 10 runs

N =100, m =80, p =4, p=0, SNR=[6 9 12 1B, 10 runs N =100, m =80, p=4, p=09, SNR=6 9 12 15}dB, 10 runs
31 T T T T T T i T 120 T T T T

SCM eigenvalues support for Gaussian noise and sources (SNR= [6 9 12 15]dB). Left):
white noise. Right): whitened colored noise .
20/48
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case

Applications

Problems in non-Gaussian case

c=08 p=4p=09, v=01 c=08 p=4,p=09, v=0.1

p=4.p=09, » =01, SNR=[§ 9 12 15/dB, 10 runs s p=1,p=09,v =01, SNR=[§ 9 12 13}4B, 10 runs
T T T T

log,

SCM eigenvalues support for K-distributed noise and sources (SNR= [6 9 12 15]dB).
Left): colored K-distributed noise. Right): whitened colored K-distribution noise.
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Jean-Philippe Ovarlez 30/48



Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Outline

Application of the RMT for Model Order Selection

m Non Gaussian case
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case

Applications

Model with correlated Non Gaussian (CES) noise

Let {y,-}l.e[1 v be N observations of size m characterizing the p < m mixed sources
corrupted by additive noise:

P
yi=) sym+vuC"n, ie (LN,

j=1
which can be rewritten more compactly as:
Y =MS+CY2NTY?,

where N
B Y =[y1,y2...,yn € C™*" are the observations,
m M € C™*" is the mixing matrix containing steering vectors of the p sources,
m S € CP*N is the channel gain matrix, T is the texture diagonal matrix,

m N € C™N is the white Gaussian noise (E [nﬁ n,-] = 1), independent of the source
signal,

m C € C™" a Toeplitz Hermitian covariance matrix (Tr(C) = mo?). ,
32/48



Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case

Applications

Key idea 1: to use Robust Covariance Matrix Estimation

N =100, m=80,c=08, p=4 N =100, m=80,c=0.38, p=4

N =100, m =80, p=4, p=0,v =03, SNR=6 9 12 15dB, 10 russ ) N =100, m0=80,p= 4, p= 0, v = 03, SNR=[5 9 12 15dB, | runs
T : T §— T T T

Eigenvalues support for white K-distributed noise (0° = 1, v = 0.3) and 4 sources
(SNR= [6 9 12 15]dB). Left): SCM. Right): Tyler.
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Key idea 2: to whiten the correlated data

c=0.8, v=0.15 p=0.99 c=0.8, v=0.15 p=0.99
N = 1000, m = 800, p= 09, v = 015 N = 1000, = 800, p= 090, v = 015
)
20 I
)
) q - 2w
%
%
an
5 | - 0
10
i 50
N "H [ o il i
w6 6 4 2 0 2 4 s 5 4 3 2 4 0 1 2
logh, log)

Tyler eigenvalues support for correlated K-distributed noise (0 = 1). Left): unwhitened

data. Right): whitened data (right).
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Robust Consistent Estimation for C: General case

N
ylyl

LethIpr— 1(7[ 1
i—1 Yi VY

be the Tyler M-estimator of Y scatter matrix.

Proposition: [Terreaux et al., 2017]

As my N — oo such that m/N — c € [0, 00], if Y does not contain sources, then:

|17 [Mze] —

where T[] is the Toeplitz rectification operator: (T[X]); = - Z X, ketlijl -

A consistent estimator C of the background noise covariance matrix C characterizing
the background noise is therefore defined through observations Y as C =T [Mpp} .

We can now whiten the observation Y by C 12y,
35/48
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Behavior of whitened data: General case

A,

Let Y, = (T [Mpp] )71/2 Y be the whitened data and W,cp be the Tyler M-estimator
of Y.

Proposition: [Terreaux et al., 2017]

As m, N — oo such that m/N — c € [0, 0], if Y, does not contain sources, then:

a.s.

HWFP—%NNH 2% 0,

m Without sources, the spectral distribution of the whitened data scatter matrix of
Y., follows a Marchenko-Pastur distribution (same spectral distribution of
unobservable covariance matrix of IN) characterized by its support

2 2
[(1=ve)', (1+ vy,
m All eigenvalues greater than (1 + ﬁ)2 can be considered as sources,

36/48
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Some RMT results: Non-Gaussian Case with no-sources

N =1000, m =800, p=0.8, v =02
T T T

N=100,m=80,p=08v=02
T T T

PDI
PDF

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Eigenvalues support Eigenvalues support

1
‘WFP—NNNH 2540, E[NNH]:Im
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Example with sources

c=0.8 p=4,p=0.99, v=0.15 c=0.8 p=4 p=0.99, v=0.15

N =100,m =80, p= 099, v = 015 N =100, 1= 800, p = 099, v =015
T T T T T

120

100

i1 CTr— ) M.

-20 -15 -0 5 0 -30 25 -20 -15 -0 -5 0 5
logh, log,

Tyler eigenvalues support for colored K-distributed noise and 4 sources (SNR=[3 6 9
10] dB). Left): N =100, m = 80. Right): N = 1000, m = 800.
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

SNR Impact

N =30, m =400, p =4, p =09, =02, SNR=[-3 03 6B o N =50, m = 400, =4, p =09, v =02, SNR=[0 3 6 D
T T T T T T T

5 m
35— | 8

) 1
) i

3% (Hn L

T = % HH
) (7
2 n [

<HT ]
3 L
{ . . T o . 1_mm
25 B 5 -20 -15 -10 5 0 5
log),

-0 5 0
log),

Tyler eigenvalues support for whitened observations (4 random sources and colored
K-distributed noise). Left): SNR= [-3 0 3 6] dB. Right): SNR= [0 3 6 9] dB.
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Application of the RMT for Model Order Selection

Hyperspectral Imaging

Gaussian case

Non Gaussian case

Applications

\!
. Saeieou Avon

\

Spectre Pur

Dimension
Spectrale
m

Fnsmve contenu dans

Réflectance

Réflectance

chaque pixel contenant
des informations pour
identification des

endmembers orésents

Réflectance

Images spectrales prises simultanément

Jean-Philippe Ovarlez

Endmembers :

Sol

Longueur dOnde

Eau

Longueur dOnde

Vegetation

Longueur dOnde

General Problems

mm) Estimation of the endmembers
number

- Detection/Estimation of
sources / Anomaly Detection

mm) Unmixing

Considered Problems

=) Estimation of the number
of endmembers

== Estimation of their spectrum

40/48
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Hyperspectral Imaging

With the set of observations Y = [y1,...,yn]
= Estimation of the noise scatter matrix ¢ = T [IQI] by Toeplitz rectification on:

B Method 1: Maronna’s M-estimators [Maronna, 1976] adapted to data
N-1

o 1 1
statistic : M = N E_ u (;yf"ﬁ[ 1yl.) yiy.
m &
B Method 2: Tyler's M-estimator : =N Eﬁ i ylly,

—1/2

m Whitening observations: Y,, = (’7' [M]) Y.

m Thresholding the eigenvalue distribution of the whitened data scatter matrix w:

m Method 1: Threshold depending on the function u(.) and data for Maronna's
M-estimator W,
m Method 2: Threshold independent of data for Tyler's M-estimator W,
41/48
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Hyperspectral Imaging

Detection of sources number p

103
r = @= p methode 1 1
i === ) methode 2 B
P AIC
10? | o
10*
0
10 0 5 10 15 20 25 30

SNR (dB)
4 sources, N = 2000, m = 900, {T},EHLN]] inverse-gamma
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Gaussian case
Application of the RMT for Model Order Selection Non Gaussian case
Applications

Hyperspectral Imaging

Detection of sources number p

103
=@= p method 1
=== ) Method 2

p AIC
102 ey
101
P =@ @ . .- -
"
0 |
10 0 10 20 30 40

SNR (dB)
Fig 4 sources, N = 2000, m = 900, {7}ic1, n] Student-t
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Gaussian case
Application of the RMT for Model Order Selection Non Ga an case
Applications

Hyperspectral Imaging

Estimation of the number of the most energetic endmembers

Images Indian Pines SalinasA PaviaU Cars
p 16 9 9 [§
parc 219 203 102 143
ﬁHysimc 19 14 60 19
Method 1 prp 11 9 1 3
Method 2 PryL 13 2 10 13
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Gaussian case

Application of the RMT for Model Order Selection Non Gaussian case
Applications

Portfolio Performance Optimization [Jay et al., 2018]

‘Cumulated turnover for SCM and RMT Tyler whitened

500 .
—— Max Variety - SCM “©
400 —— Max Vaiety - RMT Tyler whitened © = ]
— Benchmark /
as
300 S
200 -
100
s
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Selected Eigenalues - RMT FP W o
Y
wof o el N,
0
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|

Max Variety Ann. Ann. Ratio Max
Portfolios Return ‘ Volatility ‘ (Ret / Vol) ‘ DD
RMT Tyler Whithened 9,71% 12,9% 0,75 50,41%
SCM 8,51% 13,80% 0,62 55,02%
Benchmark 4,92% 15,19% 0,32 58,36%
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Conclusions

Outline

A Conclusions
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Conclusions

Conclusions

This work has extended classical Model Order Selection techniques (AIC, MDL, etc.) for
correlated and non-Gaussian additive noise.

e This extension was efficiently derived using latest results coming from RMT
assuming Toeplitz covariance structure assumption for the noise covariance
matrix,

m This quite simple technique can be easily applied on experimental data (radar,
STAP, MIMO-STAP, SAR, HS, finance).
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The End

Thank You !
| Wish You a Great Independence Day !
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