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Motivations

The Model Order Selection is a fundamental problem in Signal Processing:
Radar, Sonar: Direction of Arrival, Source Localization, STAP, Date of Arrival,
Spectral Analysis (ARMA), etc.
Hyperspectral: Unmixing, etc.
Finance: portfolio optimization, efficient portfolio composition, etc.

In spite of the multitude of techniques available for solving this problem, most of them
use information theoretic approaches, such as:

the Akaike Information Criterion (AIC),
the Minimum Description Length (MDL).

Recently, the Random Matrix Theory (RMT) based-approach has also been proposed.

All these methods are classically based on white Gaussian noise assumption.
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Problem formulation
Let {yi }i∈[1,N] be N observations of size m characterizing the p < m mixed sources
corrupted by additive noise:

yi =

p∑
j=1

si,j mj + ni , i ∈ [1,N] , (1)

which can be rewritten more compactly as:
Y = M S + N , (2)

where
Y = [y1,y2, . . . ,yN ] ∈ Cm×N are the observations,
M ∈ Cm×p is the mixing matrix containing steering vectors of the p sources,
S ∈ Cp×N is the channel gain matrix,
N ∈ Cm×N is the additive noise matrix, independent of the source signal.

Generally, p < m is unknown, M and S unknown and N is zero-mean white
Gaussian noise.
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Recall of Akaike Information Criterion and MDL

Goal: Given a set of N observations Y = [y1,y2, . . . ,yN ] and a family of models, (e.g.,
a parametrized family of pdf {f (Y|Θk)}k), select the model k that best fits the data.
Akaike [Akaike, 1974] proposal was to select the model which gives the minimum AIC
defined as:

AIC(k) = −2 log f
(
Y|Θ̂k

)
+ 2 k ,

where Θ̂ is the MLE of vector Θk and k is the number of free adjusted parameters in
vector Θk .

Schwartz [Schwarz, 1978] and Rissanen [Rissanen, 1978] approaches yield the same type
of criterion, given by:

MDL = − log f
(
Y|Θ̂k

)
+

1
2 k logN .
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Applications for Model Order Selection (1)
Let us consider the theoretical covariance matrix R of complex observations yi with ni
white Gaussian noise:

R = E
[
yi yH

i
]
= M si sH

i MH + σ2 Im = Φ + σ2 Im .

We assume here M full column rank ({mi }i linearly independent) and si sH
i non singular.

We have:
rank(Φ) = p, the m − p smallest eigenvalues of Φ are equal to zero,
eig(R) =

{
λ1, λ2, . . . , λp , σ

2, . . . , σ2
}
.

We can define a family of covariance matrix R(k) = Φ(k) + σ2 Im as:

Model (k): R(k) =

k∑
i=1

(
λi − σ

2) vi vH
i + σ2 Im ,

where λ1, ..., λk are the k highest eigenvalues of R(k) and where v1, . . . ,vk are their
corresponding eigenvectors. We can define also the vector Θk of unknown parameters
as:

Θk =
(
λ1, . . . , λk , σ

2,v1, . . . ,vk
)T
.
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Applications for Model Order Selection (2)
− log f

(
Y|Θ̂k

)
= − log

N∏
i=1

1
πm |R(k)|

exp
(
−yH

i
(
R(k))−1

yi

)
,

≈ N log
∣∣R(k)∣∣ + Tr

[(
R(k))−1

N∑
i=1

yi yH
i

]
,

≈ N log
∣∣R(k)∣∣ + Tr

[(
R(k))−1

N R̂
]
, (3)

where R̂ =
1
N

N∑
i=1

yi yH
i . Maximizing (3) with respect to each parameter of Θk

[Anderson, 1963] leads to:

λ̂i = li and v̂i = ui , i ∈ [1, k], σ̂2 = 1
m − k

m∑
i=k+1

li .

where l1 > l2 . . . > lm and u1, . . . ,um are the eigenvalues and eigenvectors of the Sample
Covariance Matrix R̂.
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Applications for Model Order Selection (3)
The number of free parameters is obtained by counting the number of degrees of
freedom spanned by Θk =

(
λ1, . . . , λk , σ

2,v1, . . . ,vk
)T [Wax and Kailath, 1985]:

k + 1 reals + 2 k m reals − 2 k normalizations − 2 k (k − 1)/2 mutual orthogonalizations
Substituting the Maximum Likelihood Estimates in the log-likelihood (3) leads to:

AIC(k) = −2N log

m∏
i=k+1

λi(
1

m − k

m∑
i=k+1

λi

)m−k + 2 k(2m − k) ,

MDL(k) = −N log

m∏
i=k+1

λi(
1

m − k

m∑
i=k+1

λi

)m−k +
1
2 k (2m − k) logN .
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Applications for Model Order Selection (4)

AIC is shown to be not consistent and has a problem of over-estimation of the
number of sources,
MDL is consistent and is generally prefered to AIC,
Both techniques are based on white Gaussian noise. They do not perform well for
correlated noise or non-Gaussian noise,
Both techniques may have some problems for high dimensional data.
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Examples (1)
SNR = 3dB SNR = 10dB
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AIC and MDL model order selection (white Gaussian noise, N = 100, m = 10).
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Examples (2)
SNR = 3dB SNR = 10dB
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AIC and MDL model order selection (correlated Gaussian noise, ρ = 0.9, N = 100,
m = 10).
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Some RMT-based results for detection schemes
The RMT (ex: [Couillet and Debbah, 2011]) allows 1) to understand the statistical
behaviour of expressions involving estimate of large covariance matrices (ex: quadratic
forms, ratios of the quadratic forms, SNIR Loss, performances of detection tests as
ANMF, LR-ANMF, etc.) and 2) to correct it. At a finite distance (practical m,N
values), the corrected results are often valid.

Sources localisation applications [F. Pascal, R. Couillet, ...]: the based-RMT Music
algorithm (G-Music) is known to have higher performance than those of
conventional algorithms when using all the eigenvalues of the covariance matrix.
MIMO-STAP: the goal of A. Combernoux PHD thesis [Combernoux, 2016] was to
analyse/improve the detection and filtering performances of low-rank detectors.
Adaptive Radar Detection: when secondary data are correlated
[Couillet et al., 2015].
Hyperspectral Anomaly Detection - Unmixing: the goal of E. Terreaux PhD thesis
[Terreaux et al., 2017] is to better analyse the rank of the anomalies space (model
order selection) in Hyperspectral Imaging (high dimensional problem) for
heterogeneous, correlated non-Gaussian environment.
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RMT key ideas (1)
Let {yi }i∈[1,N] be independent and distributed according to CN (0m,M). The Maximum
Likelihood Estimate of M is the Sample Covariance Matrix given by

M̂ =
1
N

N∑
i=1

yi yH
i =

1
N Y YH .

Asymptotic Regime
If N →∞, then the strong law of large numbers says (or equivalently, in spectral norm):∥∥∥M̂ − M

∥∥∥ a.s.−−→ 0 .

Random Matrix Regime

No longer valid if m, N →∞ with m/N → c ∈ [0,∞[:
∥∥∥M̂ − M

∥∥∥9 0,

For practical large m, N with m ' N, it can lead to dramatically wrong
conclusions (even m = N/100).
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RMT key ideas (2)

Let {ni }i∈[1,N] be distributed according to CN
(
0m,C = σ2 Im

)
. We analyze the

eigenvalues distribution of Ĉ =
1
N

N∑
i=1

ni nH
i =

1
N N NH where c = m/N ∈ [0,∞[

Random Matrix Regime
The distribution of the eigenvalues of Ĉ tends almost surely toward the
Marcenko-Pastur distribution

p(x) =
(
1 − 1

c

)
+
δ(x) + 1

2π c x
√

(x − λ−)+ (λ+ − x)+ ,

where λ− = σ2
(
1 −
√

c
)2 and λ+ = σ2

(
1 +
√

c
)2.

Not restricted to Gaussian statistics !
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RMT Examples (1): classical asymptotic regime
N = 1000, m = 10, c = 0.01 N = 10000, m = 100, c = 0.01
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Eigenvalues support for white Gaussian noise (σ2 = 1, C = σ2 Im).
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RMT Examples (2): same RMT regime
N = 100, m = 95, c = 0.95 N = 1000, m = 950, c = 0.95
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Eigenvalues support for white Gaussian noise (σ2 = 1, C = σ2 Im).
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RMT Examples (3): from where does start RMT regime ?

N = 10, m = 4 N = 25, m = 10 N = 1000, m = 400
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Eigenvalues support for white Gaussian noise (σ2 = 1, C = σ2 Im) and c = 0.4.
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Key ideas (3)
The behavior of the spectral measure brings information about the vast majority of the
eigenvalues but is not affected by some individual eigenvalues behavior (like sources !).
Whatever the perturbations (sources), the spectral measure converges toward
Marcenko-Pastur distribution.

N = 100, m = 80, c = 0.8 N = 1000, m = 800, c = 0.8
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SCM eigenvalues support for white Gaussian noise (σ2 = 1, C = σ2 Im) and sources.
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Source Detection with RMT
We consider N observations

{
yk =

√
θu + nk

}
k∈[1,N]

with ‖u‖ = 1. If the power θ of

the source is large enough, then the limit of λmax

( 1
N Y YH

)
is strictly larger than the

right edge of the bulk.
if θ ≤ σ2

√
c, then

λmax

( 1
N Y YH

)
a.s.−→

N,m→∞ σ2
(
1 +
√

c
)2
,

if θ ≥ σ2
√

c, then

λmax

( 1
N Y YH

)
a.s.−→

N,m→∞ σ2 (1 + θ)
(
1 + c

θ

)
≥ σ2

(
1 +
√

c
)2
.

Above the threshold σ2
√

c, λmax

( 1
N Y YH

)
asymptotically separates from the bulk.
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Source Detection with RMT
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Model with correlated Gaussian noise
Let {yi }i∈[1,N] be N observations of size m characterizing the p < m mixed sources
corrupted by additive noise:

yi =

p∑
j=1

si,j mj + C1/2 ni , i ∈ [1,N] ,

which can be rewritten more compactly as:

Y = M S + C1/2 N ,

where
Y = [y1,y2, . . . ,yN ] ∈ Cm×N are the observations,
M ∈ Cm×p is the mixing matrix containing steering vectors of the p sources,
S ∈ Cp×N is the channel gain matrix,
N ∈ Cm×N is the white Gaussian noise (E

[
nH

i ni
]
= 1), independent of the source

signal,
C ∈ Cm×N a Toeplitz Hermitian covariance matrix (Tr(C) = m σ2).
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Problems due to the correlation
c = 0.8, p = 4, ρ = 0.9 c = 0.8, p = 4, ρ = 0

SCM eigenvalues support for Gaussian noise and 4 random sources (SNR= [6 9 12 15]
dB. Left): colored noise. Right): white noise.
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Consistent Estimation for C: Gaussian Case

Proposition: [Terreaux et al., 2017]
As m,N →∞ such that m/N → c ∈ [0,∞[, if Y does not contain sources, then:∥∥∥T [ 1N Y YH

]
− C

∥∥∥ a.s.−−→ 0 ,

where T [·] is the Toeplitz rectification operator: (T [X])ij =
1
m

m∑
k=1

Xk,k+|i−j|.

A consistent estimator Ĉ of the background noise covariance matrix C characterizing the
background noise is therefore defined through observations Y as Ĉ = T

[ 1
N Y YH

]
.

We can now whiten the observations Y by Ĉ−1/2 Y.
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Behavior of whitened data: Gaussian Case

Let Yw =
(
T
[ 1

N Y YH
])−1/2

Y be the whitened data

Proposition: [Terreaux et al., 2017, Terreaux et al., 2018]
As m,N →∞ such that m/N → c ∈ [0,∞[, if Yw does not contain sources, then:∥∥∥ 1

N Yw YH
w −

1
N N NH

∥∥∥ a.s.−−→ 0 ,

Without sources, the spectral distribution of the whitened data covariance matrix
of Yw follows a Marchenko-Pastur distribution (same spectral distribution of
unobservable covariance matrix of N) characterized by its support[(

1 −
√

c
)2
,
(
1 +
√

c
)2],

All eigenvalues greater than
(
1 +
√

c
)2 can be considered as sources,

Detection occurs if SNR =
s2j mH

j mj

m σ2 ≥
√

c.
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Some RMT results: Gaussian Case with no-sources
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Example: Gaussian noise and 4 random sources
c = 0.8, p = 4, ρ = 0 , 10 runs c = 0.8, p = 4, ρ = 0.9 , 10 runs

SCM eigenvalues support for Gaussian noise and sources (SNR= [6 9 12 15]dB). Left):
white noise. Right): whitened colored noise .
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Problems in non-Gaussian case
c = 0.8, p = 4, ρ = 0.9, ν = 0.1 c = 0.8, p = 4, ρ = 0.9, ν = 0.1

SCM eigenvalues support for K-distributed noise and sources (SNR= [6 9 12 15]dB).
Left): colored K-distributed noise. Right): whitened colored K-distribution noise.
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Model with correlated Non Gaussian (CES) noise
Let {yi }i∈[1,N] be N observations of size m characterizing the p < m mixed sources
corrupted by additive noise:

yi =

p∑
j=1

si,j mj +
√
τi C1/2 ni , i ∈ [1,N] ,

which can be rewritten more compactly as:

Y = M S + C1/2 N T1/2 ,

where
Y = [y1,y2, . . . ,yN ] ∈ Cm×N are the observations,
M ∈ Cm×p is the mixing matrix containing steering vectors of the p sources,
S ∈ Cp×N is the channel gain matrix, T is the texture diagonal matrix,
N ∈ Cm×N is the white Gaussian noise (E

[
nH

i ni
]
= 1), independent of the source

signal,
C ∈ Cm×N a Toeplitz Hermitian covariance matrix (Tr(C) = m σ2).
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Key idea 1: to use Robust Covariance Matrix Estimation
N = 100, m = 80, c = 0.8, p = 4 N = 100, m = 80, c = 0.8, p = 4

Eigenvalues support for white K-distributed noise (σ2 = 1, ν = 0.3) and 4 sources
(SNR= [6 9 12 15]dB). Left): SCM. Right): Tyler.
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Key idea 2: to whiten the correlated data
c = 0.8, ν = 0.15, ρ = 0.99 c = 0.8, ν = 0.15, ρ = 0.99

Tyler eigenvalues support for correlated K-distributed noise (σ2 = 1). Left): unwhitened
data. Right): whitened data (right).
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Robust Consistent Estimation for C: General case

Let M̂FP =
m
N

N∑
i=1

yi yH
i

yH
i M̂−1

FP yi
be the Tyler M-estimator of Y scatter matrix.

Proposition: [Terreaux et al., 2017]
As m,N →∞ such that m/N → c ∈ [0,∞[, if Y does not contain sources, then:∥∥T [M̂FP

]
− C

∥∥ a.s.−−→ 0 ,

where T [·] is the Toeplitz rectification operator: (T [X])ij =
1
m

m∑
k=1

Xk,k+|i−j|.

A consistent estimator Ĉ of the background noise covariance matrix C characterizing
the background noise is therefore defined through observations Y as Ĉ = T

[
M̂FP

]
.

We can now whiten the observation Y by Ĉ−1/2 Y.
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Behavior of whitened data: General case
Let Yw =

(
T
[
M̂FP

])−1/2 Y be the whitened data and ŴFP be the Tyler M-estimator
of Yw .

Proposition: [Terreaux et al., 2017]
As m,N →∞ such that m/N → c ∈ [0,∞[, if Yw does not contain sources, then:∥∥∥ŴFP −

1
N N NH

∥∥∥ a.s.−−→ 0 ,

Without sources, the spectral distribution of the whitened data scatter matrix of
Yw follows a Marchenko-Pastur distribution (same spectral distribution of
unobservable covariance matrix of N) characterized by its support[(

1 −
√

c
)2
,
(
1 +
√

c
)2],

All eigenvalues greater than
(
1 +
√

c
)2 can be considered as sources,
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Some RMT results: Non-Gaussian Case with no-sources
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Eigenvalues support
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Eigenvalues support

0

0.5

1

1.5

P
D
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∥∥∥∥ŴFP −
1
N N NH

∥∥∥∥ a.s.−−→ 0 , E
[
N NH

]
= Im
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Example with sources
c = 0.8, p = 4, ρ = 0.99, ν = 0.15 c = 0.8, p = 4, ρ = 0.99, ν = 0.15

Tyler eigenvalues support for colored K-distributed noise and 4 sources (SNR= [3 6 9
10] dB). Left): N = 100, m = 80. Right): N = 1000, m = 800.
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SNR Impact

Tyler eigenvalues support for whitened observations (4 random sources and colored
K-distributed noise). Left): SNR= [-3 0 3 6] dB. Right): SNR= [0 3 6 9] dB.
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Hyperspectral Imaging

Eugénie Terreaux – Prix doctorant PHY– 2018

L’Imagerie Hyperspectrale

5

contenant

General Problems

Estimation of the endmembers 
number

Detection/Estimation of
sources / Anomaly Detection

Unmixing

Considered Problems
Estimation of the number 
of endmembers
Estimation of their spectrum
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Hyperspectral Imaging

With the set of observations Y = [y1, . . . ,yN ]

Estimation of the noise scatter matrix Ĉ = T
[
M̂
]
by Toeplitz rectification on:

Method 1: Maronna’s M-estimators [Maronna, 1976] adapted to data

statistic : M̂ =
1
N

N−1∑
i=0

u
( 1

m y̌H
i M̂−1 yi

)
yi yH

i .

Method 2: Tyler’s M-estimator : M̂ =
m
N

N∑
i=1

yi yH
i

yH
i M̂−1 yi

.

Whitening observations: Yw =
(
T
[
M̂
])−1/2 Y.

Thresholding the eigenvalue distribution of the whitened data scatter matrix Ŵ:
Method 1: Threshold depending on the function u(.) and data for Maronna’s
M-estimator Ŵ,
Method 2: Threshold independent of data for Tyler’s M-estimator Ŵ,
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Hyperspectral Imaging

Eugénie Terreaux – Prix doctorant PHY– 2018

Résultats sur Images simulées 
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Hyperspectral Imaging

Eugénie Terreaux – Prix doctorant PHY– 2018

Résultats sur Images simulées, Robustesse 
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Eugénie Terreaux – Prix doctorant PHY– 2018

Résultats sur images réelles 
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Portfolio Performance Optimization [Jay et al., 2018]
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Fig. 2. Left: portfolios wealth starting at 100 at the first period. Right: cumulative sum of absolute weight changes (turnover) between the consecutive periods.
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Fig. 3. Left and middle: dynamic weights as a stacked area chart. Each colour represents an asset. The Max Variety ”RMT Tyler whitened” weights change
smoother than the ones obtained with SCM, confirmed also by a smaller cumulative turnover. Right: values of the selected eigenvalues (left axis) and their
number (right axis). .
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Conclusions

This work has extended classical Model Order Selection techniques (AIC, MDL, etc.) for
correlated and non-Gaussian additive noise.
• This extension was efficiently derived using latest results coming from RMT

assuming Toeplitz covariance structure assumption for the noise covariance
matrix,
This quite simple technique can be easily applied on experimental data (radar,
STAP, MIMO-STAP, SAR, HS, finance).
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The End

Thank You !
I Wish You a Great Independence Day !
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