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ABSTRACT

As a time-frequency tool, the Continuous Wavelet Transform
(CWT) was applied in radar imaging to reveal that the
reflectors’ response varies as a function of frequency f and
aspect angleθ (orientation of the wave vector). To do so, we
constructed a hyperimage expressed as the squared modulus
of the wavelet coefficients, allowing to access to the energy
distribution of each reflector, in the f−θ plane.

Exploiting the hyperimage, our recent researches were
devoted to the classification of the reflectors in function of
theirs energy distributions with the objective of discriminat-
ing a type of target in the radar image. Althought acceptable
results were obtained, the method is not reliable in some
cases.

The purpose of this paper is to show that exploiting not
only the modulus but also the argument of the wavelet coeffi-
cients, can improve the detection of a certain class of reflect-
ors. Results are presented at the end of this article.

Keywords : Time-Frequency Analysis, Continuous Wavelet
Transform, Nonstationary Signal, Radar Imaging, Detection,
Source Classification, Target Extraction.

1. PRINCIPLE OF SAR IMAGING

The SAR (Synthetic Aperture Radar) imaging process
consists in the formation of high resolution images. To do
so, a moving radar emits pulses and collects the elementary
signals reflected by scatterers. Once the overall SAR signal
is stored, the high-resolution image is obtained by Fourier-
based techniques [1, 2, 3]. The SAR images analysed in this
paper are formed with the radar RAMSES [4] at the ONERA.

As shown in figure 1, the imaging plane is labelised us-
ing an x− y Cartesian coordinate system with origin at a
reference pointO. We assume that the radar moves in a
straight line and in a direction parallel to the cross-range
direction. The radar position is described by the azimuth
angle θ defined counter clockwise from the y direction.
Moreover, we suppose far zone backscatter, and therefore we
obtain plane-wave incidence on objects. In addition, we as-
sume high-frequency radar measurements and consequently

the scattering response of a man-made target is well approx-
imated as a sum of responses from individual scatterers. If
the radar measurements are carried out over a broad band-
width and a wide angular window of observation, we have
to consider a model that takes the scattering phenomenology
into account. For a given polarisation, this scattering model
is expressed as a summation of point scatterers multiplied
by their respective frequency and aspect dependent complex
amplitudeσi( f ,θ):

H(~k) =
i=N

∑
i=1

σi( f ,θ) exp(− j2π~k ·~r i) (1)

where~k is the wave vector in the direction of the scattered
field:

~k =

(

kx

ky

)

=

(

k cos(θ)

k sin(θ)

)

where k = 2 f/c is the wave number withf the fre-
quency andc the speed of light,θ corresponds to the
observation aspect (see figure 1). The position vector
is ~r = (x,y)T wherex and y represent the slant-range and
cross-range locations.

Referring to the Geometrical Theory of Diffraction
(GTD) [5, 6], the aspect and frequency dependent re-
sponse|σi( f ,θ)| = Ai( f ,θ) is a 2D-function determined
by the geometry, composition and orientation of the scat-
tering mechanism. Indeed, the GTD predicts that the
responseAi( f ,θ) depends also on a set of paramet-
ers{γi,Li ,θi} describing the shape, the length and the ori-
entation of the scatterer, respectively. We can also sup-
pose that the argument ofσi( f ,θ) depends on frequency
and aspectθ: arg[σi( f ,θ)] = φi( f ,θ). A scatterer is said
colored andanisotropicif its response|σi | depends on the
frequencyf and the aspectθ, respectively. To highlight the
coloration and the anisotropy of the scatterers, we suggested
the use of a method based on the Continuous Wavelet Trans-
form (CWT) that is a particular tool of the time-frequency
analysis.



Figure 1: Illustration of a scatterer irradiated at two differ-
ent aspect angles (i.e. two different positions of the moving
radar) in SAR imaging.

2. CONSTRUCTION OF HYPERIMAGES USING
THE CWT

To access to the energy distribution of the scatterers, in
the f − θ plane, we constructed the concept of hyperim-
age which expresses as the squared modulus of the wave-
let coefficients divided by the admissibility wavelet coeffi-
cientAφ [7, 8]:

IH(~ro,~ko) =
1

Aφ

∣

∣

∣
WH(~ro,~ko)

∣

∣

∣

2
(2)

By notingφ the mother wavelet localised around(k,θ) =
(1,0), the admissibility coefficientAφ is defined as:

Aφ =

∫

|φ(~k)|2

k2 d~k < ∞. (3)

The wavelet coefficientsWH(~ro,~ko) are introduced as the
scalar product between the backscattering signalH and each
waveletΨ~ro,~ko

:

WH(~ro,~ko) =

∫

H(~k)Ψ∗
~ro,~ko

(~k)d~k

where the family of waveletsΨ~ro,~ko
(~k) are generated

from the mother waveletφ(~k) by rotation Rθo, transla-
tion~ro and contraction with the scale factor 1/ko according
to:

Ψ~ro,~ko
(~k) =

1
ko

e−2iπ~k.~roφ
(

1
ko

R
−1
θo

~k

)

=
1
ko

e−2iπ~k.~ro φ
(

k
ko

,θ −θo

)

. (4)

The wavelet coefficientsWH(~ro,~ko) express literally as :

WH(~ro,~ko) =

∫ 2π

0
dθ

∫ +∞

0
k H(k,θ)

1
ko

ej2π~k.~ro φ∗

(

k
ko

,θ −θo

)

dk

(5)

2.1 Interpretation of the hyperimage I(~r,~k)

Let us rewriteI(~r ,~k) ≡ I(x,y; f ,θ). For each reflector loc-
ated at ~ro = (xo,yo), we can extract its energy distribu-
tion I(xo,yo; f ,θ), in the f − θ plane. Examples of en-
ergy distribution corresponding to real target reflectors can
be found in [9, 10, 11].

3. IMPROVING THE DETECTION OF A
REFLECTOR CLASS BY EXPLOITING THE FULL

INFORMATION OF WAVELET COEFFICIENTS

The basic idea we proposed is to select among all the scat-
terers’ energy distributions, one energy distribution suscept-
ible to be characteristic of the type of object to be discrim-
inated : this distribution becomes a reference one. Then, the
purpose is to identify the scatterers in the image that have
similar distributions to the reference one. We callobject a
structure with a unique and simple geometry (edge, cylinder,
flat plate, ...). The algorithm consisted in selecting a pixel
located at(xre f ,yre f) in the SAR image and correlating its
corresponding distributionI(xre f ,yre f ; f ,θ)≡ Ire f( f ,θ) with
the distributionsI(xi ,y j ; f ,θ) ≡ Ii, j( f ,θ) corresponding to
the others pixelsPi, j located at(xi ,y j) in the SAR image, re-
spectively :

Cre f (xi ,y j) =

∫

Ire f( f ,θ) Ii, j( f ,θ) d f dθ
√

Ere f
√

Ei, j
(6)

whereEi, j andEre f are normalised terms, defined as :

Ei, j =

∫

∣

∣I(xi ,y j ; f ,θ)
∣

∣

2
d f dθ.

Ere f =

∫

∣

∣I(xre f ,yre f ; f ,θ)
∣

∣

2
d f dθ.

In some SAR images that we analysed, this algorithm
proved its efficiency to discriminate a type of object
[11, 12, 13]. Unfortunately, the above method is not
reliable in some cases. Recalling that the energy distribu-
tion I(x,y; f ,θ) expresses from the squared modulus of the
wavelet coefficients, the present work consists in exploiting
not only the modulus but also the phase of the wavelet
coefficients, which is also susceptible to characterise the
reflectors. The full exploitation of wavelet coefficients was
carried out within the framework of Polarimetry and Inter-
ferometry with good results in terms of target classification
and target height estimation [14].

Consequently, in order to improve the object extraction,
the function in equation (6) is replaced by :

Cre f (xi ,y j) =

∫

Wre f( f ,θ) W∗
i, j( f ,θ) d f dθ

√

Ere f
√

Ei, j
(7)



whereEi, j andEre f are defined as :

Ei, j =
∫

∣

∣W(xi ,y j ; f ,θ)
∣

∣

2
d f dθ.

Ere f =

∫

∣

∣W(xre f ,yre f ; f ,θ)
∣

∣

2
d f dθ.

4. RESULTS

The analysed SAR image is composed of a warehouse :
lateral buildings are attached to a big one on both sides
(see figures 2 (a) and 2 (b)). In the figure 2 (c), we se-
lect some pixelsPo located at(xo,yo) on the lateral build-
ings and we illustrate the corresponding wavelet coeffi-
cientsW(xo,yo; f ,θ) (represented in modulus and phase), in
the f − θ plane : we can observe that these wavelet coeffi-
cients present some similarities especially in phase.

(a) Aerial photography (b) Initial SAR image
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(c) Wavelet coefficients (represented in modulus and phase)
corresponding to some pixels located on the lateral buildings.

Figure 2: We reveal that the wavelet coefficients correspond-
ing to the analysed pixels present some similarities (espe-
cially in phase).

Here, our objective is to show that making correlation
between the wavelet coefficients (see equation (7)) and a ref-
erence one, can be more efficient than correlating only the
modulus of them with a reference one (see equation (6)) in
terms of object extraction. In order to extract the lateral
buildings, we select a pixel located on one lateral building

and consider its corresponding wavelet coefficient as the ref-
erence one. The figure 3 (a) shows the location of the refer-
ence pixelPre f located at(xre f ,yre f ) and illustrates the cor-
responding wavelet coefficientW(xre f ,yre f ; f ,θ) (represen-
ted in modulus and phase). The figures 3 (b) and 3 (c) illus-
trate the correlation map corresponding to the reference pixel
and resulting from equation (6) and equation (7), respectively
: we can notice that the the lateral buildings are extracted
better in the figure 3 (c) than in the figure 3 (b). Precisely,
two kind of improvements are obtained with the exploitation
of the full information of wavelet coefficients : first, more
reflectors composing the lateral buildings are detected, es-
pecially these ones localised on the left-hand buildings (see
figures 3 (c) and 3 (d)); secondly, we improve accuracy in the
localization of these reflectors (see figures 3 (c) and 3 (d)).

5. CONCLUSION AND PERSPECTIVES

By considering not only the modulus but also the argument
of the wavelet coefficients, we obtain a better characterisa-
tion of each reflector. By analysing some reflectors localised
on the lateral buildings, we observe that the corresponding
wavelet coefficients present some similarities especiallyin
phase. These observations lead us to correlate the wavelet
coefficients for improving the detection of the reflectors
belonging to the lateral buildings. Comparing with the
method exploiting only the squared modulus of the wavelets
coefficients, we notice that the extraction of the lateral
buildings is improved. Moreover, the method proposed in
this paper seems to be robust to noise : thorough studies
in simulation have to be made to confirm the robustness to
noise.

As perspectives, we can propose to apply this new
method to other SAR images in order to see if the tar-
gets composing these images can be successfully extracted.
Again, a comparison with the method involving the squared
modulus of the wavelet coefficients must be envisaged. The
reference wavelet coefficient can be obtained leaning on a
priori information concerning the object to be extracted; for
example, the theory of diffraction provides frequency and
aspect dependent responses of canonical objects (flat plate,
cylinder, edge, ...). In addition, the method can be easily
applied to others 1-D nonstationary physical signals (radar,
sonar, seismic, acoustic, sound, ... ) with the aim of classify-
ing the different sources. Finally, separation source methods
could be applied to SAR signals and compared with the pre-
vious wavelet based-algorithm in terms of target extraction.
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