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ABSTRACT

This paper shows the interest of Complex-Valued Neural Net-
work (CVNN) on classification tasks for non-circular complex-
valued datasets. Motivated by radar and SAR applications, we
propose a statistical analysis of fully connected feed-forward neural
networks performance in the cases where real and imaginary parts
of the data are correlated through the non-circular property. In this
context, comparisons between CVNNs and its real-valued equiv-
alent models are conducted showing that CVNNs provide better
performance for multiple types of non-circularity. Notably, CVNNs
statistically perform less overfitting, higher accuracy and provide
shorter confidence interval than its equivalent Real-Valued Neural
Network (RVNN)s.

Index Terms— Complex-Valued Neural Network, Real-Valued
Neural Network, non-circularity.

1. INTRODUCTION

In the machine learning community, most neural networks are de-
veloped for processing real-valued features (voice signals, RGB im-
ages, videos, etc.). The signal processing community, however, has
a higher interest in developing theory and techniques over complex
fields. Indeed, complex-valued signals are encountered in a large va-
riety of applications such as biomedical sciences, physics, commu-
nications and radar. All these fields use signal processing tools [1],
which are usually based on complex filtering operations (Discrete
Fourier Transform, Wavelet Transform, Wiener Filtering, Matched
Filter, etc.). Thus, CVNNs appear as a natural choice to process
and to learn from these complex-valued features since the operation
performed at each layer of CVNNs can be interpreted as complex
filtering. Notably, CVNNs are more adapted to extract phase in-
formation [2], which could be helpful, e.g., for retrieving Doppler
frequency in radar signals, classifying polarimetric Sythetic Aper-
ture Radar (SAR) data [3, 4], etc. Furthermore, the hypothesis of
circularity is not always satisfied as shown in [5, 6] for SAR images
which depends on the region of interest. Therefore, non-circularity
parameters are the key factors to improve performance in estimation
and classification tasks as shown in [7, 8].

Interestingly enough, we propose to analyze the influence of the
non-circular statistical property on the performance of both CVNN
and RVNN networks. We show that particular structures of such
complex data, as, for example, phase information or statistical cor-
relation between real and imaginary parts, can notably benefit from
using CVNN compared to its real-valued equivalent. Under this
context, CVNN is potentially an attractive network to obtain better
classification performance on complex datasets. Although CVNN
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has been investigated for particular structures of complex-valued
data [2, 3, 9, 10], the difficulties in implementing CVNN models
in practice have slowed down the field from growing further [11].
Then, we address this issue by providing a Python library to deal
with the implementation of CVNN models. The code also offers
statistical indicators, e.g., loss and accuracy box plots [12, 13], to
compare the performance of CVNN models with its real-valued
counterpart.

The paper is organized as following. Section 2 presents some
mathematical background of CVNN and the circularity property for
a complex-valued random variable. Section 3 discusses the fully
connected feed-forward network architecture used for experiments.
Section 4 illustrates the comparison of statistical performance ob-
tained for each network. In particular, the sensitivity of CVNN and
RVNN results are evaluated either by changing the dataset charac-
teristics or the network hyper-parameters.

Although CVNN is an acronym that involves numerous complex-
valued neural network architectures, in this work, we will always
be referring to fully connected feed-forward ones. This conven-
tion was chosen to be coherent with the existing bibliography
[2, 3, 9, 10, 14, 15].

2. MATHEMATICAL BACKGROUND

A natural way to build CVNN consists in extending RVNN for han-
dling complex-valued neurons. The latter implies that the weights
for connecting neurons and the hidden activation functions should be
complex-valued. In contrast, the loss function remains real-valued to
minimize an empirical risk during the learning process. Despite the
architectural change for handling complex-valued inputs, the main
challenge of CVNN is the way to train such neural networks.

2.1. Wirtinger derivation

When training CVNNs, the weights are updated using a complex
gradient, so the back-propagation operation becomes complex-
valued. In complex analysis, Liouville’s theorem states that every
bounded holomorphic function is constant [16, pp.70-71], implying
that the loss and activation functions should be either constant or
unbounded.

Wirtinger calculus [17] generalizes the notion of complex
derivative for non-holomorphic functions. It states that given a com-
plex function f(z) of a complex variable z = x+ j y ∈ C, (x, y) ∈
R2, the partial derivatives with respect to z and z respectively are:
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Wirtinger calculus enables one to work with non-holomorphic
functions, providing an alternative method for computing the gradi-
ent. Following references [14] and [18], the complex gradient is then
defined as:



∇zf = 2
∂f

∂z
. (2)

Also, for any real-valued loss function L : C→ R, the complex
derivative of the composition of L with any complex function g :
C → C with g(z) = r(z) + j s(z) is given by the following so-
called chain rule:
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Equations (2) and (3) enable the complex backpropagation algorithm
for training CVNN [19].

2.2. Circularity

The importance of circularity for CVNNs has already been men-
tioned in [9, 15]. Let us denote the vector u , [X,Y ]T as the real
random vector built by stacking the real and imaginary parts of a
complex random variable Z = X + j Y . The probability density
function (pdf) of Z can be identified with the pdf of u. The variance
of Z is defined by:

σ2
Z , E

[
|Z − E[Z]|2

]
= σ2

X + σ2
Y , (4)

where σ2
X and σ2

Y are respectively the variance of X and Y . The
latter does not bring information about the covariance:

σXY , E [(X − E[X]) (Y − E[Y ])] , (5)

but this information can be retrieved thanks to the pseudo-variance
[20, 21]:

τZ , E
[
(Z − E[Z])2

]
= σ2

X − σ2
Y + 2 j σXY . (6)

The circularity quotient %Z is then: %Z = τZ/σ
2
Z . If Z has a van-

ishing pseudo-variance, τZ = 0, or equivalently, %Z = 0, it is said
to be second-order circular. The correlation coefficient is defined as

ρ =
σXY
σXσY

. (7)

Therefore, complex non-circular random datasets are generated
and classified, with two non-exclusive possible sources of non-
circularity: X and Y have unequal variances or X and Y are
correlated.

3. PROPOSED NEURAL NETWORKS

3.1. Model Architecture

3.1.1. Activation function

One of the essential characteristics of CVNN is its activation func-
tions, which should be non-linear and complex-valued. The exten-
sion to complex field offers many possibilities to design an activation
function. Among them, two main types are proposed by extending
real-valued activation functions [22]:

• Type-A: gA(f) = gR (Re(f)) + j gI(Im(f)),

• Type-B: gB(f) = gr(|f |) ej gφ(φ(f)),

where f : C → C is a complex function and gR, gI , gr, gφ are all
real-valued functions1.

Normally, gφ is left as a linear mapping [22, 9]. Under this con-
dition, using ReLU activation function for σr has a limited inter-
est since the latter makes gB converge to a linear function, limiting
Type-B ReLU usage. Nevertheless, ReLU has increased in popu-
larity over the others as it has proved to learn several times faster
than equivalents with saturating neurons [23]. Consequently, we will

1Although not with the same notation, these two types of complex-valued
activation functions are also discussed in Section 3.3 of [9]

adopt, in Section 4, the Type-A ReLU, which is a non-linear func-
tion, as CVNN hidden layers activation functions.

The image domain of the output layer depends on the set of data
labels. For classification tasks, real-valued integers or binary num-
bers are frequently used to label each class. Therefore the output
layer’s activation function should be real-valued. For this reason, we
use softmax (normalized exponential) as the output activation func-
tion, which maps the magnitude of complex-valued input to [0; 1],
so the image domain is homogeneous to a probability.
3.1.2. Number of layers

Even though the tendency is to make the models as deep as possible
for Convolutional Neural Networks (CNN), this is not the case for
fully-connected feed-forward neural networks, also known as Multi-
Layer Perceptron (MLP). For these models, one hidden layer (1HL)
is usually sufficient for the vast majority of problems [24, 25]. Al-
though some authors may argue that two hidden layers (2HL) may
be better than one [26], all authors seem to agree that there is cur-
rently no theoretical reason to use a MLP with more than two hidden
layers [27, p. 158]

References [27] and [28] recommend the neurons of the hidden
layer to be between the size of the input layer and the output layer.
Therefore, two models will be used as default in section 4, one with
a single hidden layer of size 64 and one with two hidden layers of
shape 100 and 40 for the first and second hidden layers respectively.
In order to prevent the models from overfitting, dropout regulariza-
tion technique [29] is used on 1HL and 2HL hidden layers. Both
CVNN and RVNN are trained with a dropout factor of 0.5.

3.1.3. Equivalent RVNN

Data A Data B Data C

Class 1 2 1 2 1 2

ρ 0.5 −0.5 0 0 0.5 −0.5
σ2
X 1 1 1 2 1 2
σ2
Y 1 1 2 1 2 1
τZ j −j −1 1 j − 1 1− j

Table 1: Dataset characteristics

To define an equivalent RVNN, the strategy used in [9] is
adopted, separating the input z into two real values (x, y) where
z = x + j y, giving the network a double amount of inputs. The
same is done for the number of neurons in each hidden layer. Al-
though this strategy keeps the same amount of features in hidden
layers, it provides a higher capacity for the RVNN with respect to
the number of real-valued training parameters [11].

3.1.4. Loss function and optimizer

Mean square error and Cross-Entropy loss functions are mostly used
for RVNN to solve regression and classification problems, respec-
tively. The loss remains the same for CVNN since the training phase
still requires the minimization over a real-valued loss function. We
currently limit our optimizer to the well-known standard Stochastic
Gradient Descent (SGD). The default learning rate used in this work
is 0.01 as being Tensorflow’s default (v2.1) for its SGD implemen-
tation.

3.1.5. Weights initialization

For weights initialization, Glorot uniform (also known as Xavier uni-
form) [30] is used, and all biases start at zero as those are Tensor-
flow’s current (v2.1) default initialization methods for dense layers.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense


Glorot initialization generates weight values according to the uni-
form distribution in [30, eq.16] where its boundaries depend on both
input and output sizes of the initialized layer.

4. EXPERIMENTAL RESULTS

All the results are reproducible using the source code available at
[31].

4.1. Dataset setup

As mentioned previously, to respect the equivalence between RVNN
and CVNN, we use in the following input vectors of size 128 (resp.
256) for CVNNs (resp. RVNN). Each element of the feature vector is
generated according to a non-circular Complex Normal distribution
CN (0, σ2

Z , τZ). Two sources of non-circularity could occur in prac-
tice: σX 6= σY and/or ρ 6= 0, or equivalently τZ 6= 0. Therefore,
we propose to evaluate the classification performance of CVNN and
RVNN for three types of datasets presented in Table 1.
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Fig. 1: Test loss and accuracy for 2HL CVNN and RVNN with a
dropout of 50%. Solid line represents the mean. Dashed line the
median.

It is important to note that the distinction between classes is en-
tirely contained in the relationship between the real and imaginary
parts. This means that removing, for example, the imaginary part of
the dataset will result in both classes being statistically identical, and
therefore, rendering the classification impossible.

To evaluate the difficulty of classifying this dataset, a Maximum
Likelihood Estimation of τZ was implemented with the prior knowl-
edge of the underlying Gaussian distributions used to generate the
dataset. The data are then classified using a threshold on the esti-
mate of τZ . The accuracy of this classifier gives an upper bound of
the optimal accuracy. For a low correlation coefficient, for exam-
ple ρ = 0.1, this parametric classifier only achieves around 85%
accuracy.

4.2. 1HL and 2HL baseline results

To ensure that the models do not fall short of data, 10000 samples
of each class were generated using 80% for the train set and the
remaining 20% for testing. Accuracy and loss of both CVNN and
RVNN, defined previously in Section 3.1, are statistically evaluated
over 1000 Monte-Carlo trials. Each trial contained 150 epochs with
a batch size of 100. This number was chosen observing that after
150 epochs, the accuracy and loss presented almost no amelioration.

Only the 2HL case is illustrated in Fig. 1 as their results are
more favorable to the RVNN model. CVNN loss starts higher but
decreases faster than RVNN. Both losses behave well without sig-
nificant indication of overfitting. Additionally, the test accuracy of
CVNN trials stays above 95%. The test accuracy of RVNN is lower
than the CVNN one and presents more outliers.

Table 2 summarizes the test accuracy of 1HL and 2HL models
for all three different datasets. The median error is computed as
1.57 IQR/

√
n [12], where IQR is the Inter-Quartile Range, and n

is the number of trials. According to [13], using this error definition,
if median values do not overlap there is a 95% confidence that their
values differ.

Because the results are skewed, there is a big difference between
mean and median accuracy, as the mean is less robust to outliers.
For this reason, the median would be a better measure of central
tendency in this paper’s simulations. For the complex-valued model,
the outliers tend to be the bad cases, whereas, for the real model, they
are the good cases. This can be verified by the mean being lower than
the median for CVNN and higher than the median for RVNN.

For dataset B with 2HL, both models fail to achieve excellent
results on average. Despite these poor performances, CVNN still
proves to be superior to RVNN by far. For 1HL, CVNN achieves
very high accuracy with a median of over 84%. Dataset C presents
almost the same results as dataset A with some improvement for both
architectures.

From these results, the merits of CVNNs are statistically jus-
tified by a higher accuracy than RVNNs with less overfitting and
smaller variance.

In general, RVNN performed much better with 2HL than with
1HL. In this report we are trying to prove that CVNN outperforms
RVNN regardless of the model architecture and hyper-parameters.
To that end, even if all simulations to follow were done with both
1HL and 2HL, 2HL results will be prioritized, bearing in mind that
1HL cases were even more favorable to CVNN.

4.3. Phase and amplitude

Since the phase information could be relevant for classifying these
datasets, polar-RVNN, is defined where the inputs are the amplitude
and phase of data. This method is tested for datasets A and B with
and without dropout.

Figure 2 shows the results for 2HL tested on dataset A with
dropout. It can be seen that polar-RVNN highly improves compared
to the conventional RVNN, showing higher mean accuracy but also
much less variance, even lower than for CVNN. However, CVNN
still outperforms both real models by a wide margin.

This higher performance of polar-RVNN against RVNN can be
explained by the fact that dataset type A presents more relevant in-
formation in the phase. However, the opposite happens with dataset
type B for which case, polar-RVNN completely fails to converge
and achieves worst results than conventional RVNN for both 1HL
and 2HL models, reason why results where omitted.



Data A Data B Data C

CVNN RVNN CVNN RVNN CVNN RVNN

1HL

median 95.00± 0.03 75.58± 0.69 84.38± 0.05 58.73± 0.07 96.95± 0.02 82.90± 0.78
mean 94.98± 0.02 76.71± 0.27 84.28± 0.03 58.89± 0.05 96.96± 0.01 82.76± 0.26
IQR 94.73− 95.23 69.20− 82.93 83.83− 84.83 58.10− 59.48 96.78− 97.18 75.49− 91.08

full range 93.60− 96.08 64.05− 93.15 76.15− 86.60 55.68− 59.48 96.00− 97.90 67.35− 95.88

2HL

median 97.03± 0.03 92.90± 0.08 69.90± 0.88 59.03± 0.33 98.43± 0.02 96.10± 0.04
mean 96.98± 0.02 92.37± 0.07 69.48± 0.32 59.10± 0.14 98.41± 0.01 96.02± 0.01
IQR 96.78− 97.23 92.02− 93.48 60.89− 78.43 55.80− 62.35 98.28− 98.58 95.75− 96.40

full range 95.23− 98.05 68.78− 94.78 50.03− 87.08 49.98− 71.23 97.23− 99.03 90.38− 97.18

Table 2: Test accuracy results (%)
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Fig. 2: Test accuracy histogram of 2HL CVNN, polar-RVNN and
RVNN on dataset A

4.4. Parameter sensibility study
In this section, a swipe through several model architectures and
hyper-parameters is done to assert that the results obtained are inde-
pendent of specific parameters. These simulations are done for both
1HL and 2HL networks.

Other sensibility studies were done but are not presented in this
work due to paper size limitations. They concern learning rate,
dataset size, feature vector size and multi-classes for all combina-
tions of 1HL and 2HL with and without dropout.
4.4.1. Correlation coefficient
Several correlation coefficients have been tested for 1HL and 2HL
models. Figure 3 shows the accuracy of 2HL models tested on
datasets similar to data A (see table 1), in which the correlation coef-
ficient varies from 0.1 to 0.8. As expected, for small ρ, both networks
fail to distinguish between classes with accuracy values barely above
50%. Note that both models cannot achieve more than 85% for this
case, as it was explained in section 4.1. As |ρ| rises, CVNN mer-
its become evident. When |ρ| is close to one, then the link between
real and imaginary parts is strengthened, which facilitates the classi-
fication of the data for both models. Results for 1HL are even more
favorable for CVNN.

4.4.2. Hidden layer size

We evaluated the accuracy of 1HL for 4 sizes of the hidden layer.
All these models were trained on dataset A. The median accuracy
of CVNNs was always higher than the one of RVNN, no matter the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

1.0

| ρ |

te
st

ac
cu

ra
cy

CVNN
RVNN

Fig. 3: Test accuracy box plot for different values of correlation co-
efficient ρ for 2HL model with dropout

number of hidden neurons. However, CVNN had low accuracy out-
liers for sizes 16 and 32, whereas RVNN did not. This could be
explained by RVNN having higher capacity, as explained in section
3.1.3. Fortunately, this behavior disappears when the hidden size is
well dimensioned.

5. CONCLUSION

In this paper, we provided a end-to-end tool for the implementa-
tion of CVNNs to fully use the complex-valued characteristics of
the data. It also allows a more straightforward comparison with
real equivalent networks in order to motivate further analysis and
use of CVNN [31]. Moreover we showed that CVNNs stand as
attractive networks to obtain higher performances than conventional
RVNNs on complex-valued datasets. The latter point was illustrated
by several examples of non-circular complex-valued data which
cover a large amount of data types that can be encountered in sig-
nal processing and radar fields. All statistical indicators showed
that CVNN clearly outperforms RVNN showing higher accuracy,
smaller variance and less overfitting, regardless the model architec-
ture and hyper-parameters. Conversely, the few cases where RVNN
competes with CVNN, occurred when the dataset is small or the cor-
relation coefficient |ρ| is close to zero, rendering the discrimination
from feature vectors nearly impossible. For these exceptions, nei-
ther CVNN and RVNN were actually of any practical use. Further
analysis involving sensitivities to learning rates, feature vector size,
multi-class dataset will be investigated to assert the generalisation
of our results.
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