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ABSTRACT

This paper deals with the analysis of non-stationary scatterers in
SAR images. Indeed, SAR imaging makes the assumptions that
the scatterers are isotropic and white in the emitted frequency band.
However, new SAR applications use a large bandwidth and a strong
angular excursion. These assumptions become obsolete and the be-
havior of scatterers becomes non-stationary. The basic tool to study
non-stationary signals is the time-frequency analysis. Recent stud-
ies based on multidimensional Time-Frequency Analysis describ-
ing the angular and frequency behavior of scatterers has highlighted
anisotropic and dispersive behavior of bright points. This paper gen-
eralizes the hyperimage concept to study scatterers. Multidimen-
sional Time-Frequency distributions are tested on simulations, then
they are applied to very high resolution SAR images and show some
scatterers are anisotropic and dispersive.

Index Terms— Wavelet Transform, Radar Imaging, Target
Classification

1. INTRODUCTION

The classical model used in radar imaging is the model of bright
points. In radar imaging, the reflectors are assumed to have a con-
stant behavior for the angle from which they are viewed and within
the emitted frequency bandwidth. A target is considered as a set
of isotropic independent sources with a constant response in the
frequency band.

Nevertheless, new capacities in Radar imaging (large bandwidth
and large angular excursions) makes this assumption non valid. For
example, a SAR image is built using three sub-bands centered on
the frequencies fc = 8.8 GHz, fc = 9.4 GHz and fc = 10 GHz
which are coded in the red/green/blue channels, (see Fig. 1). If a
scatterer is white in the frequency band, so it is not colored on the
image. Otherwise if the scatterer is dispersive, so it is colored. On
the Very High Resolution (VHR) SAR image of Fig.1, the roofs are
colored in red and blue, so the scatterers of the roofs are dispersive.
The model of bright points is non valid.

To study the non-stationary behavior of scatterers the basic tool
is the time frequency analysis. Bertrand and Ovarlez introduce
the hyperImage concept based on the multidimensional continuous
wavelet [1], [2]. So, the hyperImage concept allows to represent
for each frequency and each angle of illumination, a spatial repar-
tition of reflectors which respond at this frequency and this angle.

Fig. 1. A SAR image which highlights dispersive scatterers.

Inversely, for each reflector location, it is possible to analyse its
behavior in the frequency and in the angular domain. Other studies
use different time-frequency distributions, the short time fourier
transform [3], the smoothed pseudo Wigner-Ville transform [4]. The
aim of this letter is to generalize the hyperImage concept to other
time-frequency distributions.

In this paper, the hyperImage formation is explained from the
classical radar imaging. Then, the bidimensional Cohen class is pre-
sented. The affine class study is limited, here, to the continuous
wavelets transform. The hyperImage concept is validated on simu-
lations. All in all, the hyperImage principle is applied on VHR SAR
data to show some scatterers are anisotropic and dispersive.

2. CLASSICAL RADAR IMAGING

The backscattering coefficient H(k) for a given object illuminated
by a radar is characterized, for a distance R going to infinity, as
the ratio between the incoming field Er and the emitted field Ei
(spherical waves):

|H(k)| = lim
R→∞

√
4πR2

Er
Ei
. (1)

The squared modulus of H(k) is called the Radar Cross Sec-
tion (RCS) of the object for the wave vector k and is expressed in
squared meter. Wave vector k is related to the frequency f and to
the direction θ of illumination by |k| = k = 2f/c and θ = arg(k)



in two-dimensional approximation.

The model usually used in radar imaging is the model of bright
points [5]. The object under analysis can be seen as a set of bright
points, i.e. a set of independent sources which reflect in the same
way for all frequencies (white points) and all directions of presen-
tation (isotropic points). Let S(r) be the complex amplitude of the
bright point response located at r = (x, y)T in a set of cartesian
axes related to the object. Under far field conditions (decomposi-
tion into planes waves), the complex backscattering coefficient for
the whole object is then given by the in-phase summation of each
reflector contribution:

H(k) =

Z
S(r) e−2iπk.r dr. (2)

After a Fourier Transform of (2), one can obtain the spatial
complex amplitude repartition S(r) of the reflectors for a mean fre-
quency (the center frequency) and for a mean angle of presentation:

S(r) =

Z
H(k) e2iπk.r dk. (3)

When a target is illuminated by a broad-band signal and/or for
a large angular extent, it is realistic to consider that the amplitude
spatial repartition S(r) of the reflectors depends on frequency f and
on aspect angle θ. This repartition depending on the wave vector k,
it will be noted in the following by S(r,k).

3. BIDIMENSIONAL AFFINE CLASS

3.1. Construction of the hyperImage based on the continuous
wavelet

Let φ(k) be a mother wavelet supposed to represent the signal re-
flected by a reference target. This target is supposed located around
r = ~0 and backscatters the energy in the direction θ = 0 and at the
frequency f given by k = 2f

c
= 1. A family of function is built

Ψr0,k0 from φ(k) by the similarity group S [1], [2]:

Ψro,ko(k) =
1

ko
e−j2πk.ro φ

„
k

ko
, θ − θo

«
. (4)

The wavelet coefficientCH(ro,ko) is defined as the scalar prod-
uct CH(ro,ko) =< H,Ψro,ko > between the complex backscat-
tering coefficient H and the wavelet Ψro,ko . It is defined as follow-
ing [8]:

CH(ro,ko) =

Z 2π

0

dθ

Z +∞

0

k H(k, θ)
1

ko

e+j2πk.roφ∗
„
k

ko
, θ − θo

«
dk (5)

So we define in the following the hyperImage SH(r,k) as the
wavelet coefficients CH(r,k).

3.2. Properties

The continuous wavelet transform has two interesting properties.
The first is the reconstruction. It is possible to build the com-
plex backscattering coefficient H(k) from the wavelet coefficient
CH(ro,ko):

H(k) =
1

Kφ

Z
S

dro

Z
CH(ro,ko) Ψro,ko(k) dko (6)

where Kφ is defined as the admissibility coefficient of the
mother wavelet and has, to build H(k) from the wavelet coeffi-
cients, to check:

Kφ =

Z
|φ(k)|2 dk

k2
< +∞ (7)

The second property is the isometry:

1

Kφ

Z
S

dro

Z
|CH(ro,ko)|2 dko = ‖H‖2 (8)

3.3. Limitations

The continuous wavelet is limited by the Heisenberg principle. In-
deed, this concept tells that we cannot obtain a spatial good resolu-
tion with a good resolution in the frequency domain and reciprocally.
However, the continuous wavelet offers a resolution which changes
with the frequency and the spatial domain. It allows multiresolution
analysis [6].

4. BIDIMENSIONAL COHEN CLASS

Cohen has shown that a number of time-frequency bilinear distribu-
tions which respect the covariance diagram in translation, could be
written in a generalized form. It is the Cohen class.

4.1. Short time Fourier transform

4.1.1. Definition

By applying the classical bidimensional short time Fourier transform
on the SAR image, S(r), the following hyperImage can be defined:

FS(r0,k0) =

Z +∞

−∞

Z +∞

−∞
S(r)w∗(r− r0) e−2iπk0·r dr (9)

where w is a window function. This transform allows to define the
associated spectrogram (in intensity):

I(r0,k0) = |FS(r0,k0)|2 (10)

Equivalently, by applying the classical bidimensional short time
Fourier transform on the backscattering complex coefficient H(k),
the same hyperImage can be retrieved:

FH(r0,k0) =

Z +∞

−∞

Z +∞

−∞
H(k)W ∗(k− k0) e2iπk·r0 dk (11)

where W is the Fourier transform of w. This transform allows to
define the associated spectrogram (in intensity):

I(r0,k0) = |FH(r0,k0)|2 (12)

4.1.2. Properties

The spectrogram satisfies the energy conservation but not the
marginal properties.



4.1.3. Limitations

The resolution in spatial domain is limited by the window w(r).
Similarly, the resolution in the frequency and angle domains is lim-
ited by the width of the frequency window W (k). The window
width in spatial and the window width in frequency are inversely
proportional to each other by the Heisenberg’s inequality. Therefore,
good resolution in spatial domain (small window w) necessarily im-
plies poor resolution in frequency and angle (large frequency and
angle window). Conversely, good resolution in frequency and angle
implies poor resolution in spatial [6]. It is the Heisenberg princi-
ple. The gaussian window achieves the best resolution compromise
among all the possible window function.

4.2. Wigner-Ville Distribution

4.2.1. Definition

By applying the classical bidimensional Wigner-Ville distribution on
the SAR image S(r), the following hyperImage is defined:

WS(r0,k0) =

Z +∞

−∞
S
“
r0 +

r

2

”
S∗
“
r0 −

r

2

”
e−2iπk0·r dr

(13)
Equivalently, by applying the classical bidimensional Wigner-Ville
distribution on the backscattering complex coefficient H(k), the
same hyperImage can be retrieved:

WH(r0,k0) =

Z +∞

−∞
H

„
k0 +

k

2

«
H∗
„
k0 −

k

2

«
e2iπk·r0 dk

(14)

4.2.2. Properties

The Wigner-Ville distribution is real but non-positive in all the time-
frequency plane. It is a pseudo distribution of energy. The Wigner-
Ville distribution has a number of desirable properties. It satisfies the
marginal conditions (in spatial and frequency). It satisfies the energy
conservation. It checks the instantaneous frequency property.

4.2.3. Limitations

Although, the Wigner-Ville distribution has many nice properties,
and gives nearly the best resolution among all the time-frequency
techniques, its main drawback comes from cross-term interferences
[6]. Indeed, the Wigner-Ville transform of the sum of two signals
is not the sum of the Wigner-Ville distributions. Let the backscat-
tering complex coefficient H received by the radar and it is the sum
of coefficients H1 et H2 backscattered by two reflectors: H(k) =
H1(k) + H2(k). So, the Wigner-Ville distribution of this signal is
explained by:

WH(r,k) = WH1(r,k) +WH2(r,k)

+2Re
»Z

R2
H1

„
k +

ξ

2

«
H∗2

„
k− ξ

2

«
ej2πξr dξ

–
(15)

So, two scatterers create cross-term interferences. The solution is
to filter the Wigner-Ville transform to suppress cross-term interfer-
ences.

5. INTERPRETATION OF THE HYPERIMAGES

Let us rewritten I(r,k) = I(x, y, f, θ): for each frequency f0 and
each angle of radar illumination θ0, I(x, y, f0, θ0) represents a spa-
tial repartition of reflectors which respond at this frequency and this
angle. Inversely, for each reflector located at r0 = (x0, y0), we can
extract its feature I(x0, y0, f, θ) in frequency f and in angular θ.
This is this aspect that we decided to point out in order to see if this
quantity can be interpretable in terms of target characteristics. To
analyse this 4D structure, a visual display interface called i4D has
been developed and allows to carry out an interactive and dynamic
analysis [9].

6. APPLICATION ON VHR SAR IMAGES

The VHR image (see Fig. 2) chosen for the experiment is an heli-
copter. The sampling step in range is 10 cm and in azimuth 10 cm.
The frequency band used to build this images is 1.4 GHz and the
angular excursion is around 8 deg.
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Fig. 2. VHR SAR image of an helicopter.

The hyperImage concept has been applied for the 2D spectro-
gram (Fig. 3), the 2D Wigner-Ville (Fig. 4) and the 2D continuous
wavelet (Fig. 5). The results show some scatterers are anisotropic
and dispersive.

7. CONCLUSION

Now, new SAR applications make obsolete the basic assumption of
the isotropy and non-dispersive scatterer. The basic tool to study
non-stationary signals is time frequency analysis. In this paper, the
hyperImage concept is generalized from the affine class to the Co-
hen class. The hyperimages have been tested on simulation data.
The results are that anisotropy and dispersive behaviors are found
again according to the time-frequency distributions properties. The
application on VHR image shows some scatterers are anisotropic
and dispersive. Future work relates to the extraction of physical tar-
get attributes and to the use of hyperImage concept for imaging and
detection of targets in SAR.
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Fig. 3. Results of the 2D Spectrogram applied to SAR image.
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Fig. 4. Results of the 2D Wigner-Ville applied to SAR image.
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Fig. 5. Results of the continuous wavelet applied to SAR image.
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