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ABSTRACT

In radar imaging, the assumption is made that scatterers are white
in the emitted frequency band and isotropic for all direction of ob-
servation. Nevertheless, new capacities in radar imaging, using a
wideband and a large angular excursion, make these hypotheses not
valid. Time-frequency analysis highlight this point of view and show
some scatterers are anisotropic and/or dispersive. This information
source can be completed by radar polarimetry. This paper suggests
a supervised classification of scatterers using neural networks based
on polarimetric time-frequency signatures. This method is applied
here on anechoic chamber data, however can be generalized to SAR
or circular SAR imaging.

Index Terms— Wavelet Transform, Radar Imaging, Neural
Network, Target Classification

1. INTRODUCTION

Conventional radar imaging techniques consider targets as a set of
bright points. Indeed, it considers scatterers as isotropic for all the
directions of presentation and white in the frequency band[1], [2].
Recent studies showed, using time-frequency analysis, thee angu-
lar and frequency behavior of the spatial distribution of all image
scatterers [3], [4], [5]. These representations, called hyperimages,
showed that some scatterers were neither isotropic nor white. This
non-stationary behavior of scatterers can be explained by their mate-
rial (dispersive), their geometry (anisotropic and dispersive) or their
orientation (anisotropic).

Polarimetry is another information source about the geometry
and the orientation of scatterers in radar imaging. Recent studies
showed, using time-frequency analysis and polarimetric coherent de-
compositions, the polarimetric angular and frequency behavior of the
spatial distribution of all image scatterers [6]. These representations,
called polarimetric hyperimages, showed that some scatterers were
not polarimetric stationary.

The aim of this paper is to classify scatterers according to their
energetic or polarimetric behaviors. This paper presents the con-
struction of polarimetric time-frequency signatures. Then, the signa-
ture of canonical targets is extracted and a process of classification
is designed by neural networks to discriminate data from anechoic
chamber.

2. RADAR IMAGING

2.1. Classical Radar Imaging

The model usually used in radar imaging is the model of bright
points [7]. The object under analysis can be seen as a set of bright
points, i.e. a set of independent sources which reflect in the same
way for all frequencies (white points) and all directions of presen-
tation (isotropic points). Let S(r) be the complex amplitude of the
bright point response located at r = (x,y)” in a set of cartesian
axes related to the object. Under far field conditions (decomposi-
tion into planes waves), the complex backscattering coefficient for
the whole object is then given by the in-phase summation of each
reflector contribution:

H(k) = / S(r)e 2T dr, 1)

After a Fourier Transform of (1), one can obtain the complex
amplitude of spatial repartition S(r) of the reflectors for a mean fre-
quency (the center frequency) and for a mean angle of presentation:

S(r) = / H(k) e*™ dk. )

When a target is illuminated by a broad-band signal and/or for
a large angular extent, it is realistic to consider that the amplitude
spatial repartition .S(r) of the reflectors depends on frequency f and
on aspect angle 6. This repartition depending on the wave vector k,
it will be noted in the following by S(r, k).

2.2. Extended Radar Imaging Based on the Continuous Wavelet
Transform

2.2.1. Construction of the Hyperimages

Let ¢(k) be a mother wavelet supposed to represent the signal re-
flected by a reference target. This target is supposed located around
r = 0 and backscatters the energy in the direction # = 0 and at the
frequency f given by k = % = 1. A family of function is built
Uy, ko from ¢(k) by the similarity group S [3], [4]:
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The wavelet coefficient C'rr (ro, ko) is defined as the scalar prod-
uct Cy(ro, ko) =< H, VU, x, > between the complex backscat-
tering coefficient H and the wavelet W, i . This scalar product is



defined following [8]:
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So we define in the following the hyperlmage S (r,k) as the
wavelet coefficients Cy (r, k).

2.2.2. Properties

The continuous wavelet transform has three interesting proper-
ties. It is possible to build the complex backscattering coeffi-
cient H (k) from the wavelet coefficient C'y (ro, ko):

1
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where K is defined as the admissibility coefficient of the mother
wavelet which has, to build H (k) from the wavelet coefficients, to
respect the constraint:

Ko = [0 5 < +o0 ©

The second property is the isometry:

% /dro/|C’H(ro,ko)|2 dk, = ||H|? %
¢ JS

The continuous wavelet transform has interesting properties (recon-
struction, isometry, physical interpretation). The principle of the ex-
tended radar imaging is based on a physical group of transforma-
tions, the similarity group S that acts on the physical variables r and
k through rotations [R]«, dilations a in length (or time) and transla-
tions Jr as:

r — r' =a[R]ar+dr

! ! (®)

k — Kk =a'[R].k.

The transformation law of the reflected signal H (k) and its ex-
tended image S(r, k) is therefore given by:

H(k) — H'(k)=a exp(—2irk-ér) H(a[R],"'k)
! 1
— S'(r,k) = §(a ' [RI2* (r — 6r),a [R]2 ' K).
)
So, in radar imaging, the change of reference coordinates usually
is an origin change (translations Jr), the orientation of axis change
(rotations [R]«), and a scale change (dilations a in length (or time)).
For two different observers .4 and 5 connected by the transforma-
tion law (8) (r is the coordinates of A and r’ is the coordinates of
B), the coordinates of the wave vector are achieved according to (8).
H (k) is the backscattering coefficient measured by .A and H' (k) is
the backscattering coefficient measured by B, these two coefficients
are connected by the law (9). To respect the covariance law, the
extended image has to respect the diagram (9).

S(r, k)

The multi-dimensional continuous wavelet respects the relation
(9). It is not the case for the Cohen class whose the short time fourier
transform is a tool. So, to build hyperimage, the multi-dimensional
continuous wavelet is selected.

3. POLARIMETRIC TIME-FREQUENCY SIGNATURES

A full polarimetric radar is generally designed to transmit and re-
ceive microwave radiations horizontally (h) or vertically (v) polar-
ized. The polarimetric generalization of the scattering coefficient is
called the scattering matrix [S] or Sinclair matrix:
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The wavelet transform is applied on each of the four polarimetric
channels. The resulting Sinclair scattering matrix now depends on
the frequency and on the illumination angle and is called hyper-
scattering matrix:

sk = | S

By applying the polarimetric coherent decompositions to the hyper-
scattering matrix, we obtain, on one hand, a polarimetric evolution
of the scatterers versus emitted frequency and observation angle,
on the over hand a polarimetric spatial response for each frequency
and angle of illumination. This defines the polarimetric hyperimage
concept [6] (see Fig. 1).

Sho(r, k) } ‘ (11)
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Fig. 1. Algorithm process to obtain polarimetric hyperimages

All in all, for each reflector located at ro = (z0,y0)”, we can
extract its feature I (o, yo, f, ) for each frequency f and for each
angle 0. This aspect is the one we have decided to point out in order
to see if this quantity can be interpretable in terms of target character-
istics. This signature is called polarimetric time-frequency signature.

4. SUPERVISED CLASSIFICATION

Neural networks are non-linear statistical data modeling tools. They
can be used to find pattern data [9].

4.1. Multi-Layer Perceptron

A multi-layer perceptron is a feedforward artificial neural network
model that maps sets of input data onto a set of appropriate output.
The structure of our multi-layer perceptron is described figure (2). It
is composed of nodes whose the processing is [10]:
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Fig. 2. Architecture of the multi-layer perceptron

Where a") associated input with each hidden unit. Here wg%) repre-

sents the elements of the first-layer weight matrix and b; are the bias
parameters associated with the hidden unit. The variables a§l> are
then transformed by the non-linear activation function of the hidden

layer. The activation function is tanh(.). The outputs of the hidden
units are given by z; = tanh(a§1>) which has the property:

dz; =1-22
dag.l) !
The z; are then transformed by the second layer of weights and

. . . . 2
biases to give second-layer activation values aé ).

M
af) = Zwﬁ?)zj + b](f) (13)
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Finally, these values are passed through the output-unit activa-
tion function to give output values yi. For the more usual kind
of classification problem in which we have of ¢ mutually exclusive
classes, we use the softmax activation function of the form [10]:

(2)
exp(a
Y = M (14)
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Our multi-layer perceptron is a three layers with a number of
nodes of the input layer equal to the number of input. The output
layer is equal to the number of class to obtain a probability density
whose the maximum defines the class which the scatterer belongs
to. The number of nodes of the hidden-layer is calculated by: N =

\ Ninput Noutput .

4.2. Learning Basis

In supervised learning, a set of known signatures is given and the aim
is to find a function in the allowed class of functions that matches
the examples. The cost function is related to the mismatch between
the mapping and the data and it implicitly contains prior knowledge
about the pattern recognition problem.

Our learning basis is made up seven targets: a trihedral, a head
of weapon, a plate, a dihedral, a cylinder, another cylinder with dif-
ferent curvature and a cone. The backscattering coefficient of the tar-
gets (1) is measured for a frequency band between [12, 18] GHz with
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Fig. 3. Diagram of the "Cyrano” weapon model

a sampling step 25 MHz and an angular excursion from —20 deg to
20 deg with a sampling step 1 deg. Then, the image full-resolution
is built according to (2). All in all, the polarimetric time-frequency
signatures of manually selected scatterers are extracted as explained
in the former part.

These signatures are valid for an aspect angle centered on 0 deg
and for a scale of the targets. To release the orientation phenom-
ena and the different scale, it must be taken to notice the covariance
law. A rotation is equivalent to an angular translation in the time-
frequency plane. So the former signatures are translated and com-
pleted with a zero-padding that generates our learning basis for each
target. For the scale problem, we make the assumption that the scale
of the target under study is the same of the learning basis targets.
Of course, it is not realistic however the contraction and dilation on
frequency are not the most important phenomena.

5. CLASSIFICATION RESULTS

The target under study is a ”Cyrano” weapon model in steel de-
scribed in Fig. 3. The backscattering coefficient (1) of the target
is measured for a frequency band between [12;18] GHz with a
sampling rate 7.5 MHz and an angular excursion from —20deg
to 20deg with a sampling rate 0.5deg. Then, the image full-
resolution is built according to (2). On this image, the leading edges
does not respond because their backscattering behavior is centered
on +20deg. Then, the polarimetric time-frequency signatures of
scatterers are extracted as explained in the former part. All in all,
these signatures are sent to the neural networks.

The choice of the mother wavelet has a Gaussian shape. Its
bandwidth, determined by the experimentation, has been set to 1/6th
of total frequency bandwidth that represents the best compromise of
resolution between space and frequency.

5.1. Extended Span Results

The results of classification based on the extended span polarimet-
ric time-frequency signatures are represented on the figure (4). The
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Fig. 4. Classification obtained by the extended span polarimetric
time-frequency signatures

head of ”Cyrano” is classified as a head of weapon. The trailing
edges of wing are identified as dihedral. It can be explained by
the fact that the responses of the edges and of diplane are direc-
tive responses. The closed air exit is classified as a specular plate
because the response is directive. The open air intake is identified as
a head of weapon because the polarimetric time-frequency signature
is isotropic and non-dispersive. For the stabilizers the classification
is a melting pot of cylinder, head of weapon and cone contribution.

5.2. Pauli Time-Frequency Results

The results of the Pauli hyperimage classification are described on
the figure (5). The head of ”Cyrano” is classified as a head of
weapon. The trailing edges of wing are identified as dihedral or
plate. It can be explained by the fact the responses of the edges are
directive responses with a melting pot of simple bounce and dou-
ble bounce contributions. However, the symmetry of the "Cyrano”
geometry is not found again that is difficult to explain. The closed
air exit is classified as a specular plate because the response is a
directive reflection. The open air intake is identified as a cylinder
because the polarimetric time-frequency signature is isotropic and
non-dispersive. For the stabilizers the classification is a melting pot
of cylinder, head of weapon and plate.

6. CONCLUSION

The polarimetric hyperimages allow to extract polarimetric time-
frequency signatures. These signatures characterize scatterers and
a supervised classification highlights this point of view. Future work
will consist in improving the learning basis and in using it to classify
scatterers on SAR images.
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