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ABSTRACT 2. CLASSICAL CRAMER-RAO AND ZIV-ZAKAI

In time-delay parameter estimation theory, predicting the BOUNDS
performance of the Maximum Likelihood Estimator (MLE) is
of great interest. The Cramér-Rao Bound (CRB) is widel
used to estimate the variance of the MLE. But, in the case
low signal to noise ratio, the CRB becomes inefficient. The
Ziv-Zakai Bound (ZZB) was therefore developed to estimate

this variance at low SNR by taking into account the a priori v ere the general transformatia with unknown param-

parameter density. We propose in this paper an improve- ; e O i

- ' “eter 6 to estimate (doppler shift, time-shift, time-scale, ...)
ment of the ZZB which predicts a more accurate MLE vari- applied on a vectds — [s(t;). s(t). ... St )]T built from
ance. Moreover, we derive a closed-form expression of thi$ 1);9(t2)5- -, SN

improved ZZB using the saddlepoint approximation methodf€@l samples of signa(t), where the parametévis the pos-
itive amplitude and\ is a real zero-mean Gaussian vector

1. INTRODUCTION with known covariance matrix?1. In the sequel, we fo-

o cus, without loss of generality, on time-delay estimatian,
Defining the lower bounds for the Mean Square Errorg, _ gt, — ), s(t,— 6),...,s(ty — 6)]. The signalS and

(MSE) of the Maximum Likelihood Estimator of a signal jis transformatior8y are supposed to respect the energy con-
parameter@ from noisy observations always remains agervation, i.e.:

problem of interest when the exact MSE is difficult to STg—sls, —1 )
estimate. The most popular bounds include the well known 9 =0 '

Cramer-Rao Bound (CRB) and the Ziv-Zakai Bound (ZZB).  Up to a constant, the log-likelihood functidris defined,
For high Signal to Noise Ratio (SNR), the CRB accuratelyfor any 8, by:

approaches the MSE. In the case of low SNR, the CRB,

which is only evaluated around the principal mode of the -1 T

likelihood function, does not take into account the presenc fao(Y) = 202 (Y—=ASe) (Y -ASs), (3)

of undesirable peaks and hence strongly under-estimates

the MSE. The ZZB, based on a prior distribution of theand the Maximum Likelihood Estimators (MLE) are given
parameter to estimate, takes into account these undesiratbly

e consider here a vectof = [y(t1),y(t2),...,y(tn)]" of
&oisy observationg(ty), 1 <k < N:

Y =ATy[S|+N=ASg+N, (1)

peaks and better approaches the MSE at low SNR. (A(Y),B(Y)) = argmaxfag(Y). (4)
A8 ’
The ZZB [1, 2] is derived by lower-bounding the MSE ) A _
with a probability of error (also called risk) of an optimés For a known amplitudé, the MLE6(Y)) is:
tistical test, namely the LRT (Likelihood Ratio Test). Iritep .
of the great improvement with respect to the CRB in the case oY) = argmaﬂYTSg] . (5)
]

of low SNR, the BZZ can be improved to better approach the

MSE. The goal of this paper is to propose a new risk, built ] ) ) R ) )
from the Generalized Likelihood Ratio Test (GLRT), which ~ WhenA s unknown, its estimatok(Y ), for a given®, is
is greater than the classical one but remains lower than thebtained by maximizinda ¢(Y') with respect toA:

MSE. This modified ZZB is shown to better bound the MSE. R

This paper is devoted to the particular case of time-del@y es A(Y) = argmaxfae(Y) = YTSy. (6)
mation but can be easily extended to other cases. The organi- A

zation of the paper is as follows. Section 2 presents the-prob .

lem and recalls the classical bounds. Section 3 describes an Under condition (2), replacing(Y) in (3) provides the
improvement of the classical ZZB by defining a new statisMLE 6(Y):

tical test. This test being difficult to be calculated, smcté

presents a powerful tool, the Saddlepoint (SP) approxonati AV — . _ Te \2
method which enables an easy derivation of the new bound. o(v) = argemafo(Y)’e(Y) - argemax(Y S)" ()
Finally, the last section gives some examples on time-delay

estimation performance and compares the new bound to the both casesA known and unknown), estimators (5) and (7)
others. are the same.



2.1 Crameér Rao Bound

The efficiency of the unbiased estimafbis generally mea-
sured by the MSE§ = E [(B(Y) — 6)?] which has a lower

bound given by the CRB. When the constraint (2) is re-

spected, the MLE is (for amplitud®known or unknown):

> (E[( (Y))ZDl:Z—E( )1. ®)

By denotingo?, the spectral variance sfty), equation (8)
o 1
A2 Am2o?’

Ofap
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leads to the well-known CRE3 >

The CRB is generally easy to derive but it over-estimates
the performance, particularly at low SNR. The Ziv Zakai

bound allows to circumvent this problem.

2.2 The Ziv-Zakai bound [1, 2]

Let us consider here a scalar random parantteith a pri-
ori uniform Probability Density Function (PDR)g(6) de-
fined on[0,Ty]. The problem of interest is to lower-bound
the MSEe3 which has the following form:

€2 — %/:mpr(m(v)_ o] > g) hdh, (9
where Pr(|é(Y) —6|> g) =
[ (o(9)+Po(6-+1) Ro(g. g, (10)

andRo(¢,h) =
Pe(P)
De(¢)+pe(¢+h)P( ) >0+3500 "’)
Pe (¢ +h)
De(¢)+p9(¢+h)Pr( (V) <9+30- ‘“h)

The term in square brackets in (11) can be seen as the

probability of errorRy(¢, h) (also called the risk) of the fol-
lowing testg:

Ho 0=¢ it O(Y)<¢+1
%{ Hi : 8=¢+h if é(v)>¢+§ - (1)
_ P (9)
i 1 P 506+ pe(@ <)
Pr(Hy) — Po(¢+h

Po(¢) +pa(p +h)

By defining the log-Likelihood Ratio:

Ai(Y)=Tae=¢(Y) = fao=p+n(Y)

— iz (sgv - SLhY) : (12)

the riskRy(¢,h) can be lower-bounded by the minimum risk
Ri(¢,h) obtained from the log-likelihood ratio of the follow-
ing optimum Likelihood Ratio Test (LRT¢y:

(,01{ Ho 6=1¢ if A1(Y)>0

Hi 6 =¢+h otherwise. (13)

For an equally likely hypothesis, the risk of the tesis:
1
Ra(¢.h)=5PriAx(Y) <0]6 = 9]
1
+§Pr[A1(Y) >00=¢+h], (14)

and the MSE finally verifies the inequality:

59_2/ hdh [

Equation (14) can be reduced by symmetry to

R1 (¢,h) (Po(®) + Po(¢ +h))d¢.

(15)

Ru(¢,h) :Pr[sgv—sjmv <o‘e:¢]. (16)

Let us denotep(h) = S} Sy+h, the time-delay autocor-
relation function [p(h)| < 1 and independent aff). By re-
calling that unde® = ¢ hypothesisy is a Gaussian vector
N (ASy, 0?l), the exact expression f&, is independent of
¢ and can be obtained by:

A2
Ruh) =@ 1/ 5= (1-p(h) (17)
where® is the complementary error function:
1 [ e
D(x :_/ e ¥/2qu, 18
=" (18)

Whenpyg is uniform on[0, Ty], replacing (17) in (15) and
integrating over lead to the classical ZZB expressed by:

VA (19)
where
Ta h A2
ZBB; = A h(l—?a)qJ( 55 5 (1- p(h))) dh.
(20)

A very precise and simple approximatiéfiBl of (20) has
A2

been described in [2]:
T
12 202 42 A2 0? M3
3/2
32 A2
_ nh{-—1,, (@1
<4 ) 3Ta\/2n2(402) )

0-2
wherel 4(.) is the incomplete gamma function. For the low

2 A2

402

o 2
778 -2 o

A2 o?

SNR, it can be proved that the bound tends to the variance

T2 /12 of thea priori uniform PDFpg. Therefore, the MLE
is nearly uniform on[0,Ty]. In the opposite, for the high
SNR, the CRB given by (8) can be retrieved.

3. IMPROVED ZIV-ZAKAI BOUND

We can improve the ZZB based on the LRT witknown
given by (15) or (19). When the energy does not depend

on 0 (2), the MLE of 8 which maximizes the correlation
is independent oA. Therefore, the MSE remains the same



consideringA known orA unknown. The goal of this section will be denoted?;(h).

is to build a GLRT in considering unknown which gives a

different riskR, than the LRT riskR;. By denoting The PDF derivation of the quadratic forfid WZ is not

straightforward becau# is not positive definite. A very ac-
N2(Y)=sup(fae(Y)|6 =¢)—sup(fae(Y)|6 = ¢ +h) curate and fast method called the saddlepoint approximatio
A A allows to give an explicit and simple expression for this PDF
= 1 (ST Y)2 _ (ST Y) 2 (22) The next section describes the general law approximation of

202 \\7¥ 9-+h ’ such quadratic forms by the saddlepoint method.

let us now consider the following tegt based on the GLRT, 4. THE SADDLEPOINT METHOD

(Y) = Ho : 6=¢ if A2(Y)>0 (23) 4.1 Saddlepoint background and its adaptation to PDF
?\Y) = Hi1 : 8=¢+h otherwise. derivation of general quadratic forms

The saddlepoint method was originally developed to approx-

The riskR, associated with the tegs becomes: imate the PDF of the mean ofi.i.d. random variables; [5].

1 If the Moment Generating Function (MGF) of the variakle
Ro(¢,h) =35 PriAz(Y) <06 = ¢] can be computed, the classical SP method provides the PDF
_12
1 ey . ; .
i 5 Pr{A2(Y)>0[6 = ¢ +h| of the mearx= - i;x. in the following manner:

—Pr { (SpY)% - (s;mv)z < o‘ 0= ¢} .(24)  * Compute the MGRM(t) = E [exp(tX]], o
e Compute the logarithi{(t) of the MGFM(t) and its first

. e 2
We clearly have and second derivativég(t) = ?j—}: andK(t) = d thz(t),
> e Compute the rodt, called the saddlepoint, of the equa-
Vo.h Re(d.h) = Ru(g.h). @5 e

because the tegh given by (13) is LRT and therefore itis e Compute the PDF approximation of the mean by:
Uniformly Most Powerful. The invariant test-theory states

thatRy(¢,h) > Ry(¢,h) whereAis considered as a nuisance N n
parameter [3, 4]. Indeedp, in (11) is invariant by scaling, fn(X) ~ 21K (to) exp(n(K(to) —0X)) - (30)
ie,

A T 2 T2 This SP approximation is very precise and generally pro-
6(AY) = argmaxSpAY)” = argmaxSpY)~,  (26)  vides relative errors uniformly bounded byrieven in the
6 6 tails regions. Moreover, in practice, can be very small

that isg@y(AY) = @(Y). Secondly, the tesp, in (23) is also (starting fromn = 2). Note that if the goal is to estimate the

invariant by scaling, and, since it is based on the GLRT, itCDtF' 'j i?_n:ore ?_fficit?]nt éopuse a c_Iosc?(q-for][r:hforI;nDullza [6]
is nearly Uniformly Most Powerful Invariante. it has the ~NSt€ad otintegrating the SF approximation ot the FLF.

minimum risk among the class of invariant tests by scaling. L L
Recalling thai, belongs to this class, we obtain the desired "€ SP approximation can be adapted f(%r estimating the
result, namely:Ro(¢,h) > Rx(¢,h) which gives, together law Pr(X < n) of general quadratic form$ =Z"'WZ where

with (25), a more accurate lower bound for the MSE: W is ad x d not necessarily positive definite matrix. To this
end, we need to compute the MGt) = E [exp(tX)] =
£5>27278, > 77ZB (27) E[exp(tZTWZz)] whereZ is a multidimensional Gaussian
distribution with meamm = E [Z] and covariance matrise:
where
1 3
L M) =~ | ep(Q)dz, (3
2285 [ [ " nR(6.1) (pa(9) + p9(¢+h))dh<z¢-) 22 ] s
28
Now, IeéTus examine how to compute the rigk By denoting whereQ(t) =tZTWZ — 1 T m)T Q! (Z —m). This pre-
Z= [ Sj? ] Y, the riskR(¢, h) to calculate is: vious equation can be factorized as:
$-+h
1 _
Ra(¢,h) = Pr[Z"Wz < 0|6 = ¢] (29) Qt)=-3 Z—a®]'Cr®)[Z-at)]+D(t), (32)

where Z is the 2-dimensional Gaussian random vector

with mean E[Z] = A[L,p(h)]" and covariance matrix where
a=02( 1 PM ) andwherav=( 1 9.1t T 1 Tl

- p(hy 1 “\0 -1 ) D(t)=ta" ®OWa(t) -5 [a(t) -m] @ [a(t) —m],
can be noted tha "Wz depends only on the ratié/o and C(t) = (@ t—2tw) ",

p(h). The riskRx(¢,h) being therefore independent éf it at)=C(t)Q 1m.



Therefore, it can be proved that the logarithm of the MGF

of X is simply,

1
K(t) =logM(t) = 5 log (lcva t)+Dr). (33)
The functionK (t) only exists if the matrix(2~1—2tW)
is positive definite. By settin§2 = UUT and by denoting\;
the eigenvalues of the symmetric matdk (W +WT) U/2,
this condition is verified if and only it €]t;,to[ where

Jty,to[= ﬂ {teR / 1-2tA >0}

_ The SP method involves the computationkoft) and
K(t). Some matrix properties derivations allow to write:
dD(t)

K(t)= %tr (Cl(t) di—?) + 5

-1 2
K(t) = :—thr (dCdt(t)cl(t) +C ) d dctz(t)>+

dt?

Finally, let us find the SP root solutidp €t3,t;[ of the

d?D(t)

Figure 1 presents, for two different SNR and fioe= 0.8,

a comparison of the SP approximation (35) and Monte-Carlo
computation. This figure shows that the SP approximation is
everywhere very accurate.

4.2 Closed-form Saddlepoint approximation forR, risk

The SP method of the previous section is applied to the ap-
proximation of the riskR, with n = 0 in (35) defined as in
(29):

Ro(h) =Pr(z'wz <0), (36)

whereW = ( (1) _g > and whereZ is a 2-dimensional

Gaussian vector with medh[l,p]T and covariance matrix
Q= ( ﬁ17 q ) Note thatp depends om. The riskRx(h)
depending only oi\/ g, the value ofo will be chosen equal
to one in the following for simplicity.

With the formulation of section 4.1, it can be shown that
the functionK(t) determining the SP approximation have a

nonlinear scalar equatiork(to) = . The saddlepoint the- closed-form:

ory states thaK is convex aroundy which allows to find
numericallyty by Newton-Raphson like algorithm. The SP

approximation PDF oK = Z"WZ finally reduces to:

exp(K(to) —toX) . (34)

1
f(X)  ——
v/ 21K (tp)
CDF of the quadratic form: comparison SP and MC

—sp
097 | — mc

08k SNR = -6dB

0.7

SNR = 6dB
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Figure 1: Comparison between SP approximation (35) and

Monte-Carlo trials versus threshaid

_tAZ(1-p?) (2t+1)
0= 1-4t2(1-p?)

1
-5 log(1-4t?(1-p?)).
(37)

K(t) exists fort €]ty, to, withty = andt; = —t.

1
_ 2y/1-p?
SolvingK(tp) = 0 leads to compute the roots of a 3rd order
polynomial which yields:

A2 At (1—p?)+12+12A7 m+W¥
to_l—z—\/ 36(1— p?) C s( 3 ), (38)
AZ(A*(1—p?) +18A2+72)/1—p2
where co$V = ( ( p)—|— + ) p .

(A% (1—p?) + 12+ 12A2)%?
Finally, theZZB, takes the following form:
Ta h
ZBB, :/ h (1_ _) Ro(h) dh. (39)
0 Ta
whereR;(h) is computed using (35) witly = 0 and using
(37) and (38). Although this paper is devoted to real signal
and noise, the results remains valid for complex variabdes a

well. The next section gives some examples of performance
gain achieved betweefZ B, andZZB;, in the complex case.

5. SIMULATIONS

In this section, we choose a linear frequency modulatioecod
s(t) with bandwidthB and duratiorT defined as:

Instead of integrating (34) to define Cumulative Density

Function (CDF), a more precise approximation was derived

by [6]:
T 1 1
Pr(z'"Wz < n) ~1-®(v) - @(v) (U - V) . (35)

where u = tp/K(tg), v = sign(ty) /2(ton —K(tg)) and
whereg(v) is the standard Gaussian PDF.

s(t) :exp<i n$t2) te [-T/2T/2  (40)
whose autocorrelation function ig(h) = %‘ We

denote in the following the SNR &/ d?.

Figure 2 represents as a function pfthe risk Ry
computed by (17) and the rigk obtained by (36) for three



Comparison Bounds vs Ta

different SNR. It can be observed tHa{ is always greater 0
thanR; as predicted by the theory (27). ] iy

Ta=T/8
— Ta=T/32
* CRB

Comparison of the risks R1 and R2

SNR = -6dB /- B

o
=
T

Delay Variance (dB)

*
*
60| *oxy N
N

* % \
* \
* N\
* % \
* %
* 4

B3
A priori region Ambiguity region Asymptotic
region

SNR = 6dB 90 1 I I |
-10 -5 0 5 10 15 20

SNR (dB)

Figure 4. Comparison of the CRB (*4ZB; in dotted lines
andZZB; in solid lines for different prior parametefs.

SNR = 10dB

6. CONCLUSION

In this paper, we have derived an improvement of the Ziv-
Zakai Bound for time-delay estimation which better ap-
Figure 3 compares the MSE of the MLE obtained byproaches the Maximum Likelihood Estimator variance. The
Monte Carlo trials and the CRB with the Ziv-Zakai Boundsimprovementis made using a GLRT test whose risk is greater
ZZB, andZZB, for different SNR and foff, = T/2,T = than the classical one, based on the LRT. This modified
1,B = 512. All variances have been normalized by the varibound is derived by the Saddlepoint approximation method,
ance of the prioff2/12. It can be observed that t#ZB,  Which gives a simple closed-form expression. Simulations
bound is greater thanZB; and remains lower than the MSE show that this approximation is very accurate and prove that
of the MLE as predicted by the theory (27). The performancéhe time-delay MLE performance are better predicted with
gain betweerZ ZB, andZZB, is around 3dB in the low SNR  this proposed bound.
region. Thus, theZzZB, can be used to better predict the
MLE performance. The high SNR region corresponding to 7. ACKNOWLEDGEMENT

chZeBCfRBdi.s%fshownin Figurega. '?t{:is figqrel,gcomparison OfThe authors wish to thank the Délégation Générale de
or different parameter%, of thea priori densitypg is | p t (DGA) for its fi ial t
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Figure 2: Comparison of the risl& andRy.
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