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ABSTRACT
In time-delay parameter estimation theory, predicting the

performance of the Maximum Likelihood Estimator (MLE) is
of great interest. The Cramèr-Rao Bound (CRB) is widely
used to estimate the variance of the MLE. But, in the case of
low signal to noise ratio, the CRB becomes inefficient. The
Ziv-Zakai Bound (ZZB) was therefore developed to estimate
this variance at low SNR by taking into account the a priori
parameter density. We propose in this paper an improve-
ment of the ZZB which predicts a more accurate MLE vari-
ance. Moreover, we derive a closed-form expression of this
improved ZZB using the saddlepoint approximation method.

1. INTRODUCTION

Defining the lower bounds for the Mean Square Error
(MSE) of the Maximum Likelihood Estimator of a signal
parameterθ from noisy observations always remains a
problem of interest when the exact MSE is difficult to
estimate. The most popular bounds include the well known
Cramèr-Rao Bound (CRB) and the Ziv-Zakai Bound (ZZB).
For high Signal to Noise Ratio (SNR), the CRB accurately
approaches the MSE. In the case of low SNR, the CRB,
which is only evaluated around the principal mode of the
likelihood function, does not take into account the presence
of undesirable peaks and hence strongly under-estimates
the MSE. The ZZB, based on a prior distribution of the
parameter to estimate, takes into account these undesirable
peaks and better approaches the MSE at low SNR.

The ZZB [1, 2] is derived by lower-bounding the MSE
with a probability of error (also called risk) of an optimal sta-
tistical test, namely the LRT (Likelihood Ratio Test). In spite
of the great improvement with respect to the CRB in the case
of low SNR, the BZZ can be improved to better approach the
MSE. The goal of this paper is to propose a new risk, built
from the Generalized Likelihood Ratio Test (GLRT), which
is greater than the classical one but remains lower than the
MSE. This modified ZZB is shown to better bound the MSE.
This paper is devoted to the particular case of time-delay esti-
mation but can be easily extended to other cases. The organi-
zation of the paper is as follows. Section 2 presents the prob-
lem and recalls the classical bounds. Section 3 describes an
improvement of the classical ZZB by defining a new statis-
tical test. This test being difficult to be calculated, section 4
presents a powerful tool, the Saddlepoint (SP) approximation
method which enables an easy derivation of the new bound.
Finally, the last section gives some examples on time-delay
estimation performance and compares the new bound to the
others.

2. CLASSICAL CRAMÈR-RAO AND ZIV-ZAKAI
BOUNDS

We consider here a vectorY = [y(t1),y(t2), . . . ,y(tN)]T of
noisy observationsy(tk), 1≤ k≤ N:

Y = ATθ [S]+N = ASθ +N , (1)

where the general transformationTθ with unknown param-
eterθ to estimate (doppler shift, time-shift, time-scale, ...)
is applied on a vectorS= [s(t1),s(t2), . . . ,s(tN)]T built from
real samples of signals(t), where the parameterA is the pos-
itive amplitude andN is a real zero-mean Gaussian vector
with known covariance matrixσ2 I . In the sequel, we fo-
cus, without loss of generality, on time-delay estimation,i.e.,
Sθ = [s(t1−θ),s(t2−θ), . . . ,s(tN −θ)]T . The signalS and
its transformationSθ are supposed to respect the energy con-
servation, i.e.:

ST S= ST
θ Sθ = 1. (2)

Up to a constant, the log-likelihood functionf is defined,
for anyθ, by:

fA,θ (Y) =
−1
2σ2 (Y−ASθ)T (Y −ASθ) , (3)

and the Maximum Likelihood Estimators (MLE) are given
by

(Â(Y), θ̂(Y)) = argmax
A,θ

fA,θ(Y) . (4)

For a known amplitudeA, the MLE θ̂(Y) is:

θ̂(Y) = argmax
θ

∣∣YTSθ
∣∣ . (5)

WhenA is unknown, its estimator̂A(Y), for a givenθ, is
obtained by maximizingfA,θ(Y) with respect toA:

Â(Y) = argmax
A

fA,θ (Y) = YTSθ . (6)

Under condition (2), replacinĝA(Y) in (3) provides the
MLE θ̂(Y):

θ̂(Y) = argmax
θ

fÂ(Y),θ(Y) = argmax
θ

(
YTSθ

)2
. (7)

In both cases (A known and unknown), estimators (5) and (7)
are the same.



2.1 Cramèr Rao Bound

The efficiency of the unbiased estimatorθ̂ is generally mea-
sured by the MSEε2

θ = E
[
(θ̂(Y)−θ)2

]
which has a lower

bound given by the CRB. When the constraint (2) is re-
spected, the MLE is (for amplitudeA known or unknown):

ε2
θ ≥

(
E

[(
∂ fA,θ
∂θ

(Y)

)2
])−1

=
σ2

A2

(
∂ST

θ
∂θ

∂Sθ
∂θ

)−1

. (8)

By denotingσ2
f , the spectral variance ofs(tk), equation (8)

leads to the well-known CRB:ε2
θ ≥ σ2

A2

1

4π2σ2
f

.

The CRB is generally easy to derive but it over-estimates
the performance, particularly at low SNR. The Ziv Zakai
bound allows to circumvent this problem.

2.2 The Ziv-Zakai bound [1, 2]

Let us consider here a scalar random parameterθ with a pri-
ori uniform Probability Density Function (PDF)pθ(θ) de-
fined on[0,Ta]. The problem of interest is to lower-bound
the MSEε2

θ which has the following form:

ε2
θ =

1
2

∫ +∞

0
Pr

(
|θ̂(Y)−θ|> h

2

)
hdh, (9)

where Pr

(
|θ̂(Y)−θ|> h

2

)
=

∫ +∞

−∞
(pθ(ϕ )+ pθ(ϕ +h)) R0(ϕ ,h)dϕ , (10)

andR0(ϕ ,h) =

pθ(ϕ )

pθ(ϕ )+ pθ(ϕ +h)
Pr

(
θ̂(Y) > ϕ +

h
2
|θ = ϕ

)
+

pθ(ϕ +h)

pθ(ϕ )+ pθ(ϕ +h)
Pr

(
θ̂(Y) ≤ ϕ +

h
2
|θ = ϕ +h

)
.

The term in square brackets in (11) can be seen as the
probability of errorR0(ϕ ,h) (also called the risk) of the fol-
lowing testφ0:

φ0

{
H0 : θ = ϕ if θ̂(Y) ≤ ϕ + h

2
H1 : θ = ϕ +h if θ̂(Y) > ϕ + h

2
, (11)

with





Pr(H0) =
pθ(ϕ )

pθ(ϕ )+ pθ(ϕ +h)

Pr(H1) =
pθ(ϕ +h)

pθ(ϕ )+ pθ(ϕ +h)
.

By defining the log-Likelihood Ratio:

Λ1(Y)= fA,θ=ϕ (Y)− fA,θ=ϕ+h(Y)

=
A
σ2

(
ST

ϕ Y−ST
ϕ+hY

)
, (12)

the riskR0(ϕ ,h) can be lower-bounded by the minimum risk
R1(ϕ ,h) obtained from the log-likelihood ratio of the follow-
ing optimum Likelihood Ratio Test (LRT)φ1:

φ1

{
H0 : θ = ϕ if Λ1(Y) ≥ 0
H1 : θ = ϕ +h otherwise. (13)

For an equally likely hypothesis, the risk of the testφ1 is:

R1(ϕ ,h)=
1
2

Pr[Λ1(Y) < 0|θ = ϕ ]

+
1
2

Pr[Λ1(Y) ≥ 0|θ = ϕ +h] , (14)

and the MSE finally verifies the inequality:

ε2
θ ≥ 1

2

∫ ∞

0
hdh

∫ +∞

−∞
R1(ϕ ,h) (pθ(ϕ )+ pθ(ϕ +h)) dϕ .

(15)
Equation (14) can be reduced by symmetry to

R1(ϕ ,h) = Pr
[

ST
ϕ Y −ST

ϕ+hY < 0
∣∣∣θ = ϕ

]
. (16)

Let us denoteρ(h) = ST
ϕ Sϕ+h, the time-delay autocor-

relation function (|ρ(h)| ≤ 1 and independent ofϕ ). By re-
calling that underθ = ϕ hypothesisY is a Gaussian vector
N (ASϕ ,σ2I), the exact expression forR1 is independent of
ϕ and can be obtained by:

R1(h) = Φ

(√
A2

2σ2 (1−ρ(h))

)
, (17)

whereΦ is the complementary error function:

Φ(x) =
1√
2π

∫ +∞

x
e−u2/2du. (18)

Whenpθ is uniform on[0,Ta], replacing (17) in (15) and
integrating overϕ lead to the classical ZZB expressed by:

ε2
θ ≥ ZZB1 (19)

where

ZBB1 =
∫ Ta

0
h

(
1− h

Ta

)
Φ

(√
A2

2σ2 (1−ρ(h))

)
dh.

(20)
A very precise and simple approximatioñZZB1 of (20) has
been described in [2]:

Z̃ZB1=
T2

a

12
Φ

(√
A2

2σ2

)
+

σ2

4π2A2σ2
f

Γ3/2

(
A2

4σ2

)

−
(

σ2

4π2A2σ2
f

)3/2
32

3Ta
√

2π
Γ2

(
A2

4σ2

)
, (21)

whereΓa(.) is the incomplete gamma function. For the low
SNR, it can be proved that the bound tends to the variance
T2

a /12 of thea priori uniform PDFpθ . Therefore, the MLE
is nearly uniform on[0,Ta]. In the opposite, for the high
SNR, the CRB given by (8) can be retrieved.

3. IMPROVED ZIV-ZAKAI BOUND

We can improve the ZZB based on the LRT withA known
given by (15) or (19). When the energy does not depend
on θ (2), the MLE of θ which maximizes the correlation
is independent ofA. Therefore, the MSE remains the same



consideringA known orA unknown. The goal of this section
is to build a GLRT in consideringA unknown which gives a
different riskR2 than the LRT riskR1. By denoting

Λ2(Y)=sup
A

(
fA,θ (Y)|θ = ϕ

)
−sup

A

(
fA,θ (Y)|θ = ϕ +h

)

=
1

2σ2

((
ST

ϕ Y
)2−

(
ST

ϕ+hY
)2
)

, (22)

let us now consider the following testφ2 based on the GLRT,

φ2(Y) =

{
H0 : θ = ϕ if Λ2(Y) ≥ 0
H1 : θ = ϕ +h otherwise. (23)

The riskR2 associated with the testφ2 becomes:

R2(ϕ ,h)=
1
2

Pr[Λ2(Y) < 0|θ = ϕ ]

+
1
2

Pr[Λ2(Y) ≥ 0|θ = ϕ +h]

=Pr

[(
ST

ϕ Y
)2−

(
ST

ϕ+hY
)2

< 0

∣∣∣∣θ = ϕ
]

. (24)

We clearly have

∀ϕ ,h R2(ϕ ,h) ≥ R1(ϕ ,h) , (25)

because the testφ1 given by (13) is LRT and therefore it is
Uniformly Most Powerful. The invariant test-theory states
thatR0(ϕ ,h) ≥ R2(ϕ ,h) whereA is considered as a nuisance
parameter [3, 4]. Indeed,φ0 in (11) is invariant by scaling,
i.e.,

θ̂(AY) = argmax
θ

(
ST

θ AY
)2

= argmax
θ

(
ST

θ Y
)2

, (26)

that isφ0(AY) = φ0(Y). Secondly, the testφ2 in (23) is also
invariant by scaling, and, since it is based on the GLRT, it
is nearly Uniformly Most Powerful Invariant,i.e., it has the
minimum risk among the class of invariant tests by scaling.
Recalling thatφ0 belongs to this class, we obtain the desired
result, namely:R0(ϕ ,h) ≥ R2(ϕ ,h) which gives, together
with (25), a more accurate lower bound for the MSE:

ε2
θ ≥ ZZB2 ≥ ZZB1 (27)

where

ZZB2 =
1
2

∫ ∞

0

∫ +∞

−∞
hR2(ϕ ,h)(pθ(ϕ )+ pθ(ϕ +h))dhdϕ .

(28)
Now, let us examine how to compute the riskR2. By denoting

Z =

[
ST

ϕ
ST

ϕ+h

]
Y, the riskR2(ϕ ,h) to calculate is:

R2(ϕ ,h) = Pr
[
ZTWZ < 0

∣∣θ = ϕ
]
, (29)

where Z is the 2-dimensional Gaussian random vector
with mean E[Z] = A [1,ρ(h)]T and covariance matrix

Ω = σ2

(
1 ρ(h)

ρ(h) 1

)
and whereW =

(
1 0
0 −1

)
. It

can be noted thatZTWZ depends only on the ratioA/σ and
ρ(h). The riskR2(ϕ ,h) being therefore independent ofϕ , it

will be denotedR2(h).

The PDF derivation of the quadratic formZTWZ is not
straightforward becauseW is not positive definite. A very ac-
curate and fast method called the saddlepoint approximation
allows to give an explicit and simple expression for this PDF.
The next section describes the general law approximation of
such quadratic forms by the saddlepoint method.

4. THE SADDLEPOINT METHOD

4.1 Saddlepoint background and its adaptation to PDF
derivation of general quadratic forms

The saddlepoint method was originally developed to approx-
imate the PDF of the mean ofn i.i.d. random variablesxi [5].
If the Moment Generating Function (MGF) of the variablexi
can be computed, the classical SP method provides the PDF

of the mean ¯x =
1
n

n

∑
i=1

xi in the following manner:

• Compute the MGF,M(t) = E [exp(t x̄)],
• Compute the logarithmK(t) of the MGFM(t) and its first

and second derivativeṡK(t) =
dK
dt

andK̈(t) =
d2K(t)

dt2
,

• Compute the roott0, called the saddlepoint, of the equa-
tion K̇(t) = x̄,

• Compute the PDF approximation of the mean by:

fn(x̄) ≈
√

n

2πK̈(t0)
exp(n(K(t0)− t0 x̄)) . (30)

This SP approximation is very precise and generally pro-
vides relative errors uniformly bounded by 1/n even in the
tails regions. Moreover, in practice,n can be very small
(starting fromn = 2). Note that if the goal is to estimate the
CDF, is is more efficient to use a closed-form formula [6]
instead of integrating the SP approximation of the PDF.

The SP approximation can be adapted for estimating the
law Pr(X < η ) of general quadratic formsX = ZTWZ where
W is ad×d not necessarily positive definite matrix. To this
end, we need to compute the MGFM(t) = E [exp(t X)] =
E
[
exp
(
t ZTWZ

)]
whereZ is a multidimensional Gaussian

distribution with meanm = E [Z] and covariance matrixΩ:

M(t) =
1

(2π)d/2
√
|Ω|

∫

Rd
exp(Q(t))dZ , (31)

whereQ(t)= t ZTWZ− 1
2

(Z −m)T
Ω

−1(Z −m). This pre-

vious equation can be factorized as:

Q(t) = −1
2

[Z−α (t)]T C−1(t) [Z −α (t)]+D(t) , (32)

where





D(t) = t α T(t)W α (t)− 1
2

[α (t)−m]T Ω
−1 [α (t)−m] ,

C(t) =
(
Ω

−1−2t W
)−1

,
α (t) = C(t)Ω−1m .



Therefore, it can be proved that the logarithm of the MGF
of X is simply,

K(t) = logM(t) =
1
2

log
(∣∣C(t)Ω−1

∣∣)+D(t) . (33)

The functionK(t) only exists if the matrix
(
Ω

−1−2t W
)

is positive definite. By settingΩ = UUT and by denotingλ i

the eigenvalues of the symmetric matrixUT
(
W +WT

)
U/2,

this condition is verified if and only ift ∈]t1, t2[ where
]t1,t2[=

⋂

i

{t ∈ R / 1−2t λ i > 0}.

The SP method involves the computation ofK̇(t) and
K̈(t). Some matrix properties derivations allow to write:




K̇(t)=
1
2

tr

(
C−1(t)

dC(t)
dt

)
+

dD(t)
dt

K̈(t) =
1
2

tr

(
dC−1(t)

dt
C−1(t)+C−1(t)

d2C(t)
dt2

)
+

d2D(t)
dt2

.

Finally, let us find the SP root solutiont0 ∈]t1, t2[ of the
nonlinear scalar equation:̇K(t0) = η . The saddlepoint the-
ory states thatK is convex aroundt0 which allows to find
numericallyt0 by Newton-Raphson like algorithm. The SP
approximation PDF ofX = ZTWZ finally reduces to:

f (x) ≈ 1√
2πK̈(t0)

exp(K(t0)− t0x) . (34)
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Figure 1: Comparison between SP approximation (35) and
Monte-Carlo trials versus thresholdη .

Instead of integrating (34) to define Cumulative Density
Function (CDF), a more precise approximation was derived
by [6]:

Pr
(
ZTWZ < η

)
≈ 1−Φ(v)−φ(v)

(
1
u
− 1

v

)
, (35)

where u = t0
√

K̈(t0), v = sign(t0)
√

2(t0η −K(t0)) and
whereφ(v) is the standard Gaussian PDF.

Figure 1 presents, for two different SNR and forρ = 0.8,
a comparison of the SP approximation (35) and Monte-Carlo
computation. This figure shows that the SP approximation is
everywhere very accurate.

4.2 Closed-form Saddlepoint approximation forR2 risk

The SP method of the previous section is applied to the ap-
proximation of the riskR2 with η = 0 in (35) defined as in
(29):

R2(h) = Pr
(
ZTWZ < 0

)
, (36)

whereW =

(
1 0
0 −1

)
and whereZ is a 2-dimensional

Gaussian vector with meanA [1,ρ]T and covariance matrix

Ω =

(
1 ρ
ρ 1

)
. Note thatρ depends onh. The riskR2(h)

depending only onA/σ , the value ofσ will be chosen equal
to one in the following for simplicity.

With the formulation of section 4.1, it can be shown that
the functionK(t) determining the SP approximation have a
closed-form:

K(t) =
t A2

(
1−ρ2

)
(2t +1)

1−4t2(1−ρ2)
− 1

2
log
(
1−4t2(1−ρ2)) .

(37)

K(t) exists fort ∈]t1,t2[, with t2 =
1

2
√

1−ρ2
andt1 = −t2.

Solving K̇(t0) = 0 leads to compute the roots of a 3rd order
polynomial which yields:

t0 =
A2

12
−
√

A4 (1−ρ2)+12+12A2

36(1−ρ2)
cos

(
π+Ψ

3

)
, (38)

where cosΨ =
A2
(
A4
(
1−ρ2

)
+18A2+72

)√
1−ρ2

(A4 (1−ρ2)+12+12A2)3/2
.

Finally, theZZB2 takes the following form:

ZBB2 =

∫ Ta

0
h

(
1− h

Ta

)
R2(h)dh. (39)

whereR2(h) is computed using (35) withη = 0 and using
(37) and (38). Although this paper is devoted to real signal
and noise, the results remains valid for complex variables as
well. The next section gives some examples of performance
gain achieved betweenZZB1 andZZB2 in the complex case.

5. SIMULATIONS

In this section, we choose a linear frequency modulation code
s(t) with bandwidthB and durationT defined as:

s(t) = exp

(
i π

B
T

t2
)

t ∈ [−T/2,T/2] (40)

whose autocorrelation function isρ(h) =
sinπBh

πBh
. We

denote in the following the SNR asA2/σ2.

Figure 2 represents as a function ofρ the risk R1
computed by (17) and the riskR2 obtained by (36) for three



different SNR. It can be observed thatR2 is always greater
thanR1 as predicted by the theory (27).
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Figure 3 compares the MSE of the MLE obtained by
Monte Carlo trials and the CRB with the Ziv-Zakai Bounds
ZZB1 and ZZB2 for different SNR and forTa = T/2,T =
1,B = 512. All variances have been normalized by the vari-
ance of the priorT2

a /12. It can be observed that theZZB2
bound is greater thanZZB1 and remains lower than the MSE
of the MLE as predicted by the theory (27). The performance
gain betweenZZB1 andZZB2 is around 3dB in the low SNR
region. Thus, theZZB2 can be used to better predict the
MLE performance. The high SNR region corresponding to
the CRB is shown in Figure 4. In this figure, a comparison of
ZZB for different parametersTa of thea priori densitypθ is
presented. It can be noted that all the ZZB bounds reach the
CRB in the high SNR region.
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Figure 3: Comparison between the MSE, CRB and ZZBs for
a given prior parameterTa = T/2.
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6. CONCLUSION

In this paper, we have derived an improvement of the Ziv-
Zakai Bound for time-delay estimation which better ap-
proaches the Maximum Likelihood Estimator variance. The
improvement is made using a GLRT test whose risk is greater
than the classical one, based on the LRT. This modified
bound is derived by the Saddlepoint approximation method,
which gives a simple closed-form expression. Simulations
show that this approximation is very accurate and prove that
the time-delay MLE performance are better predicted with
this proposed bound.
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