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Abstract—This paper explores the problem of change detection
in time series of heterogeneous multivariate synthetic aperture
radar images. Classical change detection schemes have modeled the
data as a realization of Gaussian random vectors and have derived
statistical tests under this assumption. However, when considering
high-resolution images, the heterogeneous behavior of the scatter-
ers is not well described by a Gaussian model. In this paper, the data
model is extended to spherically invariant random vectors where
the heterogeneity of the images is accounted for through a deter-
ministic texture parameter. Then, three separate detection prob-
lems are considered and generalized likelihood ratio test technique
is used to derive statistical tests for each problem. The constant
false alarm rate property of the new statistics are studied both the-
oretically and through simulation. Finally, the performance of the
new statistics are studied both in simulation and on real synthetic
aperture radar data and compared to Gaussian-derived ones. The
study yields promising results when the data are heterogeneous.

Index Terms—Image time series, change detection, synthetic
aperture radar, robust detection, generalised likelihood ratio test,
spherically invariant random vectors.

I. INTRODUCTION

A. Motivations and Relation to Prior Works

R ECENT years have seen an increase in the number of
remotely sensed images of the earth. Synthetic Aperture

Radar (SAR) images are more widely available thanks to space
missions such as Sentinel-1. These radar systems are known for
their all-weather sensing capabilities, which makes them a good
source of information when studying the evolution of a large
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Mont Blanc, Annecy-le-Vieux 74940, France (e-mail:, ammar.mian@centrale
supelec.fr).

G. Ginolhac and A. M. Atto are with the LISTIC, Université Savoie
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area over time. Change Detection (CD) in these image time
series (ITS) is needed for a large variety of applications such as
land-cover monitoring, disaster management or study of global
warming.

CD in SAR images has been a popular subject of study in
the recent years [1]. Since SAR systems are naturally subject to
speckle noise, the statistical framework has been successful in
the analysis of the acquired images. The Gaussian assumption
has been widely used to model the pixels of the images and has
provided solid results for applications such as target detection
[2]. When it comes to CD, several approaches have been ex-
plored. The Coherent Change Detection (CCD) is a well-known
approach that considers local correlations of pixels between two
dates. The pixels at both dates are concatenated into a unique
vector which is then modelled by a given distribution. Under
this formulation, the change has been parametrised through a
scale factor between the covariance matrices of both dates in [3].
In [4], [5], binary hypothesis testing has been introduced and
both Likelihood Ratio Test (LRT) and Generalised Likelihood
Ratio Test (GLRT) have been derived. However, since these ap-
proaches use local correlations, they are sensitive to variation of
phase between the two dates. If the conditions are not the same,
many false alarms may arise due to the phase difference.

Other approaches have considered using statistical informa-
tion theory to design a distance between the images [6], [7]. The
pixels are modelled by a given distribution (typically Gaussian)
and classic dissimilarity measures such as Kullback-Leibler
(KL) divergence are used to obtain a comparative statistic. In
this case, the methodology is less sensitive to the conditions
since the local spatial distribution of the data is used to compute
the change map. However, deciding on a threshold of detection
is a rather difficult problem when using such distances.

Finally, covariance equality test has been introduced in [8],
[9] for the case of two or three dates. Several works [10], [11]
have considered variations of these tests aimed at specific appli-
cations. Recently, an extension to the general case of T > 2 im-
ages has been considered in [12] and a statistic has been derived
using Generalised Likelihood Ratio Test (GLRT) methodology.
In [13], Rao and Wald methodologies have been explored as
well. Testing covariance equality is a classic problem within
the statistical literature namely, various statistics have been sug-
gested in [14]–[16]. When considering time series of multivari-
ate vectors, the detection of change-point in a series of covari-
ance matrices has been developed in [17], [18] for financial data
analysis.
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The works mentioned up to now use a Gaussian assumption
which has been successful for standard SAR images. However,
with the increase in resolution obtained in High Resolution (HR)
SAR, the Normal distribution does not fit the observations well
enough [19]–[21]. For those kind of images, an heterogeneity in
the power of the pixels is observed locally. This behaviour has
been modelled by introducing Spherically Invariant Random
Vectors (SIRV) [22] which are a sub-family of the elliptical
distributions [23]. This new model has presented good results
for radar applications [24]–[26].

Covariance equality test under non-Gaussian assumption has
been explored in [27] where a Gaussian-derived statistic has
been modified to work under a large variety of elliptical distribu-
tions. Although the proposed statistics have interesting asymp-
totic optimality properties, they use the Sample Covariance
Matrix (SCM) estimator which lacks robustness in the pres-
ence of outliers. For SAR images specifically, [28] proposed
to plug a robust Tyler estimate of covariance matrices into the
Gaussian-derived statistic. Under SIRV model, [29] proposed
a LRT statistic where the same robust estimates of covariances
are used. However, these 2-step methodologies do not take into
account a trace normalisation constraint which leads to a non
Constant False Alarm (CFAR) property of the statistics. For the
case T = 2, the present authors have proposed in [30] a GLRT
statistic which conserves the CFAR property. The study shows
interesting results of robustness under SIRV distributions.

In this paper, we consider an extension of [30]. The contribu-
tions of the present paper are summed-up as:

� We consider the problem of CD in HR SAR images for
the general case T > 2. The heterogeneity on the spatial
neighbourhood is taken into account by using a SIRV as-
sumption. The texture is assumed to be deterministic and
unknown, and is taken into account in three different ways
leading to separate detection problems.

� We derive statistic of decision for each problem using the
GLRT methodology. We also consider marginal statistics
which are used for the change-point estimation strategy
presented in [31].

� The derivation of the statistics leads to novel fixed-point es-
timates for the covariance matrices. The convergence prop-
erties of these estimates are considered. Then the CFAR
property of the new statistics are studied.

� The new statistics are applied on two separate real datasets
and have better performance than Gaussian-derived ones.

B. Paper Organisation

The paper is organised as follows: Section II gives prelimi-
nary definitions and provides background on CD under Gaussian
model. In Section III an extension of CD under robust model
is presented. Then GLRT for the different problems are de-
rived in Section IV. Section V considers the convergence of the
novel covariance estimates. Then in Section VI, statistical prop-
erties of the new statistics are explored. Simulations are done in
Section VII on both synthetic and real dataset. Finally, conclu-
sions are presented in VIII. Proofs are given in Appendices.

In the scope of this paper, the following notations will be
used: lower-case (resp. Upper-case) bold letters denotes vectors

Fig. 1. Illustration of local data selection (N1 = N2 = p = 3) for detection

test. The gray area corresponds to W1 ,T and the central pixel (x(t)
5 ) is the test

pixel.

(resp. matrices). Np , Rp and Cp are the sets of integer, real and
complex p-dimensional vectors. Sp

H is the set of Hermitian semi-
definite matrices of size p × p. Given (a, b) ∈ N2 , b � a, [[a, b]]
denotes the set {a, . . . , b}. δik is the Kronecker symbol. Θ is an
arbitrary parameter space. 0p is the p-dimensional null vector.
Ip is the identity matrix of size p × p. For any given matrix, •T ,
•H represent respectively the transpose and transpose conjugate
operators. �(•) and �(•) denote the real and imaginary parts.
Notations Tr(•), |•| and ‖ • ‖ are the trace, determinant and
euclidean norm operators. vec(•) is the vectorisation operator.
Notation •−1 is the inverse operation. The symbol ⊗ denotes
the Kronecker product. Given a scalar valued function f , ∂f

∂•
denotes the gradient of f w.r.t • arranged in a column. 1K is the
indicator function of set K. x will always represent a random
vector of size p. Any subscript or superscript serves to indicate
a specific observation. Σ will always be an Hermitian matrix
of size p × p. The symbol ∼ means “distributed as”. H0 and
H1 denote both possible hypothesis in a binary hypotheses test
scheme.

II. BACKGROUND ON CHANGE DETECTION UNDER

GAUSSIAN MODEL

In this section we give useful definitions that will be used
in the paper. Then we give some background on CD under
Gaussian model.

A. Preliminary Definitions

In general, to detect changes, a small subset of the image is
considered in the form of a sliding window. This window serves
as a mask in order to select the observations corresponding to
a local spatial neighbourhood. We define N1 , N2 the size of
this window and N = N1 × N2 . We denote the observations
on the window as x(t)

k . The subscript k ∈ [[1, N ]] serves to
identify the pixel and t ∈ [[1, T ]], the date of observation. Let
(t1 , t2) ∈ [[1, T ]]2 , we define W t1 ,t2 = {x(t)

k |k ∈ [[1, N ]], k ∈
[[t1 , t2 ]]}. Fig. 1 gives an illustration of the local data selection.

To simplify the equations, we define the following quantities:

q (Σ,x) = xHΣ−1x ,

∀k, ∀t, S(t)
k = x(t)

k
Hx(t)

k . (1)



522 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 2, JANUARY 15, 2019

B. Data Model

Each pixel x(t)
k of the SAR image is modelled as the re-

alisation of a random multivariate random vector x of size p
with a given probability model denoted px(x;Ω(t)), where
Ω(t) = {θ1(t), . . . ,θm (t)} ∈ Θm are the parameters of the
Probability Density Function (PDF).

The Gaussian assumption is the most widely used in multi-
variate SAR image applications. Indeed, in those images, each
pixel value is the sum of the contribution of many scatterers.
Using the central limit theorem, the Gaussian assumption is the
most natural one. This distribution is parametrised by a mean
vector μ and a covariance matrix Σ. The PDF is given by:

pCN
x (x;μ,Σ) =

1
πp |Σ| exp (−q (Σ,x − μ)) .

For SAR images, the mean is classically assumed to be zero
due to the multiplicative nature of speckle noise: μ = 0p and
will be omitted in the remainder of the paper. We will write
pCN
x (x;Σ) = pCN

x (x;0p ,Σ).

The notation θ(t) Δ= θt will be used henceforth.

C. Detection Schemes

CD in an ITS is a large problem and can be posed in many
different mathematical terms. When using a parametrised prob-
ability model for the pixels, the problem is seen as a comparison
of parameters over the time. In this paper, we express the CD
problematic as:

Consider a Time Series of random vectors x(t) ∼
px (x;Ω(t)); given parameters of interest denoted θ ⊂ Ω,
choose between the two following alternatives:

{
H0 : θ1 = · · · = θT = θ0 ,
H1 : ∃(t, t′) ∈ [[1, T ]]2 , θt �= θt ′

. (2)

Under this general formulation, a subset θ of the PDF’s pa-
rameters is considered. If the value of these parameters of inter-
est changes over time, it is considered as a change in the time
series. Φt = Ωt\θ are parameters of the PDF which are not
considered to be significant for the change in the time series.

Another scheme of interest is to choose between the two
following alternatives:

{
Hmarg

0 : θ1 = · · · = θT −1 = θ0 and θT = θ0 ,

Hmarg
1 : θ1 = · · · = θT −1 = θ01 and θT �= θ01

. (3)

This scheme’s intent is to test only the last image of the series
while considering that there is no change before. It is useful in
an on-line detection problem, where we want to integrate the
knowledge that there was no change in order to obtain better
performance than a bi-date scheme. It was considered in [31],
for example, where an estimation strategy for the change-point
is presented. We will consider the derivation of statistic for this
problem as well. However, we will limit ourselves to the study
of statistics derived for scheme (2).

D. Statistics of Decision Under Gaussian Model

Under Gaussian model, it is clear that, under CD schemes
presented previously, the sole possibility is θt = Σt , Φt = ∅.
Many works have studied this problem [14]–[16], [27] and many
statistics have been proposed. The case for T = 2 has been
especially studied [8]–[10]. Recently, [13] did a comparative
study and showed that many statistics are statistically equivalent
and reduced the options available to:

� the GLRT statistic:

Λ̂G =

∣∣∣Σ̂SCM
0

∣∣∣T N

∏T

t=1

∣∣∣Σ̂SCM
t

∣∣∣N
H1

≷
H0

λ, (4)

where:

∀t, Σ̂SCM
t =

1
N

N∑
k=1

S(t)
k and Σ̂SCM

0 =
1
T

T∑
t=1

Σ̂SCM
t .

(5)
� the t1 statistic which is obtained from Terrell [32] or Rao

[33] tests:

Λ̂t1 =
1
T

T∑
t=1

Tr

[((
Σ̂SCM

0

)−1
Σ̂SCM

t

)2
]

H1

≷
H0

λ. (6)

� the Wald statistic [34]:

Λ̂Wald = N
T∑

t=2

Tr

[(
Ip − Σ̂SCM

1

(
Σ̂SCM

t

)−1
)2
]

− q

(
N

T∑
t=1

(
Σ̂SCM

t

)−T

⊗
(
Σ̂SCM

t

)−1
, vec

(
T∑

t=2

Υt

))
H1

≷
H0

λ,

(7)

where

Υt = N

((
Σ̂SCM

t

)−1
−
(
Σ̂SCM

t

)−1
Σ̂SCM

1

(
Σ̂SCM

t

)−1
)

.

(8)
For the GLRT statistic at eq. (4), the marginal statistic for

scheme (3) has been derived in [31]:

Λ̂marg
G =

∣∣∣∣
∑T

t=1
Σ̂SCM

t

∣∣∣∣
T N

∣∣∣∣∣Σ̂SCM
T

∣∣∣∣∣
N ∣∣∣∣
∑T −1

t=1
Σ̂SCM

t

∣∣∣∣
(T −1)N

H1

≷
H0

λ. (9)

The statistics presented in this section are done using a Gaus-
sian model which do not take into account the heterogeneity
of the data. Indeed, as suggested in the introduction, HR SAR
images may have heterogeneous behaviour since the number of
scatterers in each pixel is reduced. In the next section, we will
consider a robust model taking into account such behaviour.

III. EXTENSION TO NON-GAUSSIAN MODEL

A. Data Model

To take into account the heterogeneity of the data, the SIRV
model is classically used. It is obtained by introducing a scale
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factor term, also known as the texture: x ∼ √
τ z, where z ∼

CN (0p ,Σ) and τ follows a given distribution. Since we want,
in this paper, to derive statistics which are robust to many classes
of distributions, no prior is given on τ . Instead, we will consider
the texture terms as deterministic unknown parameters:

px( t )
k

(
x(t)

k ; τ (t)
k ,Σt

)
= pCN

x( t )
k

(
x(t)

k ; τ (t)
k Σt

)
.

In this model, there exists an indetermination between
the texture and covariance matrix. Indeed, we have ∀α ∈
R+∗, px (x; τ,Σ) = px (x;ατ,Σ/α). Classically, without loss
of generality, Σ is assumed to be normalised: Tr(Σ) = p.

Under the robust model, the estimation of Σ has been studied
in [35]–[38]. When the texture are considered deterministic,
[20] proposed an approximation in the form of a fixed-point
estimator also known as Tyler estimator:

Σ̂TE
t =

p

N

N∑
k=1

S(t)
k

q
(
Σ̂TE

t ,x(t)
k

) . (10)

In contrast to the Gaussian case, the estimates of covariance
matrices are normalised by the trace to ensure the uniqueness of
the solution: since the fixed-point’s equation has solutions to a
given scale factor (due to the ambiguity problem), [39] proposed
to impose Tr(Σ̂) = p.

In [28], it was proposed for the case T = 2, to use this esti-
mator in the statistic of eq. (4) in place of the SCM estimator
in order to obtain a robust distance between covariance matri-
ces. In fact, when considering this methodology, the statistic
loses its CFAR matrix property. Indeed, this is caused by the
normalisation constraint described previously: the ratio is not
invariant when the estimates of covariance matrices are scaled.
Since the normalisation is performed by scaling the estimates
Σ̂t by p/Tr(Σ̂t), the statistic introduces a ratio of trace terms
which are not CFAR.

Moreover, this methodology omit the textures parameters
which may be useful for accounting changes. Indeed, since the
matrices are normalised, the relative power between the images
is contained in the textures parameters.

In this paper, we consider the design of statistics by GLRT
technique using the robust model rather than plugging robust
estimates in Gaussian-derived statistics.

B. Problems Statement

Since in the robust model, the PDF is characterised by two
unknown parameters, several detection strategies are possible.
We consider the following problems:

� Problem 1:

θt =
{

τ
(t)
1 , . . . , τ

(t)
N ,Σt

}
,

Φt = ∅ . (11)

In this detection problem, we want to detect a change
corresponding jointly to a change in power and in the shape
of covariance matrix. This differs from the classic Gaussian
detection test (where the power is implicitly tested through
the covariance matrix) as the heterogeneity of the texture

on the window of observations is taken into account in the
model.

� Problem 2:

θt = {Σt} ,

Φt =
{

τ
(t)
1 , . . . , τ

(t)
N

}
. (12)

In this next detection problem, we want to detect changes
in the local correlations between the pixels without taking
into account their relative power. This scheme is intended
for applications in which an alteration in the power is not
a significant change (for example two images of a scene
with different calibrations). In those situations, Problem 1
is not suited.

� Problem 3:

θt =
{

τ
(t)
1 , . . . , τ

(t)
N

}
,

Φt = {Σt} . (13)

In the last detection scheme, the detection is done solely on
the texture parameter. This leads to a statistical test where
only the relative power between the images is taken into
account for CD.

IV. DERIVATION OF GLRT FOR PROBLEMS 1,2 AND 3

In this section, we derive the GLRT for each problem of III-B
for both omnibus scheme (2) and marginal scheme (3).

A. GLRT of Problem 1

Proposition IV.1: The GLRT ratio under hypotheses of Prob-
lem 1 for omnibus scheme (2) is the following:

Λ̂MT =

∣∣∣Σ̂MT
0

∣∣∣T N

∏T

t=1

∣∣∣Σ̂TE
t

∣∣∣N
N∏

k=1

(∑T

t=1
q
(
Σ̂MT

0 ,x(t)
k

))T p

T T p
∏T

t=1

(
q
(
Σ̂TE

t ,x(t)
k

))p

H1

≷
H0

λ,

(14)
where

Σ̂MT
0 = fMT

N,T

(
Σ̂MT

0

)
=

p

N

N∑
k=1

∑T

t=1
S(t)

k∑T

t=1
q
(
Σ̂MT

0 ,x(t)
k

) .

(15)
Proof: See Appendix A. A step by step derivation is also

provided in a supplementary material. �
Discussion: The statistic obtained here is similar to the one

obtained using Gaussian assumption. The term involving deter-
minant is the same except that now the estimates are solution of
a fixed-point equation. Σ̂TE

t is the Tyler estimator of eq. (10).
Σ̂MT

0 is similar but corresponds to a different fixed-point equa-
tion involving the observations for all the dates. The properties
of this new estimate will be studied in the next section.

Due to the normalisation of covariance matrices, the term
involving determinants is a test involving solely the structure of
the covariance matrices and do not consider the relative power
of the pixels between the dates. The ratio of the quadratic forms
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allows to test the change in power in the same way it is done for
the correlations in the determinants term.

Proposition IV.2: The GLRT ratio under hypotheses of prob-
lem 1 for marginal scheme (3) is the following:

Λ̂marg
MT =

∣∣∣Σ̂MT
0

∣∣∣T N

∣∣∣Σ̂MT
01

∣∣∣(T −1)N ∣∣∣Σ̂TE
T

∣∣∣N
((T − 1)p)(T −1)N ppN p

(Tp)T N p

×
N∏

k=1

(∑T

t=1
q
(
Σ̂MT

0 ,x(t)
k

))T p

(∑T −1

t=1
q
(
Σ̂MT

01 ,x(t)
k

))(T −1)p(
q
(
Σ̂T

TE ,x(T )
k

))p

H1

≷
H0

λ,

(16)

where

Σ̂MT
01 = fMT

N,T −1

(
Σ̂MT

01

)
. (17)

Proof: See Appendix B. A step by step derivation is also
provided in a supplementary material. �

B. GLRT of Problem 2

Proposition IV.3: The GLRT ratio under hypotheses of prob-
lem 2 for omnibus scheme (2) is the following:

Λ̂Mat =

∣∣∣Σ̂Mat
0

∣∣∣T N

∏T

t=1

∣∣∣Σ̂TE
t

∣∣∣N
k=N
t=T∏
k=1
t=1

(
q
(
Σ̂Mat

0 ,x(t)
k

))p

(
q
(
Σ̂TE

t ,x(t)
k

))p

H1

≷
H0

λ , (18)

where

Σ̂Mat
0 = fMat

N,T

(
Σ̂Mat

0

)
=

p

T N

k=N
t=T∑
k=1
t=1

S(t)
k

q
(
Σ̂Mat

0 ,x(t)
k

) .

Proof: The detail of this calculation for T = 2 can be found
in [30]. A step by step derivation is also provided in a supple-
mentary material. �

Discussion: The statistic obtained here is different from the
previous one since there is no consideration of the relative power
between the dates. Indeed, this time, the estimates of the texture
parameter are compensated and only serve to test the correla-
tions between the dates for each pixel of the window.

In fact, the same statistic is obtained if we consider the com-
plex elliptical symmetric model [40] on the self-normalised ob-
servations: x(t)

k /‖x(t)
k ‖. In this model the relative power is lost

in the normalisation and the correlation structure is considered.
Σ̂Mat

0 is also a new variant of Tyler’s estimator and its prop-
erties will be studied in the next section.

Proposition IV.4: The GLRT ratio under hypotheses of prob-
lem 2 for marginal scheme (3) is the following:

Λ̂marg
Mat =

∣∣∣Σ̂Mat
0

∣∣∣T N

∣∣∣Σ̂Mat
01

∣∣∣(T −1)N ∣∣∣Σ̂TE
T

∣∣∣N

×
N∏

k=1

∏T

t=1

(
q
(
Σ̂Mat

0 ,x(t)
k

))p

(∏T −1

t=1

(
q
(
Σ̂Mat

01 ,x(t)
k

))p
)(

q
(
Σ̂TE

T ,x(T )
k

))p

H1

≷
H0

λ,

(19)

where

Σ̂Mat
01 = fMat

N,T −1

(
Σ̂Mat

01

)
.

Proof: The calculation is very similar to the one done at
Proposition IV.2. A step by step derivation is also provided in a
supplementary material. �

C. GLRT of Problem 3

Proposition IV.5: The GLRT ratio under hypotheses of prob-
lem 3 for omnibus scheme (2) is the following:

Λ̂Tex =
T∏

t=1

∣∣∣Σ̂Tex
t

∣∣∣N∣∣∣Σ̂TE
t

∣∣∣N
N∏

k=1

(∑T

t=1
q
(
Σ̂Tex

t ,x(t)
k

))T p

T T p
∏T

t=1

(
q
(
Σ̂TE

t ,x(t)
k

))p

H1

≷
H0

λ,

(20)
where

Σ̂Tex
t = fTex

N,T ,t

(
Σ̂Tex

1 , . . . , Σ̂Tex
T

)
, (21)

=
T p

N

N∑
k=1

S(t)
k∑T

t ′=1
q
(
Σ̂Tex

t ′ ,x(t)
k

) . (22)

Proof: Very similar to the one of Proposition IV.1 presented
in Appendix A. A step by step derivation is also provided in a
supplementary material. �

Discussion: In this last statistic, the detection is done solely
on the texture parameters. This leads to an interesting estimation:
each Σ̂Tex

t is solution of a fixed-point equation which involves
all the estimates Σ̂Tex

t ′ . In practice, this can lead to convergence
issues when considering the computation. This problematic will
be treated in the next section and it can be shown that the
estimates can be implemented simply.

The marginal statistic is omitted for this problem. As we will
show hereafter, Λ̂Tex does not have the CFAR matrix property
and is thus not an interesting statistic for schemes whose objec-
tive is to ensure a given significance level.

V. CONVERGENCE CONSIDERATIONS

A. Theoretical Study of Convergence

We consider here the validity of the alternate maximisation
done when deriving the new statistics and the convergence prob-
lems that arise. To this end, we consider geodesic convexity



MIAN et al.: NEW ROBUST STATISTICS FOR CHANGE DETECTION IN TIME SERIES OF MULTIVARIATE SAR IMAGES 525

(g-convexity) on the manifold Sp
H as presented in [41] which is

defined as follows:
Definition 1: (Geodesic convexity) Let M be an arbitrary

manifold. For each pair q0 , q1 ∈ M, we define a geodesic
qq0 ,q1
t ∈ M for t ∈ [0, 1]. A real valued function f with do-

main M if g-convex if f(qq0 ,q1
t ) ≤ tf(q1) + (1 − t)f(q0) for

any q0 , q1 ∈ M and t ∈ [0, 1].
The g-convexity, which extends the definition of the tradi-

tional Euclidean convexity to curved spaces, is useful for op-
timisations done on covariances matrices. Notably, we can use
this property of the log-likelihood to show the following propo-
sition:

Proposition V.1: Σ̂MT
0 , Σ̂Mat

0 and Σ̂Tex
t are the arguments to

the unique global maximum of their respective log-likelihood
cost functions over the observations

Proof: See Appendix C. �
This proposition is necessary to justify the alternate max-

imisation done when deriving the expression of the statistics.
However, when considering optimisation on manifolds, this in
itself does not guarantee that the solution corresponding to the
global maxima is part of the manifold. This point is important
since we want a solution that is both computable and in the set
Sp

H. The following proposition can be effectively shown:
Proposition V.2: Σ̂MT

0 , Σ̂Mat
0 and Σ̂Tex

t are the arguments
to the global maxima obtained inside Sp

H.
Proof: See Appendix D. �
Now that we know that the solution to the fixed-point equation

is the argument to the unique global maximum of their log-
likelihood and that they are obtained inside the manifold Sp

H,
the convergence of the fixed-point algorithms can be considered.
We have:

Theorem V.3: Let {x(t)
k |k ∈ [[1, N ]], t ∈ [[1, T ]]} be a

set of observations. Let us define vectors vi ∈ Rp such

that ∀k,∀t, v(T −1)∗N +k = (�(x(t)
k )T ,�(x(t)

k )T)
T

and

v(2T −1)∗N +k = (−�(x(t)
k )T ,�(x(t)

k )T)
T

. Let P2T N (•) be the
empirical distribution of samples {vi |i ∈ [[1, 2TN ]]}. Then the
fixed-point algorithms

(
ΣMat

0
)
k+1 = fMat

N,T

((
ΣMat

0
)
k

)
and(

ΣMT
0
)
k+1 = fMT

N,T

((
ΣMT

0
)
k

)
converge to unique solutions

up to a scale factor if and only if the following condition is
respected:

(C1) P2T N ({0}) = 0 and for all linear subspaces V ⊂ R2p ,
we have P2T N (V ) < dim(V )/2p.

Proof: This result can be obtained using the complex to real
equivalence provided in [23] and by plugging the expression of
the new estimator at eq. (15) in the proof of theorem 3 of [42].
Since most of the proof is equivalent, it will be provided in a
supplementary material.

The main steps of the proof are the following:
� By using the complex to real transformation presented in

the theorem, we show that the problem can be considered
using real valued observations.

� Since the fixed point equation is preserved using the
transformation x → Mx, for any non-singular ma-
trix M, we can assume Σ = I2p without loss of
generality.

Algorithm 1: Computation of Σ̂Tex
t .

1: Initialize ∀t ∈ [[1, T ]], Σ̂Tex (0)
t = Ip

2: while d > ε do
3: for t ∈ [[1, T ]] do
4:

Compute:

Σ̂Tex (n+1)
t = fTex

N,T ,t

(
Σ̂Tex (n)

1 , . . . , Σ̂Tex (n)
T

)
.

5: Impose Trace normalisation by:

Σ̂Tex (n+1)
t =

p Σ̂Tex (n+1)
t

Tr
(
Σ̂Tex (n+1)

t

) .

6: end for
7: Compute criterion
8:

d = max

⎧⎪⎨
⎪⎩

∥∥∥Σ̂Tex (n+1)
t − Σ̂Tex (n)

t

∥∥∥∥∥∥Σ̂Tex (n)
t

∥∥∥
/

t ∈ [[1, T ]]

⎫⎪⎬
⎪⎭ .

9: end while

� To prove the sufficient statement, we show using condi-
tion (C1), Σ = I2p and an appropriate bounding, that the
largest and smallest eigenvalues of Σ̂ both converge to one.

� The necessary statement is obtained by defining a projector
Q on a proper subspace. Multiplying the fixed point equa-
tion when Σ = I2p by (I2p − Q) and using appropriate
bounding allows to obtain the condition on the dimension.

�
For practical purposes the condition (C1) can be achieved

when there are at least p + 1 linearly independent observations
x(t)

k , which is ensured in the data model we considered in the
paper. Again, the uniqueness is guaranteed by the trace normali-
sation which has to be imposed at each step of the algorithm. It is
important to notice that the convergence of the algorithms is en-
sured for any set of observations {x(t)

k |t ∈ [[1, T ]], k ∈ [[1, N ]]}
that respects condition (C1), even if the observations do not
follow the same distributions (typically if the hypothesis H1 is
correct).

The case of Σ̂Tex
t is in this regard trickier. Indeed, since each

step requires the knowledge of the others estimates, we propose
the cyclic algorithm 1 that will iterate each matrix alternatively.
While it is easy to show that if only one of the matrices is
unknown,1 the fixed-point algorithm will converge, it is difficult
to conclude on a theoretical standpoint about the convergence
of the alternate estimation algorithm. Nonetheless, when doing
extensive simulations, as will be shown shortly afterwards, on
both theoretical and real-data, there has been no case when the
algorithm do not converge, except when the condition (C1) is
not respected.

1using the same considerations as in the previous theorem.
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Fig. 2. Convergence property of estimates. Left: Same matrices at each date.
Right: Different matrices at each date. The textures are different at each date for
both settings.

B. Experimental Study of Convergence

In order to test the convergence property of matrix estimates,
we consider realisations of random variables x =

√
τ z where

τ follows a Γ-distribution with shape parameter α and scale
parameter β. z is generated through a Gaussian realisation with
covariance matrix chosen to be Toeplitz of the form:

Σ = (σm,n )1≤m≤p
1≤n≤p

,

where : σm,n = ρ|m−n |.

We consider two settings: first, we generate a time series
{x(t)

k |k ∈ [[1, N ]], t ∈ [[1, T ]]} where each x(t)
k is distributed

with the same covariance matrix Σ0 . Then, we generate a time
series where each x(t)

k is distributed with a covariance matrix Σt

different for each date. Fig. 2 presents a Monte-Carlo (MC) sim-
ulation where the criterion d of convergence is plotted against
the number of iterations n of the fixed-point algorithm. The plot
shows that for whatever the setting, all estimates converge since
the criterion attains the working precision of the machine. We
observe that Σ̂Tex

t needs more iterations to converge. This was
expected, since in this case three different matrices were esti-
mated while for the others a single matrix was computed. These
results comfort the theoretical considerations of V-A.

VI. STUDY OF CFAR PROPERTY

A. Theoretical Study of the CFAR Property

Here, we study the properties of the statistics derived in
Section IV. We consider the CFAR property which is primordial
if we want to apply the statistic in a decision scheme where the
significance level is important.

We have the following propositions:
Proposition VI.1: Λ̂MT (resp. Λ̂marg

MT ) is CFAR texture and
matrix for Problem 1 (resp. marginal Problem 1).

Proof: See Appendix E. �
Proposition VI.2: Λ̂Mat (resp. Λ̂marg

Mat ) is CFAR texture and
matrix for Problem 2 (resp. marginal Problem 2).

Proof: The same arguments as used in Proposition VI.1 are
applied here. �

Proposition VI.3: Λ̂Tex is CFAR texture but is not CFAR
matrix for Problem 3.

Proof: See Appendix F. �

Fig. 3. Texture CFAR behaviour. Top-left: Λ̂G . Top-right: Λ̂t1 . Middle-left:
Λ̂Wald . Middle-right: Λ̂M T . Bottom-left: Λ̂M at . Bottom-Right: Λ̂Tex . ρ = 0.3
at each date for all the curves.

B. Experimental Study of the CFAR Property

The CFAR texture and matrix behaviour of the new statistics
have been tested in simulation. To this end, a time series has
been generated under the H0 regime of Problem 1 which also
corresponds to H0 for the other problems. The statistics have
been computed in MC trials to generate the plots shown at Fig. 3.
The Gaussian statistics of II-D have also been computed. The
plots show that these Gaussian statistics vary when the texture
changes and thus, have not the texture CFAR property. The new
statistics however, do not vary for any texture parameter tested,
which is an improvement. In this regards, Λ̂Mat is the most
robust one since the statistic does not vary even if the texture
equality between the dates is not respected.

Next, the matrix CFAR behaviour is tested using
∀k, ∀t, τ

(t)
k = 1. Fig. 4 shows plots of MC trials where the

coefficients for the covariance matrix vary. The plots show that
the Gaussian statistics are CFAR which was demonstrated in
[13]. It shows that Λ̂MT , Λ̂Mat have the CFAR matrix behaviour
while Λ̂Tex has not. This result is coherent with the theoretical
analysis.

VII. PERFORMANCE STUDY OF NEW STATISTICS

In this section, we present results of simulation performed on
synthetic and real dataset. For synthetic data, the same method-
ology as the previous section is used for generating data2. Table I
reminds the parameters relevant for the simulation.

2Some code for the simulations presented is available at: https://github.
com/AmmarMian/DemonstrationANRPhoenix

https://github.com/AmmarMian/DemonstrationANRPhoenix
https://github.com/AmmarMian/DemonstrationANRPhoenix
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Fig. 4. Matrix CFAR behaviour. Top-left: Λ̂G . Top-right: Λ̂t1 . Middle-left:
Λ̂Wald . Middle-right: Λ̂M T . Bottom-left: Λ̂M at . Bottom-Right: Λ̂Tex .

TABLE I
SIMULATION-RELEVANT PARAMETERS

A. Test of Statistics on Synthetic Dataset

We consider analysing the theoretical performance of the
new statistics. To this end, we consider a time series with T =
10, p = 3, N = 7 with a change at t = 5 and plot Receiver
Operating Characteristic (ROC) curves for each problem.

� Problem 1: Before change, the covariance matrix is as-
sociated with ρ = 0.1. The textures are generated with
α = 0.3, β = 0.1 and are equal for each date. After the
change, we have ρ = 0.8 and α = 0.3, β = 0.3 and the
textures are equal for each date.

� Problem 2: Before change, the covariance matrix is associ-
ated with ρ = 0.1. After the change, we have ρ = 0.8. For
any date, the textures are generated using α = 0.3, β = 0.1
and are different for each date.

� Problem 3: Before and after the change, the covariance ma-
trix is obtained using a random value for ρ and the textures
are generated using α = 0.3, β = 0.3. Before change, the
textures are equal and after the change, they are different.

� Gaussian problem: the textures are all fixed to one. Be-
fore the change, the covariance matrix is associated with

Fig. 5. ROC curves obtained on synthetic data. Top: Problem 1. Middle-Up:
Problem 2. Middle-down: Problem 3. Bottom: Gaussian setting.

ρ = 0.1. Ater the change, the covariance matrix is associ-
ated with ρ = 0.8.

Figure 5 gives the results obtained by MC trials. The thresh-
olds for a given PFa are computed numerically using the H0
regime of the problem considered. Although not realistic on
real images, this allows, on synthetic data, to have an experi-
mental threshold that matches the objective PFa even if the test
is not CFAR for the problem considered.

For each problem, the statistic derived yields the best ex-
pected result. The Gaussian statistics have poorer performance
than Λ̂MT and Λ̂Tex for testing a change in the texture. Λ̂Mat
performs the best when there is only a change in the covariance
matrix shape. For the third problem, since there is no change in
the matrices, it is not surprising that the detection rate is low.
Λ̂MT appears to be the best option for testing changes on the
textures since for both problems 1 and 3, the performance are
good. This is explained by the fact that the distribution under
H0 of the statistic is less sensitive to a violation of the ma-
trix equality assumption than it would be from a texture one.
Since in Problem 3 the textures are equal before the change, the
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TABLE II
DESCRIPTION OF SAR DATA USED

Fig. 6. SDMS Dataset. Top-left: FP0120. Top-middle: FP0121. Top-right:
FP0124. Bottom-left: Ground Truth FP0120-FP0121-FP0124. Bottom-right:
Ground Truth FP0121-FP0124.

threshold to guarantee the PFa is still low enough to guarantee
good performance. Finally, when the data is strictly Gaussian,
Λ̂t1 and Λ̂G have better results than the robust statistics. This
result is expected, since there is a trade-off between robustness
and performance when considering robust methods. Among the
new statistics, Λ̂Tex does not allow do detect a change in the
shape so its results are expected to be lowest.

B. Test of Statistics on Real Dataset

1) Data Description: The proposed statistics have been
tested on real images coming from two different datasets:
SDMS (Courtesy AFRL/RYA) [43] and UAVSAR (Courtesy
NASA/JPL-Caltech). From SDMS, three images of the same
scene, presented at Fig. 6, are used. The ground truth is ob-
tained from [44] for the two dates and [13] for the three dates.
From UAVSAR, two scenes with two images each are used.
They are presented in Fig. 7. The ground truth is collected from
[45], [46]. Table II gives an overall perspective of the scenes
used in the study.

2) First Analysis: We first try the various Gaussian and new
statistics on the three dates of SDMS and on the Scene 1 of
UAVSAR dataset. Fig. 8 gives the results relative to the statistics
for SDMS data and Fig. 9 for UAVSAR. The values for Λ̂t1 and
Λ̂Wald are omitted since they have similar behaviour than Λ̂G .

Fig. 7. UAVSAR Dataset in Pauli representation. Left: April 23, 2009. Middle:
May 15, 2011. Right: Ground Truth. Top: Scene 1. Bottom: Scene 2.

Fig. 8. Value of the different statistics for SDMS FP0120-FP0121-FP0124.
p = 3, N1 = N2 = 11.
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Fig. 9. Value of the different statistics for UAVSAR Scene 1. p = 3, N1 =
N2 = 11.

Qualitatively, each statistic is high at the location of the changes
given by the ground truth. For both dataset, Λ̂Mat seems to
have poorer performance since the values of the statistic are
not much higher on the changes compared to the background.
For UAVSAR data, a linear pattern appears in the bottom-right
corner and responds highly for all detectors except for Λ̂MT
and Λ̂Tex . However, it is difficult to conclude solely on those
qualitative terms.

To quantify the performance of the statistics, experimen-
tal ROC curves are plotted using the Ground truth, denoted
1Gt(x, y) associated with spatial coordinates (x, y), by com-
puting the following:

� Probability of false alarm:

PFA = NFD/NNC ,

where: NFD =
∑
x,y

(
Λ̂(x, y) ≥ λ

)
× (1 − 1Gt(x, y)) ,

NNC =
∑
x,y

(1 − 1Gt(x, y)).

� Probability of detection:

PD = NGD/NC ,

where: NGD =
∑
x,y

(
Λ̂(x, y) ≥ λ

)
× 1Gt(x, y),

NC =
∑
x,y

1Gt(x, y).

Fig. 10. PD versus PFA on real data. Top-left: SDMS FP0121-FP0124. Top-
right: FP0120-FP0121-FP0124. Bottom-left: UAVSAR Scene1. Bottom-right:
UAVSAR Scene 2. For all images, p = 3, N1 = N2 = 11.

3) ROC Plots: Figure 10 shows the results for each dataset
and a size of analysis window of N1 = N2 = 11. It appears that
Λ̂MT has the overall best performance: it has similar results to
Λ̂G on SDMS dataset but performs better on UAVSAR dataset.
Each Gaussian-derived statistic has similar performance but Λ̂G
appears to have better results than Λ̂t1 and Λ̂Wald .

These results can be interpreted as follows: on the SDMS
dataset, while the resolution is high, the images are globally
homogeneous. In fact, much of the details are not visible and
the objects appear to be blurry. This means that in practice,
on a small local neighbourhood, the Gaussian model is accu-
rate and thus that the Gaussian-derived statistics perform well.
Nonetheless, the new statistics, except Λ̂Mat , do not have lower
performance and can still have better performance when the
size of the neighbourhood chosen is high as will be shown af-
terwards. On the other hand, the objects are better resolved on
the UAVSAR. The transitions are sharper which means that an
heterogeneous model is more accurate and thus that the new
statistics will perform better. The difference of performance for
UAVSAR scene 2 can be explained by the fact that dynamic
between the darker zones and the bright ones is much higher
than in the scene 1.

For the datasets used in this paper, Λ̂Mat does not perform
well. This is due to the fact that the detection omits the tex-
ture parameters which are responsible for the power. In these
datasets, the ground truth corresponds to the arrival or disappear-
ance of strong scatterers and thus, the power has an important
role. As explained before, Λ̂Mat allows to detect changes which
are focused on the correlation structures and is not appropriate
for those kinds of change.

4) Increasing the Size of Window: In order to test the impact
of the size of the analysis window, we fix an experimental PFA =
10−2 and plot the PD against the size of the window. Fig. 11
gives the results for all datasets.

By increasing the size of window, the detection rate improves.
It can be explained by the fact that the estimation step has been
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Fig. 11. PD as a function of window size at PFA = 10−2 . Top-left: SDMS
FP0121-FP0124. Top-right: FP0120-FP0121-FP0124. Bottom-left: UAVSAR
Scene1. Bottom-right: UAVSAR Scene2. For all images, p = 3.

Fig. 12. PD versus PFA on SDMS FP0121-FP0124 with wavelet decompo-
sition.

performed on more data and is thus more precise. The drawback
is that the detection is obtained with a lower spatial resolution.

When increasing the size of the window, Λ̂MT and Λ̂Tex per-
form better than the Gaussian statistics, especially on UAVSAR
Scene 2. This is expected, since increasing the size of the win-
dow means that the data are spread over a large spatial leading
to an increase of the heterogeneity due to the presence of many
scatterers in the scene.

5) Increasing the Dimension of Pixels: Finally we consider
the performance if the size of vector p increases. To this end,
we exploit the wavelet decomposition method presented in [24],
[47] which allows to decompose a monovariate SAR image into
canals corresponding to a physical behaviour of the scatterers.
Using this decomposition on all polarimetric canals of SDMS
dataset allows to have an image with p = 27. The decomposition
is not performed on UAVSAR dataset, since it does not exhibit
a physical diversity using the wavelet decomposition. Fig. 12
gives the result of CD for all the statistics. When compared to the
performance using solely polarimetric information, it appears
that using this method, the performance are lower when the
PFA is very low, while they are improved for PFA > 10−1 . The
case of of Λ̂Tex , which has significantly better performance,

highlights again that the texture parameter plays a main role in
CD applications.

VIII. CONCLUSION

In this paper, we considered the problem of CD in an ITS
of heterogeneous SAR images. by taking into account the het-
erogeneity through a SIRV model, we proposed three detection
schemes and derived statistics using GLRT techniques. The con-
vergence and consistency properties of the estimates have been
considered and the CFAR properties of these statistics have been
studied on a theoretical standpoint and in simulation. Λ̂Tex does
not have the matrix CFAR property which is essential in many
applications.

The statistics have been applied in simulation, where each
statistic has good results under the conditions of its detection
problem. Λ̂Mat has proven to have the most robust behaviour.
Finally, the statistics have been tested on real SAR data and Λ̂MT
has obtained the overall best performance in terms of detection.
This highlights that for many changes, the texture information
has to be taken into account in the detection problem.

APPENDIX A
PROOF OF PROPOSITION IV.1

Proof: The GLRT assumes computing the two following
likelihoods:

L0 = pW1 , T
(W1,T ;θ0 ,Φ1 , . . . ,ΦT ),

L1 = pW1 , T
(W1,T ;θ1 , . . . ,θT ,Φ1 , . . . ,ΦT ),

where

θ0 = {τ1 , . . . , τN ,Σ0},

∀t, θt =
{

τ
(t)
1 , . . . , τ

(t)
N ,Σt

}
,

∀t, Φt = ∅,

and then computing

max
{θ0 ,Φ1 ,...,ΦT }

L0 and max
{θ1 ,...,θT ,Φ1 ,...,ΦT }

L1 .

� Let us considerL0 first. Since the observations are assumed
to be independent, we have

L0 =

t=T
k=N∏
t=1
k=1

pCN
x( t )

k

(
x(t)

k ; τkΣ0

)
.

Then in order to maximise L0 , we consider the optimisa-
tion:

θ̂0 = argmax
θ0

logL0 (θ0).

This is done by optimising separately for each separate
parameter, assuming the others being constant, and then
plugging back the estimates when needed. The validity of
this methodology is tackled in Section V.
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We have:

logL0 = −πT N p − T N log |Σ0 | − T p
N∑

k=1

log(τk )

−
t=T
k=N∑
t=1
k=1

q
(
Σ0 ,x

(t)
k

)
τk

. (23)

Let k ∈ [[1, N ]], we solve:

∂ logL0

∂τk
= −Tp

N∑
k=1

1
τk

+
T∑

t=1

q
(
Σ0 ,x

(t)
k

)
τ 2
k

= 0 ,

which yields:

τ̂k =
1

Tp

T∑
t=1

q
(
Σ0 ,x

(t)
k

)
. (24)

Recall complex differentiation results [20]:

∂ log |Σ|
∂Σ

= Σ−1 ,

∂q
(
Σ,x(t)

k

)
∂Σ

= −S(t)
k Σ−2 . (25)

We solve:

∂ logL0

∂Σ0
= −T N Σ0

−1 +

t=T
k=N∑
t=1
k=1

S(t)
k

τk
Σ−2

0 = 0p2,

which yields:

Σ̂0 =
1

T N

t=T
k=N∑
t=1
k=1

S(t)
k

τk
. (26)

Then by plugging back the estimates of textures at eq. (24),
we obtain the expression given at eq. (17) that we denote
Σ̂MT

0 . We have:

θ̂0 =
{

τ̂1 , . . . , τ̂N , Σ̂MT
0

}
. (27)

� Now for L1 , we consider the same procedure:{
θ̂1 , . . . , θ̂T

}
= argmax

{θ1 ,...,θT }
logL1 (θ1 , . . . ,θT ).

We have:

logL1 = − πT N p − N
T∑

t=1

log |Σt | − p

t=T
k=N∑
t=1
k=1

log
(
τ

(t)
k

)

−
t=T
k=N∑
t=1
k=1

q
(
Σt ,x

(t)
k

)

τ
(t)
k

. (28)

Let k ∈ [[1, N ]], t ∈ [[1, T ]], solving

∂ logL1

∂τ
(t)
k

= 0 ,

yields:

τ̂
(t)
k =

1
p

q
(
Σt ,x

(t)
k

)
. (29)

Let t ∈ [[1, T ]], by solving

∂ logL1

∂Σt
= 0p2,

and by plugging estimates of eq. (29), we obtain the ex-
pression of Σ̂t given at eq. (17) that we denote Σ̂MT

t .
We have:

θ̂t =
{

τ̂
(t)
1 , . . . , τ̂

(t)
N , Σ̂MT

t

}
. (30)

Finally, the closed form of the statistic is obtained by:

Λ̂MT =
L1

(
θ̂1 , . . . , θ̂T

)

L0

(
θ̂0

) H1

≷
H0

λ .

The cumbersome calculation is omitted and yields the ex-
pression given at eq. (14). �

APPENDIX B
PROOF OF PROPOSITION IV.2

Proof: The GLRT assumes computing the two following
likelihoods:

L0 = pW1 , T
(W1,T ;θ0 ,Φ1 , . . . ,ΦT ),

L1 = pW1 , T
(W1,T ;θ01 ,θT ,Φ1 , . . . ,ΦT ),

where

θ0 = {τ1 , . . . , τN ,Σ0},

θ01 =
{

τ
(01)
1 , . . . , τ

(01)
N ,Σ01

}
,

θT =
{

τ
(T )
1 , . . . , τ

(T )
N ,ΣT

}
,

∀t, Φt = ∅,

and then computing

max
{θ0 ,Φ1 ,...,ΦT }

L0 and max
{θ0 1 ,θT ,Φ1 ,...,ΦT }

L1 .

Using the optimisation methodology of Appendix A, θ̂0 is the
same as eq. (27), θ̂T is obtained by eq. (30) and θ̂01 is obtained
from eq. (27) where T is replaced by T − 1 in all estimates.

Then the statistic is given by:

Λ̂marg
MT =

L1

(
θ̂01 , θ̂T

)

L0

(
θ̂0

) H1

≷
H0

λ .

The cumbersome calculation is omitted and yields the ex-
pression at eq. (16). �

APPENDIX C
PROOF OF PROPOSITION V.1

We will consider here only the proof for Σ̂MT
0 , since the same

procedure can be applied to show the property for the others.
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In other words, we will show that τ̂k at eq. (24) and Σ̂MT
0 at

eq. (26) are the global maxima of the following log-likelihood
function:

logL (τ1 , . . . , τN ,Σ0) = −πT N p − T N log |Σ0 |

− T p

N∑
k=1

log(τk ) −
t=T
k=N∑
t=1
k=1

q
(
Σ0 ,x

(t)
k

)
τk

. (31)

We first recall two useful results:
Lemma 1: Any local minimum of a g-convex function over

M is a global minimum.
Lemma 2: Consider the manifold Sp

H and the following
geodesic:

ΣΣ0 ,Σ1
t = Σ

1
2
0

(
Σ− 1

2
0 Σ1 Σ− 1

2
0

)t

Σ
1
2
0 , t ∈ [0, 1] ,

between two points Σ0 , Σ1 .
Let hi ∈ Cp , a ∈ ±1, a′ ∈ ±1 for i = 1, . . . m and Hi ∈

Cq ,p for i = 1, . . . n. The function

L(Σ) = log

∣∣∣∣∣
n∑

i=1

Hi Σa HH
i

∣∣∣∣∣+
m∑

i ′=1

hH
i ′ Σa ′

hi ′ , (32)

is strictly g-convex in Σ ∈ Sp
H.

When looking at the negative of function logL in eq. (31),
straightforward application of Lemma 2 allows to conclude that
it is jointly g-convex in Σ0 and for all τk :

� the g-convexity for each τk is obtained by rewriting the
negative of eq. (31) in the form of eq. (32), if we take:3

Σ = τk ,

a = 1 ,

a′ = −1 ,

{hi |i ∈ [[1,m]]} =
{
x(t)

k Σ− 1
2

0 |k ∈ [[1, N ]], t ∈ [[1, T ]]
}

,

Hi = τiδik .

� the g-convexity in Σ0 is obtained by rewriting the negative
of eq. (31) in the form of eq. (32), if we take:4

Σ = Σ0 ,

a = 1 ,

a′ = −1 ,

{hi |i ∈ [[1,m]]} =

{
x(t)

k√
τk

|k ∈ [[1, N ]], t ∈ [[1, T ]]

}
,

Hi = δi1 .

So we have the strict g-convexity, application of Lemma 1
allows us to conclude that the estimates correspond to unique
global maxima.

3Considering solely the terms involving the considered texture parameter.
4Considering solely the terms involving the covariance matrix.

APPENDIX D
PROOF OF PROPOSITION V.2

Again, we will only consider the case of Σ̂MT
0 , since the same

considerations lead to the result for the others. Up to now we
have only shown that the negative log-likelihood − logL is g-
convex. To show that it has a unique minimum in Sp

H, and thus
that the fixed-point equation to ΣMT

0 admits a unique solution
within the manifold, it suffices to show that the minimum of
logL occurs in the interior of Sp

H. To this end we have to show
that logL(Σ) → ∞ as Σ → Bound(Sp

H), the boundary of Sp
H.

Let λ1(Σ), . . . , λp(Σ), be the ordered eigenvalues of Σ. We
can rewrite − logL as:5

T N

p∑
j=1

log λj (Σ) +

t=T
k=N∑
t=1
k=1

q
(
Σ,x(t)

k

)
τk

.

Now, decomposing Σ as Σ =
EVD

PHDP we can write

q(Σ,x(t)
k ) as:

p∑
j=1

∣∣∣∣
[
y(t)

k

]
j

∣∣∣∣
2 /

λj (Σ),

where [y(t)
k ]j is the j-th element of y(t)

k = PHx(t)
k . Then we

have:

− logL(Σ) ≥

t=T
k=N
j=p∑
t=1
k=1
j=1

∣∣∣∣
[
y(t)

k

]
j

∣∣∣∣
2

λj (Σ)τk
+ T N

p∑
j=1

log λj (Σ),

Finally, Σ → Bound(Sp
H) if and only if λ1(Σ) → ∞ and/or

λp(Σ) → 0. Under both regimes the right-hand side of the pre-
vious equation goes to ∞, which concludes the proof.

APPENDIX E
PROOF OF PROPOSITION VI.1

Proof: We consider separately the texture and matrix prop-
erties:

� Texture CFAR: First, Σ̂MT
0 and Σ̂MT

t are invariant by the
substitution x(t)

k → x(t)
k /τ

(0)
k . Then, the different

(∑T

t=1
q
(
Σ̂MT

0 ,x(t)
k

))T p

T T p
∏T

t=1

(
q
(
Σ̂MT

t ,x(t)
k

))p

terms are also invariant by the same substitution. This
means that the values of {τ (0)

k |k ∈ [[1, N ]]} do not affect
the statistic of Λ̂MT , which is the definition of texture
CFAR property in this problem.

� Matrix CFAR: As said in the discussion of IV-A, the esti-
mates of matrices are subject to an indetermination which
is resolved by an appropriate normalisation. For any es-
timate Σ̂ ∈ {Σ̂MT

0 , Σ̂MT
1 , . . . , Σ̂MT

T }, when replacing Σ̂
by p Σ̂/Tr(Σ̂) in eq. (14), the trace terms simplify in the

5Omitting the constants with regards to Σ0 .
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expression of Λ̂MT . Thus, the statistic is homogeneous by
the normalisation constraint.
Then, the statistic is invariant for the group of transforma-
tion:

G =
{
Gx(t)

k |t ∈ [[1, T ]], k ∈ [[1, N ]], G ∈ Sp
H

}
.

Indeed, we can write:

Λ̂MT =

∣∣∣GΣ̂MT
0 G

∣∣∣T N

∏T

t=1

∣∣∣GΣ̂TE
t G

∣∣∣N
N∏

k=1

(∑T

t=1
q
(
Σ̂MT

0 ,Gx(t)
k

))T p

T T p
∏T

t=1

(
q
(
Σ̂TE

t ,Gx(t)
k

))p ,

where all terms GΣ̂MT
0 G, GΣ̂TE

t G, q(Σ̂MT
0 ,Gx(t)

k ),
q(Σ̂TE

t ,Gx(t)
k ) can be written as functions of {Gx(t)

k |t ∈
[[1, T ]], k ∈ [[1, N ]]}.
Finally by taking G = Σ−1/2

0 , the statistic is a function of

{Σ−1/2
0 x(t)

k |t ∈ [[1, T ]], k ∈ [[1, N ]]} where Σ−1/2
0 x(t)

k ∼
CN (0p ,Σ)[0p , Ip . It follows that the statistic is indepen-
dent of Σ0 that ends the proof.

The same arguments of invariance are used for Λ̂marg
MT . �

APPENDIX F
PROOF OF PROPOSITION VI.3

Proof: The texture CFAR property is done using the same
procedure as Propositions VI.1 and VI.2.

The matrix CFAR property cannot be ensured due
to the trace normalisation. For any estimate Σ̂ ∈
{Σ̂TE

1 , . . . , Σ̂TE
T , Σ̂Tex

1 , . . . , Σ̂Tex
T }, when replacing Σ̂ by

p Σ̂/Tr(Σ̂) in eq. (20), we have:

Λ̂Tex =
T∏

t=1

∣∣∣Σ̂Tex
t

∣∣∣∣∣∣Σ̂TE
t

∣∣∣Tr(Σ̂Tex
t )

×
N∏

k=1

(∑T

t=1
Tr(Σ̂Tex

t )q
(
Σ̂Tex

t ,x(t)
k

))T p

T T p
∏T

t=1

(
q
(
Σ̂TE

t ,x(t)
k

))p .

In this expression, the trace terms do not simplify. �
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