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ABSTRACT

In signal analysis, the joint estimation of the time-scale parame-

ters which can affect a known signal (Doppler effect or scale ef-

fect, delay. . . ) may be a problem of interest. An important result

has shown that, even if the quality of the time delay estimation is

classically given by the inverse spread of the signal spectral den-

sity, the quality of the scale estimation only depends on the inverse

of the signal spread in Mellin space. This spread has a direct in-

terpretation in the time-frequency plane and can be precisely es-

timated when duration, bandwidth and relative bandwidth of the

signal are known. We propose here to develop two methods of

optimum signal synthesis which minimize the variance of the esti-

mates given by the Cramer-Rao lower bounds. The first method is

based on the stationary phase principle, applied on frequency and

Mellin spaces, which allows to construct signals with given auto-

correlation functions in scale and time spaces. The second method

is devoted to the construction of a frequency phase law depending

on the Mellin variable with the spreads in frequency and Mellin

spaces related to the expected scale and time-delay resolutions.

1. FORMULATION OF THE PROBLEM

We are dealing with the problem of the joint estimation of the time-

scale parameters of a known signal embedded in gaussian white

noise. This is, for example, the case encountered in broad-band

radar or sonar theory, when looking for parameters such as the ve-

locity (related to scale parameter) or the position (related to time-

shift parameter) of a target. In this case, the questions we are trying

to answer are : which is the best signal to use for minimizing the

variances of the estimates ? Can we develop synthesis methods

which allow to construct such a signal ? The answer to the first

question has already been developed in [6] and is briefly recalled

here in order to develop the synthesis.

Let z(t) be the transmitted and analytic signal. Its Fourier

transform Z(f) has therefore no negative frequency. The general

transformation x(t) of the signal z(t) can be expressed as :

x(t, θ0) = A0Tθ0z(t) e
iφ0 + b(t) (1)

where Tθ0 is a time-scale action of the affine group which trans-

forms the signal z(t) with a set θ0 = (a0, b0) of unknown param-

eters (time scale a0 and time shift b0). The parameter A0 is the

amplitude, φ0 a phase change and b(t) a zero-mean white gaus-

sian noise with σ2 variance. When the probability density of the
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parameters A0 and φ0 is unknown, the Maximum Likelihood ratio

Λ to maximize, according to the Maximum Likelihood estimation

theory, is given by the square modulus of the broad-band cross-

ambiguity function :

Λ(θ0, θ) =
1

2σ2
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x(t, θ0)T
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∣

2

(2)

The efficiency of an estimate θ̂0 is generally measured by its

variance var(θ̂0). For an unbiased estimate (E(θ̂0) = θ0), this

variance has a lower value given by the Cramer Rao Bounds (CRB)

[8]. The CRB are obtained by inverting the Fisher Information

Matrix (FIM) defined as :

Ji,j =

(

−E
[

∂2Λ

∂θi∂θj

])

i,j

(3)

where θi denotes each component of the vector θ. The time-scaled

and time shifted signal x(t) can be put in the form :

x(t) =
A0√
a0
z(a−1

0 t− b0) e
iφ0 + b(t) (4)

The statistic to maximize is given by the square modulus of

the broad-band cross-ambiguity function which is rewritten in the

frequency domain :

Λ =
a

2σ2
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X(f)Z∗(af) e2iπabf df
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(5)

where the parameters a and b represent the scale factor and the

time shift parameters to estimate. In the next section and using the

Mellin transform [2, 5], the FIM computation is easily performed

and leads to a perfect physical interpretation of its coefficients in

the time-frequency half plane.

2. TIME SCALE ESTIMATION

2.1. The Mellin Transform

The Mellin transform which plays an important part in the com-

putation and the physical interpretation of the FIM’s coefficients

have been well defined in [2] and acts on the analytic signal Z(f)
in frequency by :

M
ξ[Z](β) =

∫ +∞

0

Z(f) e2iπξf f2iπβ+r df (6)
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Figure 1: Localization in the time-frequency half plane of a signal Z(f)
having a time-frequency energy distribution P0(t, f). The two hyperbolas
defined by equations t = ξ + β1/f and t = ξ + β2/f delimit the support
[β1, β2] of its Mellin transform.

This transform can be interpreted as the coefficient of the de-

composition of the signal onto a hyperbolic signals basis with a

group delay law given in the time-frequency half plane by the

equation t = ξ + β/f with the invariant scalar product given by :
∫ +∞

0

Z1(f)Z∗

2 (f)f2r+1df =

∫ +∞

−∞

M
ξ[Z1](β)M ξ∗[Z2](β)dβ

(7)

The dual Mellin variable β therefore characterizes the coeffi-

cient of an hyperbola in the time-frequency half plane. The pa-

rameter r is free but is chosen here equal to −1/2 to preserve the

classical scalar product. The study of the tomographic construc-

tion of the unitary affine time-frequency distribution P0(t, f) [1]

has shown that a signal localized in the time-frequency half plane

has a Mellin transform support bounded in Mellin space (cf. fig-

ure 1). The connection between the P0 distribution :

P0(t, f) = f

∫ +∞

−∞

(λ(u)λ(−u))1/2 Z (λ(u)f)

Z∗ (λ(−u)f) e−2iπftu du (8)

where λ(u) = u exp (−u/2)/2 sinh (u/2) and the Mellin trans-

form is nothing but a hyperbolic Radon transform :
∫ +∞

−∞

dt

∫ +∞

0

P0(t, f) δ(t−ξ−β/f)
df

f
=

∣

∣M
ξ[Z](β)

∣

∣

2
(9)

Using an a priori knowledge of the localization of the signal in

the time-frequency half plane (bandwidth, relative bandwidth, du-

ration), it is now possible to perfectly determine the spread σβ =
β2 − β1 of the signal in the Mellin space (cf. figure 1). In the fol-

lowing, the ξ parameter will be chosen equal to zero and the trans-

form will be noted M [Z](β). The main property of the Mellin

transform is the property of scale invariance :

Z(f) −→ Z′(f) =
√
aZ(af)

↓ ↓
M [Z](β) −→ M [Z′](β) = a−2iπβ

M [Z](β) (10)

which is useful when rewriting (5) :

Λ =
1

2σ2
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M [X](β)M
∗[Zb](β) a2iπβ dβ
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∣

∣

2

(11)

with Zb(f) = Z(f) exp (2iπbf). Another important property of

the Mellin transform, useful for computation of the FIM coeffi-

cients, is the diagonalization of the operator B defined by :

BZ(f) = − 1

2iπ

(

f
d

df
+

1

2

)

Z(f) (12)

which is transformed as M [BZ](β) = βM [Z](β).

2.2. The Fisher Information Matrix

The Fisher Information Matrix has the following form [6] :

J =
4π2A2

0

σ2

(

σ2
β f0β0 −M

f0β0 −M σ2
f

)

(13)

where the parameters σf , f0 and A2
0/σ

2 define respectively the

spectrum bandwidth, the mean frequency of the signal, the ratio

is the Signal-to-Noise Ratio and where the parameters β0, σβ are

given by :

β0 =

∫ +∞

−∞

β |M [Z](β)|2 dβ (14)

σ2
β =

∫ +∞

−∞

(β − β0)
2 |M [Z](β)|2 dβ (15)

The first and second order moments can be viewed respec-

tively as the mean β and the spread of the signal Z in Mellin

space. Cohen has called them respectively the mean scale and

the scale bandwidth [3]. Suppose the spectrum be in the form

Z(f) = A(f) exp (iφ(f)). Using the B operator defined in (12),

the two quantities (14) and (15) can be transformed in the fre-

quency domain :

β0 = − 1

2π

∫ +∞

0

f φ′(f)A2(f) df (16)

σ2
β =

1

4π2

[

∫ +∞

0

(

f
A′(f)

A(f)
+

1

2

)2

A2(f) df (17)

+

∫ +∞

0

f2 φ′2(f)A2(f) df

]

− β2
0 (18)

The two previous equations show that, in the frequency or time

domains, the physical interpretation of such quantities is very dif-

ficult and this is for example the main problem encountered in an

interesting paper [4] which deals with a similar subject. The geo-

metrical help of the Mellin transform allows to easily understand

the quantities 14 and 15.

By analogy with the narrow-band modulation index, the pa-

rameter M defined in (13) is called the broad-band modulation

index and represents the rate of hyperbolic modulation. It has the

expression :

M = − 1

2π
Im

∫ +∞

0

f2 dZ

df
Z∗(f) df (19)
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Figure 2: Localization in the time-frequency half plane of a hyperbolic
signal Z(f) labeled by its parameter β0 and its Mellin transform. Any
pair of hyperbolas with equation t = ξ + β1/f and t = ξ + β2/f (with
β1 < β0 < β2) can delimit the signal. Such a signal, although it has a
infinite duration, has a zero-spread in Mellin space and therefore no scale
resolution.

To estimate the quality of the compression and delay param-

eters, the FIM must be inverted. Each term of the inverse matrix

J−1 gives the variance lower bound of each estimate. As the esti-

mates are unbiased and efficient (high SNR), the CRB are reached

and the variance of the time delay estimate b̂ and the scale estimate

â are defined by :

var(b̂) =
σ2

4π2A2
0

σ2
β

σ2
fσ

2
β − (M − β0f0)2

≥ σ2

4π2A2
0

1

σ2
f

(20)

var(â) =
σ2

4π2A2
0

σ2
f

σ2
fσ

2
β − (M − β0f0)2

≥ σ2

4π2A2
0

1

σ2
β

(21)

The first result (20) shows that the time delay resolution is al-

ways related to the inverse of the signal spread in frequency. The

result (21) is very important because it proves that the scale resolu-

tion depends only on the inverse of the signal spread in the Mellin

space. As an example, let us consider the so-called Doppler invari-

ant signals as hyperbolic signals (cf. figure 2) which are charac-

terized by a no spread in Mellin space (σβ = 0) : this kind of sig-

nals does not lead to a good scale resolution. The figure 3 shows,

unlike the previous figure, there is no contradiction between very

short time duration and high scale resolution.

3. OPTIMAL SIGNALS SYNTHESIS

The first method minimizing the Cramer-Rao lower bounds is de-

voted to the construction of optimal signals with given autocorre-

lation functions in scale and delay spaces with control of the side-

lobes. The second one determines a phase law which allows the

signal to reach the desired spreads and resolutions in the Mellin

and frequency spaces.

3.1. The Stationary Phase Method

The Stationary Phase Principle method already used for design-

ing high time bandwidth product signals [7] is applied here but is
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Figure 3: Localization in the time-frequency half plane of a short signal
centered around t = t0 with a bandwidth B = f2 − f1 around f0 =
(f1+f2)/2 and its Mellin transform. Such a signal, although of very short
duration, has a spread σβ = (f2 − f1)t0 in Mellin space and therefore a
finite scale resolution.

extended to the Mellin and frequency spaces. The main idea is

to construct high σfσβ product signals (asymptotic signals) in the

same way. The inverse Mellin transform is defined by :

Z(f) = e−2iπξf f−1/2

∫ +∞

−∞

M
ξ[Z](β) f−2iπβ dβ (22)

Following the stationary phase principle method and applying

it on (22), we have up to a constant phase :

Z(f) =
e−2iπξf

√
f

√

2π

|φ′′(λ)|
∣

∣M
ξ[Z](λ)

∣

∣ ei(φ(λ)−2πλ log f)

(23)

where we note M
ξ[Z](β) =

∣

∣M
ξ[Z](β)

∣

∣ exp (iφ(β)) and where

λ is the stationary point defined by the following equation :

d

dβ
[φ(β) − 2πβ log f ]β=λ = 0 (24)

We found that the set of points (β, F (β)) for which the phase

is stationary is defined by a relation which will be independently

fixed in the second method of construction :

F (β) = exp

(

1

2π

dφ(β)

dβ

)

(25)

If we note φ′−1 the reciprocal function of φ′, the stationary

point λ verifying (24) is defined by λ = φ′−1 (2π log f). The

spectrum phase law has therefore the form Ψ(f) = −2πξf +
φ(λ) − 2πλ log f and is thus defined by its group delay :

T (f) = ξ +
λ

f
(26)

Acting on the shape of |Z(f)| and |M ξ[Z](β)| by judiciously

choosing the time-shift autocorrelation functionR(b) and scale au-

tocorrelation function S(a) defined according to :

|Z(f)|2 =

∫ +∞

−∞

R(b) e−2iπbf db (27)
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=

∫ +∞

0

S(a)a−2iπβ−1 da (28)

we thus define the phase law φ(λ) given by the differential equa-

tion :

φ′′(λ) = 2π

∣

∣M
ξ[Z](λ)

∣

∣

2

f |Z(f)|2
(29)

Choosing ψ(λ) =
1

2π
φ′(λ) = log f , the last equation can be

integrated with respect to λ and leads to :

∫ expψ(λ)

0

|Z(f)|2 df =

∫ λ

−∞

∣

∣M
ξ[Z](β)

∣

∣

2
dβ (30)

By fixing a given λ, it is now possible by (30) to find ψ(λ) and

to determine the phase law φ(β) by :

φ(β) = 2π

∫ β

−∞

ψ(u) du (31)

As an example, let us consider the problem of signal synthe-

sis having an unit amplitude over a chosen bounds in frequency

and Mellin spaces (the autocorrelation functions have thus both a

sin x/x shape). The differential equation (29) to solve takes the

following form :

φ′′(λ) =
2π

f
= 2π exp

(

−φ
′(λ)

2π

)

(32)

which, when A and B are constants fixed by initial conditions,

gives the Mellin phase :

φ(β) = 2π [(β + A) log (β + A) − (A+ β)] +B (33)

3.2. Phase Law Construction

Consider a monochromatic and analytic signal given by its equa-

tion Z(f) = δ(f − f0). This signal has a Mellin transform given

by M
ξ[Z](β) = f

2iπβ−1/2
0 e2iπξf0 . We can therefore perfectly

determine the frequency law of the signal Z(f) as the function of

the Mellin variable :

f0 = exp

(

1

2π

dφ

dβ

)

(34)

where φ(β) is the phase of the Mellin transform of Z. Extend-

ing this relation, we obtain, independently of the first method, the

expression of the frequency in terms of the β variable :

F (β) = exp

(

1

2π

dφ(β)

dβ

)

(35)

Given a frequency law F (β) in Mellin space, we can obtain

by solving (35) the derivative of the Mellin phase and finally the

expression of the signal in Mellin space M
ξ[Z](β) = eiφ(β). As

an example, consider a linear phase law F (β) = Aβ + B where

A and B are parameters which control the frequency spread and

the Mellin spread. Solving the differential equation (35), we found

the Mellin phase already given by (33) :

φ(β) =
2π

A
[(Aβ +B) log (Aβ +B) − (Aβ +B)] + C (36)

Using the inverse Mellin transform of the signal exp (iφ(β)),
we can obtain the spectrum Z(f). If the signal is supposed asymp-

totic (high σfσβ product), we can apply the previous result given

by the stationary phase method and deduce by (26) the hyperbolic

group delay of the spectrum Z(f) :

T (f) = ξ +
F−1(f)

f
= ξ +

f −B

Af
(37)

This procedure is the analogous construction of a signal from

time to frequency space using the definition of the instantaneous

frequency. It only ensures that the signal will have, at one and

the same time, a given bandwidth σf and a given spread σβ in

Mellin space but does not ensure, unlike the first method, the side-

lobes quality of the two autocorrelation functions in scale and time

spaces.

4. CONCLUSION

The analytical expression of the Cramer Rao bounds for the joint

time-scale estimation has been established using the Mellin trans-

form. An important result concerns the scale resolution which is

related to the inverse of the spread of the signal in Mellin space.

This spread has a direct geometrical interpretation in the time-

frequency half plane and can be easily estimated when duration,

bandwidth and relative bandwidth are known. Thanks to this inter-

pretation, two interesting procedures have been proposed to con-

struct optimal broad-band signals which minimize the Cramer-Rao

lower bounds. These methods can be of interest for example for

designing powerful radar or sonar broad-band waveforms.
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l’Analyse des Signaux à Large-Bande, Thesis University

Paris 6, Paris, April 1992.

[6] J.P. Ovarlez, Cramer-Rao bound computation for velocity es-

timation in the broad-band case using the Mellin transform,

Proc. IEEE-ICASSP, Minneapolis, MN, USA, 1993

[7] A. Papoulis, Signal Analysis, McGraw Hill, New York, 1977

[8] H.L. Van Trees, Detection, Estimation and Modulation The-

ory, Part I, II and III, John Wiley and Sons, New York, 1971


