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Motivations

Adaptive radar detection and estimation schemes are often based on the independence
of the secondary data used for building estimators and detectors. This independence
allows to build Likelihood functions.

Example: estimating a covariance matrix M

With a given set of K independent N-dimensional vectors {yi }i∈[1,K ] distributed
according to CN (0N ,M), the corresponding Likelihood function Λ can be built as

Λ (y1,y2, . . . ,yK | M) =

K∏
i=1

p(yi ) =

K∏
i=1

1

πN |M|
exp

(
−yH

i M−1 yi

)
.

The Maximum Likelihood Estimate M̂ of M is the zero of the partial derivative of
Λ (y1,y2, . . . ,yK | M) with respect to M leading to the well known SCM:

M̂ =
1

K

K∑
i=1

yi y
H
i .
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Motivations

In many radar and imagery applications, data {yi }i∈[1,K ] can be viewed as a joint spatial
and temporal process:

For high resolution radar, the sea clutter is clearly jointly spatially and temporally
correlated,

Sea clutter spatial correlation, IPIX radar [M.S. Greco et al, 2006].
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Motivations

In mutichannel (polarimetric, interferometric or multi-temporal) SAR imaging, the
multivariate vector characterizing each spatial pixel of the image is correlated over
the channels but can also be strongly correlated with those of neighbourhood
pixels,

When a radar signal with bandwidth B is oversampled (Fe = k B, k > 1), the
associated range bins can be spatially correlated and the measurements are not
independent anymore.

In the radar community, one generally supposes that the vectors of information collected
over a spatial support are identically and independently distributed.

This problem could be, for example, adressed using Multidimensional Space-time ARMA
modeling (forthcoming PostDoc in SONDRA in next Sept. in collaboration with P.
Bondon (L2S CentraleSupélec)).

The aim of this work is to relax this hypothesis through the use
of recent Random Matrix Theory results.
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Problem formulation

Detection of a complex signal corrupted by an additive Gaussian noise c ∼ CN (0N ,M)
in a N-dimensional complex observation vector y:{

H0 : y = c yi = ci i = 1, . . . ,K
H1 : y = αp + c yi = ci i = 1, . . . ,K

,

where p is a perfectly known complex steering vector, α is the unknown signal
amplitude and where the ci ∼ CN (0N ,M) are K signal-free non independent
measurements. The covariance matrix M characterizes the temporal or spectral
correlation within the components of the noise vectors.

To model the spatial dependency between the secondary data, from the Gaussian
assumption on ci , we may write the N × K -matrix C = [c1, . . . , cK ] under the following
form:

C = M1/2 XT1/2,

where M ∈ CN×N and T ∈ CK×K are both nonnegative definite, X is standard Gaussian

CN (0N , IN), and where T satisfies the normalization
1

K
tr T = 1.
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Problem formulation

The matrix T is considered Toeplitz, i.e., for all i , j , Ti,j = t|i−j | for t0 = 1 and tk ∈ C,

and positive definite. Besides,
K−1∑
k=0

|tk | <∞.

Example: N = 2, K = 3

C =

(
1 ρ

ρ 1

)1/2

︸ ︷︷ ︸
Temporal correlation

(
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

)
︸ ︷︷ ︸

Temporal or Spectral Measurements

 t0 t1 t2

t1 t0 t1

t2 t1 t0

1/2

︸ ︷︷ ︸
Spatial correlation

.
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Key ideas

Let {ci }i∈[1,K ] be distributed according to CN (0N ,M). The Maximum Likelihood

Estimate of M is given by M̂ =
1

K

K∑
i=1

ci c
H
i =

1

K
CCH .

Asymptotic Regime

If K →∞, then the strong law of large numbers says (or equivalently, in spectral norm):

M̂ −M
a.s.−−→ 0N ,

∣∣∣∣∣∣M̂ −M
∣∣∣∣∣∣ a.s.−−→ 0 .

Random Matrix Regime

No longer valid if N, K →∞ with N/K → c ∈ [0,∞[:
∣∣∣∣∣∣M̂ −M

∣∣∣∣∣∣9 0,

For practical large N, K with N ' K , it can lead to dramatically wrong
conclusions (even N = K/100).
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RMT in SONDRA for Radar, SAR and Hyperspectral
Applications

The RMT is not a magic tool or scientific elucubration but allows 1) to understand the
statistical behavior of expressions involving estimate of large covariance matrices (ex:
quadratic forms, ratios of the quadratic forms, SNIR Loss, performances of detection
tests as ANMF, LR-ANMF, etc.) and 2) to correct it. At a finite distance (practical
N,K values), the corrected results are often valid.

Sources localisation applications [F. Pascal, R. Couillet, ...]: the based-RMT Music
algorithm (G-Music) is known to have higher performance than those of
conventional algorithms when using all the eigenvalues of the covariance matrix.

MIMO-STAP: the goal of A. Combernoux PHD thesis was to analyse/improve the
detection and filtering performances of low-rank detectors.

Hyperspectral Anomaly Detection - Unmixing: the goal of E. Terreaux PhD thesis
is to better analyse the rank of the anomalies space in Hyperspectral Imaging for
heterogeneous and non-Gaussian environment.
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Some RMT results

Proposition: Consistent Estimation for T [R. Couillet et al, 2015]

As N,K →∞ such that N/K → c ∈ [0,∞[, and for every β < 1,

Nβ
∥∥∥∥T [ 1

N
CH C

]
−

(
1

N
tr M

)
T

∥∥∥∥
F

a.s.−−→ 0 ,

where T [·] is the Toeplitzification operator: (T [X])ij =
1

K

K∑
k=1

Xk,k+|i−j |.

Up to a constant, a consistent estimator T̂ of the spatial covariance T characterizing
data {ci }i∈[1,K ] is therefore defined as T̂ ∝ T

[
1
N
CH C

]
and the associated time

whitened sample covariance matrix estimate M̂ of M is defined as M̂ ∝ 1
K
CT̂−1 CH .

This technique has been extended in the framework of robust M-estimators.
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The two-step GLRT ANMF

ANMF test (ACE, GLRT-LQ) [Conte, 1995]

ΛANMF (y, M̂) =
|pH M̂−1 y|2

(pH M̂−1 p)(yH M̂−1 y)

H1

≷
H0

λ ,

where M̂ stands for any covariance matrix estimators.

The ANMF is scale-invariant (homogeneous of degree 0), i.e.

∀α, β ∈ R , ΛANMF (αy, β M̂) = ΛANMF (y, M̂) .

In Gaussian distributed clutter, we can use practically Sample Covariance Matrix

approach: M̂ =
1

K

K∑
i=1

ci c
H
i =

1

K
CCH ,

In more complex SIRV or CES distributed clutter, we can use robust M-estimators

approach (e.g. Tyler): M̂ =
N

K

K∑
i=1

ci c
H
i

cHi M̂−1 cHi
.
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Gaussian and non-Gaussian scenarios

Simulated Data: joint spatial and time correlated Gaussian or K-distributed (ν = 0.5)
data characterized by N = 10 pulses, K = 20 secondary data where:

M =
(
ρ
|i−j |
M

)
i,j∈[1,N]

, T =
(
ρ
|i−j |
T

)
i,j∈[1,K ]

with ρM = 0.5, ρT = 0.9.

To evaluate the detection performance of the ΛANMF test statistic, we have compared
three approaches:

M is unknown but T is assumed to be known: the covariance estimate M̂ is either
given by 1

K
CT−1 CH (SCM) or the Tyler’s estimate of the true spatial-whitened

data CT−1/2,

T is assumed to be unknown and is estimated through T̂ ∝ T
[

1
N
CH C

]
: the

covariance estimate M̂ is either given by 1
K
CT̂−1 CH (SCM) or the Tyler’s

estimate of the spatial-whitened data CT̂−1/2,

the classical approach that does not take into account the space correlation: the
covariance estimate M̂ is either given by 1

K
CCH (SCM) or Tyler’s estimate of the

data C.
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False Alarm Regulation - Gaussian Case

ANMF-SCM ANMF-Tyler

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Detection threshold 6

10-5

10-4

10-3

10-2

10-1

100

P
fa

"Pfa-threshold" relationship with space correlation - Gaussian case - ANMF-SCM

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Detection threshold 6

10-5

10-4

10-3

10-2

10-1

100

P
fa

"Pfa-threshold" relationship with space correlation - Gaussian case - ANMF-Tyler

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

Same False Alarm Regulation performance for ANMF-SCM and ANMF-Tyler (Gaussian
case)
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Associated Detection Performance - Gaussian Case

ANMF-SCM ANMF-Tyler
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"Pfa-threshold""Pd-SNR" relationship with space correlation - Gaussian case - ANMF-Tyler

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)
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"Pfa-threshold""Pd-SNR" relationship with space correlation - Gaussian case - ANMF-Tyler

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

• Same Probability of Detection performance.
• Around 3dB gain improvement with RMT whitening procedure
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False Alarm Regulation - K-distributed Case

ANMF-SCM ANMF-Tyler
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"Pfa-threshold" relationship with space correlation - K-dist (nu=0.5) - ANMF-SCM

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)
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P
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"Pfa-threshold" relationship with space correlation - K-dist (nu=0.5) - ANMF-Tyler

Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

• Better False Alarm regulation performance for ANMF-FP (Non-Gaussian case).
• Better False Alarm regulation with RMT whitening procedure
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Associated Detection Performance - K-distributed Case

ANMF-SCM ANMF-Tyler
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Optimal, T known (N = 20)
Monte Carlo (N = 20)
Monte Carlo + whitening  (N = 20)

(K = 20)
(K = 20)

(K = 20)

• Better performances in terms of Probability of Detection performance for ANMF-Tyler.
• Around 3dB gain improvement with RMT whitening procedure
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Conclusions

This work has focused on the joint estimation of joint spatial and temporal covariance
matrices arising for adaptive radar detection schemes:

• This estimation was efficiently performed using latest results coming from RMT
with a Toeplitz covariance structure assumption for the spatial covariance matrix,

• First results show that the ANMF built with these new estimates has significant
higher performances, in terms of regulation of false alarm and probability of
detection versus SNR, than those of the ANMF built with classical estimates
supposing erroneously i.i.d. spatially secondary data,

• This RMT technique has been extended for heterogeneous and Non-Gaussian
environment. M-estimators taking into account spatial correlation have similar
performance as those of SCM in Gaussian environment but outperform them in
non-Gaussian environment,

This quite simple technique can be easilly applied on experimental data (radar,
STAP, MIMO-STAP, SAR, HS).
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