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OUTLINE OF THE TALK

& Problems Description and Motivation,

& The Spherically Invariant Random Process and Elliptical
Process Modelling for Hyperspectral Imaging,

& Estimation in the SIRV/Elliptical Background,
& Detection in the SIRV/Elliptical Background,

& Anomaly Detection and Target Detection Results on
Experimental Data,

& Conclusion.
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PROBLEMS DESCRIPTION

e ANOMALY DETECTION IN HYPERSPECTRAL IMAGES

To detect all kind of targets that are « different » from the background - Regulation
of False Alarm (Mahalanobis Distance).

« DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES

To detect (GLRT) targets characterized by a given spectral signature - Regulation of
False Alarm.

e CLASSIFICATION IN HYPERSPECTRAL IMAGES

Put the background in separate homogeneous classes.

Example of DSO Hyperspectral Image (2010)
: ONERA
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CONVENTIONAL METHODS OF DETEC!

!

v

 Many methodologies for detection and classification in hyperspectral images can be found in
radar detection community. We can retrieve all the detectors family commonly used in radar
detection (AMF (intensity detector), ACE (angle detector), sub-spaces detectors, ...).

 Almost all the conventional techniques for anomaly detection and targets detection are
based on Gaussian assumption and on spatial homogeneity in hyperspectral images.

BUT ........

e Hyperspectral data are spatially heterogeneous in intensity and/or cannot be only
characterized by Gaussian statistic:
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SOME COMMENTS

e Spherically Invariant Random Vectors (SIRV) models have been started to be studied in the
Hyperspectral scientific community but everybody still uses .... Gaussian estimates !

e SIRV models with good appropriate estimates have been found to be efficient for false alarm
regulation as well as for detection schemes in non-Gaussian and heterogeneous background for
Hyperspectral Imaging (2010 J.P. Ovarlez DSO attachment, IEEE IGARSS 2011).

_ Ex: Anomaly Detection obtained on DSO data

Classical results

NEW RESULT
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SONDRA/ONERA BACKGROUND FOR
HYPERSPECTRAL IMAGING )

All the previous signal processing methodologies conducted in SONDRA/
ONERA since long years for radar and SAR processing can be “easily” and
“naturally” extended and exploited for Hyperspectral Imaging:

S
R

Previous and new researches conducted in SONDRA-Lab in Non-Gaussian Detection and
Estimation (J.P. Ovarlez and F. Pascal):

e Elliptical distributions (generalization of the SIRV distributions),
* Random Matrix Theory (closely related to F. Pascal’s talk).

e Mélanie Mahot Ph.D. (2009-2012): Evaluation of the robust statistic framework for radar signal
processing:

 M-estimators: robust covariance matrix estimation in the context of Elliptical Distributions,
» Statistical properties of M-estimators (useful for deriving tests PDF, ...).

e Pierre Formont Ph.D. (2009-2012): Classification techniques applied to POLSAR, POLINSAR
imaging:
o Statistical tests based on covariance matrices for multivariate SAR classification, SAR
change detection,

e Use of the Geometry of Information,

e 3 months attachment at DSO in 2012 (extension of polarimetric SAR classification
algorithms to Hyperspectral Imaging).
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 Hyperspectral data provided by DSO (or others!) are spatially heterogeneous in
intensity and/or cannot be only characterized by Gaussian statistic:
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RXDson = (e — )™ Mgl (ck — p)

 Spherical Invariant Random Vectors (SIRV) models have been started to be
studied in the hyperspectral scientific community but one still uses .... Gaussian
estimates !
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SIRV FOR HYPERSPECTRAL

MODELLING

Spherically Invariant Random Vector : Compound Gaussian Process [Yao 1973]

c=\Tx €)= [ e 0 (-5 pir) e

T

¢ x is a multivariate complex circular zero-mean Gaussian m-vector (speckle) with covariance
matrix M with identifiability consideration tr(M)=m,

@ T is a positive scalar random variable (texture) well defined by its pdf p(7).

@ For a given set of spatial pixels of the hyperspectral image, M characterizes the
. correlation existing within the spectral bands,

¢ Conditionally to the pixel, the spectral vector is Gaussian. The texture variable T
characterizes here the variation of the norm of each vector from pixels to pixels.

Powerful statistical model that allows:

® to encompass the Gaussian model,

= to extend the Gaussian model (K, Weibull, Fisher, Cauchy, Alpha-Stable, ...),

m to take into account the heterogeneity of the background power with the texture,

m to take into account possible correlation existing on the m-channels of observation,
m to derive optimal or suitable detectors.

N ONERA
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SIRV DETECTORS

Detectors developed in the SIRV context

m SIRV texture p(7) modelling with Padé Approximants [Jay et al., 2000],

® Normalized Matched Filter [Picinbono 1970, Scharf 1991], GLRT-LQ [Gini, Conte, 1995], }
m Bayesian estimation (BORD) of the SIRV texture p(7) [Jay et al., 2002].

o CFAR pro‘perty of Asympt?tic BORD for difterent SIRVs \ /

Normalized Matched Filter

Gauss

—— K-distribution
Student-t 2
Weibull texture

o“ 'll'heoret:ic A {pH M_l c‘ Ii>'1

c: cell under test
p: spectral steering vector of the target

1
10° 10"

Thresho1l(g n 1o’ \ o A(C) is SIRV CFAR
Texture-CFAR property for the GLRT-LQ but needs to know the true covariance M
SO R A 9 /20 PEPS GEOTEX, Bordeaux, France, 121 =&
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ADATIVE DETECTION IN SIRV BACKGRK
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New detectors called Adaptive Detectors can be derived by replacing in the NMF
a «good estimate» of the covariance matrix (two step GLRT).

ACE : Adaptive Coherence Estimator
ANMF : Adaptive Normalized Matched Filter

These detectors are SIRV-CFAR only for some particular estimates of M !

Some well known estimates

1 K
¢ H
* Mscoy = — E Ck Cy
k=1
K H
~ m Ck Cy,
* M = — E
L =t
[Gini-Conte, 2002] -
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CHOICE OF THE COVARIANCE MATRI\":

& The Sample Covariance Matrix SCM may be a «poor» estimate of the SIRV
Covariance Matrix M because of the texture contamination:

1 & 1 &
MSCMI?ZCkaH = EZTkaXE
k=1 k=1
1 & .
# D XXy
k=1

& The Normalized Sample Covariance Matrix (NSCM) may be a good candidate of the
SIRV Covariance Matrix M:

K H K H

Nncorny — m CkCp _ M Xk X,
K H K Z xH x

k=1 Ck Ck k=1 "k Tk

This estimate does not depend on the texture but it is biased (£ [MNSCM} and M
share the same eigenvectors but have different eigenvalues, with the same
ordering) [Bausson et al. 2006].
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COVARIANCE MATRIX ESTIMATION IN

ELLIPTICAL BACKGROUND

For an unknown but deterministic texture parameter, the Maximum Likelihood Estimate (MLE) of
the Covariance M (approached MLE in the SIRV context), called the Fixed Point Mrp (FP), is the
solution of the following implicit equation [Conte-Gini 2002]:

K H
A C. C
Fixed Point (FP): Npp = — >  — 2k

Hnr—1
[Pascal et al. 2006]

Q@ This estimate does not depend on the texture,

© The Fixed Point is consistent, unbiased, asymptotically Gaussian and is, at a fixed number K,
Wishart distributed with mK/(m+1) degrees of freedom,

© Existence and unicity of the solution are proven. The solution can be reached by recurrence
Mi=f(Mk-1) whatever the starting point Mo (ex: Mo=Il, M1=Mnscwm),

@ Robust to outliers, strong targets or scatterers in the reference cells.

The Fixed Point belongs to the family of M-estimators (Robust Statistics [Huber 1964, Maronna
1976, Yohai 2006]) in the more general context of Elliptically Random Process:

u(.) choice

K
A 1 A
M = I7a E U (cﬁ M1 ck) crcpl
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TEXTURE ESTIMATION IN SIRV BACKC
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For an unknown but deterministic texture parameter, the Maximum Likelihood Estimate of the texture at
pixel k is given by:

H =L
Crx VMirp Ck

o =
m
This quantity plays exactly the same role as the Polarimetric Whitening Filter [Novak and Burl 1990 -

Vasile, J.P. Ovarlez et al. 2010] for reducing the speckle in Polarimetric SAR images. It can also be
seen as an extended Mahalanobis distance between cx and the background.
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CONTEXT

The hyperspectral data are real and positive as they represent radiance or
reflectance.

e A mean vector has to be included in the SIRV model and to be estimated
jointly with the covariance matrix,

* The real data can be transformed into complex ones by a linear Hilbert filter.

pm(C) - /0+OO (7'(' 7')71” ‘M‘ OXp (_ (C - M)H M_l (C — l'l')) p(T) dr

T

Joint MLE solutions are [Bilodeau 1999]:

K
} : Ck
AN ~ _1 AN

Mpp = m i (cr, — 1) (e — @)" i = =1 (e — )" Mpp (e — )
K = (er — )" Mpp (e — ) i 1
=1 (cx — W) Mpp (cr — R)

These two quantities can be jointly reached by iterative process
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Local Covariance Matrix estimate approach
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[Reed and Yu, 1990]
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CONSIDERATIONS ON MAHALANOBIS

Mahalanobis Distance (RXD) built with SCM or FP still depends on the texture of
the cell under test ! A solution may be to seek for a candidate which is invariant

with the texture. Example, Mahalanobis distance built on the normalized cell
under test:
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FALSE ALARM REGULATION FOR THE

SIRV-CFAR TEST
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FALSE ALARM REGULATION FOR THE D

Robust Detection and Classification in Hyperspectral Imaging

PH.D. started in Oct. 2011, in collaboration with F. Pascal (SONDRA) and GIPSA-Lab (J.
Chanussot)

Goal: to analyze and to extend previous works in the context of Elliptical distributions for
robust scale (covariance matrix) and location (mean vector) M-estimation.
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The asymptotic statistical analysis of M-estimates allows to enhance the

regulation of false alarm (/IEEE WHISPER 2012, IEEE IGARSS 2012).
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DETECTION PERFORMANCES ON EXPER
DATA
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CONCLUSIONS

 Hyperspectral images like radar data or SAR images can suffer from non-
Gaussianity or heterogeneity that can reduce the performance of anomaly
detectors (RXD), target detectors (ACE) and classifiers,

 SIRVI/Elliptical modelling is a very nice theoretical tool for hyperspectral
context that can match and control the heterogeneity and non-Gaussianity of
the images,

* Jointly used with powerful and robust estimates, hyperspectral detectors may
provide better performances, with nice CFAR properties,

e When extended to the Hyperspectral context, all the methodologies (Random
Matrix Theory, non-Gaussian modelling, robust estimation, ...) previously and
currently developed in SONDRA for radar applications can enhance performance in
detection and classification problems:

e source localization,

* linear spectral unmixing, sub-spaces techniques,
 detection, estimation, classification, ...
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