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OUTLINE OF THE TALK

Problems Description and Motivation,

The Spherically Invariant Random Process and Elliptical 
Process Modelling for Hyperspectral Imaging,

Estimation in the SIRV/Elliptical Background,

Detection in the SIRV/Elliptical Background,

Anomaly Detection and Target Detection Results on 
Experimental Data,

Conclusion.
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• ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
To detect all kind of targets that are « different » from the background - Regulation 
of False Alarm (Mahalanobis Distance).

• DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES
To detect (GLRT) targets characterized by a given spectral signature - Regulation of 
False Alarm. 

• CLASSIFICATION IN HYPERSPECTRAL IMAGES
Put the background in separate homogeneous classes.

Example of DSO Hyperspectral Image (2010)
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PROBLEMS DESCRIPTION
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• Hyperspectral data are spatially heterogeneous in intensity and/or cannot be only 
characterized by Gaussian statistic:

• MANOLAKIS, MARDEN, AND SHAW
Hyperspectral Image Processing for Automatic Target Detection Applications

VOLUME 14, NUMBER 1, 2003 LINCOLN LABORATORY JOURNAL 113

FIGURE 49. Detection statistics in the target buffer area for
the ACE, AMF, and GLRT target detection algorithms. All
three algorithms can detect the target (circled pixel) with
fewer than forty false alarms in the entire cube of about
200,000 pixels.

the maximum-likelihood estimates. When the num-
ber of pixels N is greater than about 10K , the esti-
mated Mahalanobis distance, for all practical pur-
poses, follows a chi-squared distribution.

From the multitude of ECDs discussed in statistics
literature, the elliptically contoured t-distribution [2]
has been shown to provide a good model for many
hyperspectral data sets [32]. This distribution is de-
fined by
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where E(x ) = µµ , Cov(x )  = v
v�2 C , � is the number of

degrees of freedom, and C is known as the scale ma-
trix. The Mahalanobis distance is distributed as

1 1

K
FT

K( ) ( ) ~ ,,x C x� ��µµ µµ � (22)

where FK ,v is the F-distribution with K and v degrees
of freedom. The integer v controls the tails of the
distribution: v = 1 leads to the multivariate Cauchy

The random vector x ~ ( , , )EC µµ �� h  can be gener-
ated by

x z= +�� µµ1 2/ ( ) ,� (21)

where z ~ N(0, I ) and � is a non-negative random
variable independent of z. The density of the ECD is
uniquely determined by the probability density of �,
which is known as the characteristic probability den-
sity function of x. Note that f�(�)  and ��  can be
specified independently.

One of the most important properties of random
vectors with ECDs is that their joint probability den-
sity is uniquely determined by the probability density
of the Mahalanobis distance
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where �(K /2) is the Gamma function. As a result,
the multivariate probability density identification
and estimation problem is reduced to a simpler
univariate one. This simplification provides the cor-
nerstone for our investigations in the statistical char-
acterization of hyperspectral background data.

If we know the mean and covariance of a multi-
variate random sample, we can check for normality
by comparing the empirical distribution of the
Mahalanobis distance against a chi-squared distribu-
tion. However, in practice we have to estimate the
mean and covariance from the available data by using

FIGURE 50. Modeling the distribution of the Mahalanobis
distance for the HSI data blocks shown in Figure 33. The
blue curves correspond to the eight equal-area subimages
in Figure 33. The green curves represent the smaller areas in
Figure 33 and correspond to trees, grass, and mixed (road
and grass) materials. The dotted red curves represent the
family of heavy-tailed distributions defined by Equation 22.
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CONVENTIONAL METHODS OF DETECTION

• Many methodologies for detection and classification in hyperspectral images can be found in 
radar detection community. We can retrieve all the detectors family commonly used in radar 
detection (AMF (intensity detector), ACE (angle detector), sub-spaces detectors, ...). 

• Almost all the conventional techniques for anomaly detection and targets detection are 
based on Gaussian assumption and on spatial homogeneity in hyperspectral images.

4
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• Spherically Invariant Random Vectors (SIRV) models have been started to be studied in the 
Hyperspectral scientific community but everybody still uses .... Gaussian estimates !

• SIRV models with good appropriate estimates have been found to be efficient for false alarm 
regulation as well as for detection schemes in non-Gaussian and heterogeneous background for 
Hyperspectral Imaging (2010 J.P. Ovarlez DSO attachment, IEEE IGARSS 2011).

5

NEW RESULT

Classical results

Ex: Anomaly Detection obtained on DSO data

4

SOME COMMENTS
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• Previous and new researches conducted in SONDRA-Lab in Non-Gaussian Detection and 
Estimation (J.P. Ovarlez and F. Pascal):

• Elliptical distributions (generalization of the SIRV distributions),
• Random Matrix Theory (closely related to F. Pascal’s talk). 

• Mélanie Mahot Ph.D. (2009-2012): Evaluation of the robust statistic framework for radar signal 
processing:

• M-estimators: robust covariance matrix estimation in the context of Elliptical Distributions,
• Statistical properties of M-estimators (useful for deriving tests PDF, ...).

• Pierre Formont Ph.D. (2009-2012): Classification techniques applied to POLSAR, POLINSAR 
imaging:

• Statistical tests based on covariance matrices for multivariate SAR classification, SAR 
change detection,

• Use of the Geometry of Information,
• 3 months attachment at DSO in 2012 (extension of polarimetric SAR classification 

algorithms to Hyperspectral Imaging).

All the previous signal processing methodologies conducted in SONDRA/
ONERA since long years for radar and SAR processing can be “easily” and 
“naturally” extended and exploited for Hyperspectral Imaging:

SONDRA/ONERA BACKGROUND FOR 
HYPERSPECTRAL IMAGING
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FIRST COMMENTS AND ADEQUACY WITH SOME 
RESULTS FOUND IN THE LITERATURE
• Hyperspectral data provided by DSO (or others!) are spatially heterogeneous in 

intensity and/or cannot be only characterized by Gaussian statistic:

• Spherical Invariant Random Vectors (SIRV) models have been started to be 
studied in the hyperspectral scientific community but one still uses .... Gaussian 
estimates !

RXD on DSO DATA

• MANOLAKIS, MARDEN, AND SHAW
Hyperspectral Image Processing for Automatic Target Detection Applications

VOLUME 14, NUMBER 1, 2003 LINCOLN LABORATORY JOURNAL 113

FIGURE 49. Detection statistics in the target buffer area for
the ACE, AMF, and GLRT target detection algorithms. All
three algorithms can detect the target (circled pixel) with
fewer than forty false alarms in the entire cube of about
200,000 pixels.

the maximum-likelihood estimates. When the num-
ber of pixels N is greater than about 10K , the esti-
mated Mahalanobis distance, for all practical pur-
poses, follows a chi-squared distribution.

From the multitude of ECDs discussed in statistics
literature, the elliptically contoured t-distribution [2]
has been shown to provide a good model for many
hyperspectral data sets [32]. This distribution is de-
fined by
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where E(x ) = µµ , Cov(x )  = v
v�2 C , � is the number of

degrees of freedom, and C is known as the scale ma-
trix. The Mahalanobis distance is distributed as
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K
FT
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where FK ,v is the F-distribution with K and v degrees
of freedom. The integer v controls the tails of the
distribution: v = 1 leads to the multivariate Cauchy

The random vector x ~ ( , , )EC µµ �� h  can be gener-
ated by

x z= +�� µµ1 2/ ( ) ,� (21)

where z ~ N(0, I ) and � is a non-negative random
variable independent of z. The density of the ECD is
uniquely determined by the probability density of �,
which is known as the characteristic probability den-
sity function of x. Note that f�(�)  and ��  can be
specified independently.

One of the most important properties of random
vectors with ECDs is that their joint probability den-
sity is uniquely determined by the probability density
of the Mahalanobis distance
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where �(K /2) is the Gamma function. As a result,
the multivariate probability density identification
and estimation problem is reduced to a simpler
univariate one. This simplification provides the cor-
nerstone for our investigations in the statistical char-
acterization of hyperspectral background data.

If we know the mean and covariance of a multi-
variate random sample, we can check for normality
by comparing the empirical distribution of the
Mahalanobis distance against a chi-squared distribu-
tion. However, in practice we have to estimate the
mean and covariance from the available data by using

FIGURE 50. Modeling the distribution of the Mahalanobis
distance for the HSI data blocks shown in Figure 33. The
blue curves correspond to the eight equal-area subimages
in Figure 33. The green curves represent the smaller areas in
Figure 33 and correspond to trees, grass, and mixed (road
and grass) materials. The dotted red curves represent the
family of heavy-tailed distributions defined by Equation 22.

ACE AMF GLRT

0 200 400 600 800 1000
10–4

Mahalanobis distance

BlocksCauchy

Normal

Mixed
Trees

Grass

Mixed 
distributions

P
ro

ba
bi

lit
y 

of
 e

xc
ee

de
nc

e

10–3

10–2

100

10–1

[Manolakis 2002]

7

2

Hotelling T2

RXD-SCM

RXDSCM = (ck � µ)H M̂�1
SCM (ck � µ)
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 x is a multivariate complex circular zero-mean Gaussian m-vector (speckle) with covariance 
matrix M with identifiability consideration tr(M)=m,
  is a positive scalar random variable (texture) well defined by its pdf p().

Powerful statistical model that allows:

 to encompass the Gaussian model,
 to extend the Gaussian model (K, Weibull, Fisher, Cauchy, Alpha-Stable, ...),
 to take into account the heterogeneity of the background power with the texture,
 to take into account possible correlation existing on the m-channels of observation,
 to derive optimal or suitable detectors.

8

Spherically Invariant Random Vector : Compound Gaussian Process [Yao 1973]

c =
p
⌧ x

 For a given set of spatial pixels of the hyperspectral image, M characterizes the 
correlation existing within the spectral bands,

 Conditionally to the pixel, the spectral vector is Gaussian. The texture variable  
characterizes here the variation of the norm of each vector from pixels to pixels.

pm(c) =

Z +1

0

1

(⇡ ⌧)m |M| exp
✓
�cH M�1 c

⌧

◆
p(⌧) d⌧

SIRV FOR HYPERSPECTRAL BACKGROUND 
MODELLING
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SIRV DETECTORS

 SIRV texture p() modelling with Padé Approximants [Jay et al., 2000],

 Normalized Matched Filter [Picinbono 1970, Scharf 1991], GLRT-LQ [Gini, Conte,1995], 

 Bayesian estimation (BORD) of the SIRV texture p() [Jay et al., 2002].

Detectors developed in the SIRV context 

Detection Test
When M is known and τ is a random variable, the resulting detection test is the GLRT-LQ [Conte, Gini,

Jay] :

Λ(M) =
|p†M−1y|2

(p†M−1p)(y†M−1y)
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λ .

• The Likelihood Ratio Λ(M) statistic is independent of
the texture statistic p(τ) under hypothesisH0,

• Thus the relationship between Pfa and the detection

threshold is independent of the texture statistic p(τ)
under hypothesisH0 and is expressed as:
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Texture-CFAR property for the GLRT-LQ

LIMITATION: SIRP COVARIANCE MATRIX M IS GENERALLY

UNKNOWN.

(c) is SIRV CFAR 
but needs to know the true covariance M

Normalized Matched Filter
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c: cell under test
p: spectral steering vector of the target
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New detectors called Adaptive Detectors can be derived by replacing in the NMF 
a «good estimate» of the covariance matrix (two step GLRT). 

These detectors are SIRV-CFAR only for some particular estimates of M !

10

ADATIVE DETECTION IN SIRV BACKGROUND

ACE : Adaptive Coherence Estimator
ANMF : Adaptive Normalized Matched Filter
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[Gini-Conte, 2002]

Some well known estimates
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CHOICE OF THE COVARIANCE MATRIX ESTIMATE 

The Sample Covariance Matrix SCM may be a «poor» estimate of the SIRV 
Covariance Matrix M because of the texture contamination:

11
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The Normalized Sample Covariance Matrix (NSCM) may be a good candidate of the 
SIRV Covariance Matrix M:
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This estimate does not depend on the texture but it is biased (                       and M 
share the same eigenvectors but have different eigenvalues, with the same 
ordering) [Bausson et al. 2006].
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M̂FP =
m

K

KX

k=1

ck cHk
cHk M̂�1

FP ck

For an unknown but deterministic texture parameter, the Maximum Likelihood Estimate (MLE) of 
the Covariance M (approached MLE in the SIRV context), called the Fixed Point MFP (FP), is the 
solution of the following implicit equation [Conte-Gini 2002]:

12

COVARIANCE MATRIX ESTIMATION IN SIRV/
ELLIPTICAL BACKGROUND

Fixed Point (FP):

The Fixed Point belongs to the family of M-estimators (Robust Statistics [Huber 1964, Maronna 
1976, Yohai 2006]) in the more general context of Elliptically Random Process:

Les di↵érents estimateurs étudiés

Les di↵érents estimateurs étudiés

Obtenus à partir des données {xi , i = 1...N} de taille m, ils vérifient tous l’équation

bM =
1
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NX
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h
u(xH
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i
xix

H
i (1)

u est une fonction de pondération des xix
H
i .

Exemples :

La SCM :
u(r) = 1

L’estimateur d’Huber
(M-estimateur) :

u(r) =

⇢
K/e si r <= e

K/r si r > e

L’estimateur FP : u(r) = m
r
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⌘
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H
k

u(.) choice 

This estimate does not depend on the texture,
The Fixed Point is consistent, unbiased, asymptotically Gaussian and is, at a fixed number K, 
Wishart distributed with mK/(m+1) degrees of freedom,
Existence and unicity of the solution are proven. The solution can be reached by recurrence 
Mk=f(Mk-1) whatever the starting point M0 (ex: M0=I, M1=MNSCM),
Robust to outliers, strong targets or scatterers in the reference cells.

[Pascal et al. 2006]
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TEXTURE ESTIMATION IN SIRV BACKGROUND

⌧̂k =
cHk M̂�1

FP ck
m

For an unknown but deterministic texture parameter, the Maximum Likelihood Estimate of the texture at 
pixel k is given by: 

This quantity plays exactly the same role as the Polarimetric Whitening Filter [Novak and Burl 1990 - 
Vasile, J.P. Ovarlez et al. 2010] for reducing the speckle in Polarimetric SAR images. It can also be 
seen as an extended Mahalanobis distance between ck and the background.

RXDSCM = (ck � µ)H M̂�1
SCM (ck � µ)RXDFP = (ck � µ)H M̂�1

FP (ck � µ)

13



/ 20 PEPS GEOTEX, Bordeaux, France, 12-13 July 2012

SOME PROBLEMS SOLVED IN HYPERSPECTRAL 
CONTEXT

• A mean vector has to be included in the SIRV model and to be estimated 
jointly with the covariance matrix,

• The real data can be transformed into complex ones by a linear Hilbert filter.

The hyperspectral data are real and positive as they represent radiance or 
reflectance. 

Joint MLE solutions are [Bilodeau 1999]:

M̂FP =
m

K

KX

k=1

(ck � bµ) (ck � bµ)H

(ck � bµ)H M̂�1
FP (ck � bµ)

Existence and uniqueness of the solution to the above
equation, denoted ⇥MFP have already been investigated in
[14] while its performance analysis has been studied by [10]
in which it was shown that the Fixed Point estimate is the
covariance matrix estimate that has a better match to the
problem under study thanks to its statistical performance
and its easy implementation and practical use. Eq. (4) obvi-
ously implies that ⇥MFP is independent of the ⇥i’s. The main
results of the statistical properties of ⇥MFP are recapped:
⇥MFP is a consistent and unbiased estimate of M; its asymp-
totic distribution is Gaussian and its covariance matrix is
fully characterized in [15]; its asymptotic distribution is the
same as the asymptotic distribution of a Wishart matrix with
mN/(m+ 1) degrees of freedom.

When the noise is not centered, as in hyperspectral imag-
ing, the joint estimation of M and µ leads to [16]:

M̂FP =
1

K

K�

k=1

(ck � ⇥µ) (ck � ⇥µ)H

(ck � ⇥µ)H M̂�1
FP (ck � ⇥µ)

, (5)

and

⇥µ =

K�

k=1

ck

(ck � ⇥µ)H M̂�1
FP (ck � ⇥µ)

K�

k=1

1

(ck � ⇥µ)H M̂�1
FP (ck � ⇥µ)

. (6)

These two estimates given by implicit equations (Fixed Point
Equation) can be easily computed using a recursive approach.
In the section dealing with applications to experimental hy-
perspectral data, we will use the GLRT-FP �̂( ⇥MFP , ⇥µ) as
detector. This detector has essential CFAR properties like
texture-CFAR (independent of the distribution of ⇥ ), matrix-
CFAR (independent of M) and mean-CFAR (independent
of µ). One of the first deduction of previous results is that
regardless of the SIRV used, for different distributions of the
texture and for different covariance matrices, the resulting
GLRT �( ⇥MFP , ⇥µ)) follows the same distribution. This is
of a major interest in areas of background transition like for
example, in coastal areas (ground and sea) or at the edge
of forests (fields and trees) because the detector should be
insensitive to the different clutter areas.

A theoretical relationship between the detection threshold
� and the Probability of False Alarm (PFA) Pfa = P(� >
�|H0) has been established:

Pfa = (1� �)a�1
2F1(a, a� 1; b� 1;�) , (7)

where a =
m

m+ 1
K �m+ 2, b =

m

m+ 1
K + 2 and 2F1 is

the Hypergeometric function.

Note that the previous Pfa-threshold relationship (7) has
been derived assuming radar data being complex and is not

valid for real data. As the hyperspectral data are positive and
real, they have been passed through an Hilbert filter to render
them complex. The following section presents some results
relative to the regulation of false alarm obtained on experi-
mental data.

3. DETECTION RESULTS ON EXPERIMENTAL
HYPERSPECTRAL DATA

The experimental set of data was provided by DSO National
Laboratories (see figure 1). The figure 2 shows the regula-
tion of the false alarm for the conventional Adaptive Matched
Filter built with the classical Sample Covariance Matrix. The
figure 3 shows the results obtained with the ANMF or ACE
given in (3) built with the Fixed Point and the mean given re-
spectively in (5) and (6). These preliminary results show a
better regulation for the proposed detection scheme than the
conventional one.

4. CONCLUSIONS

The SIRV modelling as pointed out in [5, 6] is shown to be
very interesting when dealing with heterogeneity and/or non
Gaussian data. All the previous works that have been done
in the context of radar detection can be applied successfully
on hyperspectral imagery for the purpose of detection. The
ACE detector built not with the conventional SCM but with
the proposed Fixed Point estimate is shown to be SIRV CFAR.
These preliminary results have to be of course evaluated fur-
ther. They have been shown to have a good potential for target
detection in hyperspectral sensing. These works1 can also be
used for anomaly detection purpose.

Fig. 1. Normalized hyperspectral data set

1The authors would like to thank french DGA for its financial support.

These two quantities can be jointly reached by iterative process

pm(c) =

Z +1

0

1

(⇡ ⌧)m |M| exp
✓
� (c� µ)H M�1

(c� µ)

⌧

◆
p(⌧) d⌧

14
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FIRST RESULTS FOR ANOMALY DETECTION 
(DSO DATA)

15

RXDSCM = (ck � bµ)H M̂�1
SCM (ck � bµ)RXDFP = (ck � bµ)H M̂�1

FP (ck � bµ)

[Reed and Yu, 1990]

Local Covariance Matrix estimate approach
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Mahalanobis Distance (RXD) built with SCM or FP still depends on the texture of 
the cell under test ! A solution may be to seek for a candidate which is invariant 
with the texture. Example, Mahalanobis distance built on the normalized cell 
under test:

CONSIDERATIONS ON MAHALANOBIS DISTANCE

16

NRXDFP =
(ck � bµk)

H M̂�1
FP (ck � bµk)

(ck � bµk)
H (ck � bµk)
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SIRV-CFAR TEST
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Robust Detection and Classification in Hyperspectral Imaging
PH.D. started in Oct. 2011, in collaboration with F. Pascal (SONDRA) and GIPSA-Lab (J. 

Chanussot)

Goal: to analyze and to extend previous works in the context of Elliptical distributions for 
robust scale (covariance matrix) and location (mean vector) M-estimation.
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Detection result on DSO experimental Hyperspectral Data

with k > 0. One can obtain Huber’s M-estimator by taking
u1(s) =  k(s)/s and u2(s) =  k2/s. We remark that the
Huber function can be seen as a mix between the Fixed Point
estimate and the conventional SCM estimate. Extreme val-
ues of t2n outside [0, k2] are strongly attenuated by the 1/s
decreasing function (as for the Fixed Point) while normal val-
ues below k2 are uniformly kept (SCM behavior).

4. THE ANMF BUILT WITH THE M-ESTIMATORS

Different types of adaptive non-Gaussian detectors may be
derived for target enhancement purposes. We focus here on
the study of the GLRT-Linear Quadratic [16], also known
as Adaptive Cosine Estimate built with the differents M-
estimators presented above,

⇤(M̂, bµ) = |pHM̂�1(y � bµ)|2

(pHM̂�1p)((y � bµ)HM̂�1(y � bµ))

H1

?
H0

�

(6)
where p is the spectral steering vector, y the cell under test
and � the decision threshold.Note that the mean µ̂ is generally
omitted in radar detection (and therefore not estimated) as the
noise is always zero mean. So, in hyperspectral imaging, as
the data represent intensity values and are positive, we need to
estimate it, jointly with the covariance matrix M. Used with
the Fixed Point estimate, this detector is particularly interest-
ing because of its CFAR matrix properties. Hence, the detec-
tor GLRT ⇤(M̂FP, µ̂) behaves according to the same distri-
bution for different covariance matrices.

4.1. Detector performance

The performance analysis has been realized over the data set
provided by DSO National Laboratories, the normalized hy-
percube is shown in figure 1. The resulting ROC curves (Re-
ceiver Operating Characteristic) compare the output of the
detector built with the Fixed Point estimates, the Huber M-
estimators and the classical SCM. The test conducted con-
sists in placing an artificial target with a fixed SNR through
each pixel of the image. For all the possible threshold values,
both probability of false alarm and probability of detection
are computed. The outcome is illustrated in figure 2.
These preliminary results show the improvement in perfor-
mance introduced by the use of M-estimators regarding the
conventional SCM. The desired robustness properties previ-
ously mentioned lead to a higher Pd for small values of the
Pfa.

4.2. False Alarm Regulation

A theoretical relationship between the detection threshold �
and the Probability of False Alarm Pfa = P(⇤ > �|H0) has
been established in [17]:

Pfa = (1� �)a�1
2F1(a, a� 1; b� 1;�) (7)

Fig. 1. Normalized data set.

Fig. 2. ROC curves depicting the performance of the detector
built with the SCM (in red), the Fixed Point (in blue) and the
Huber type (in black) estimates. Probabilities are given in
log10 scale.

where a = m
m+1K �m + 2, b = m

m+1K + 2 and 2F1 is the
Hypergeometric function. This expression holds when µ is
completely known and can be removed from the data. Fig-
ure 3 exhibits the regulation of the false alarm for the detector
built with the classical SCM and figure 4 the corresponding
results obtained with the Fixed Point estimates. The gap ev-
idenced in the figure for the Fixed Point, is due to the joint
estimation of M and µ, since ⇤(M̂FP, µ̂) is no longer unaf-
fected by the distribution of µ̂.
Note that the previous Pfa-threshold has been derived assum-
ing radar data being complex and is not valid for real data. As
the hyperspectral data are real and positive, they have been
passed through an Hilbert filter to render them complex.

5. CONCLUSIONS

Using elliptical distributions for background modeling allows
for heterogeneity consideration in non-Gaussian environ-
ment. We have proposed different estimators for statistical
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with a well chosen joint M̂ and µ̂ estimates (Huber, fixed point, . . . )
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• Hyperspectral images like radar data or SAR images can suffer from non-
Gaussianity or heterogeneity that can reduce the performance of anomaly 
detectors (RXD), target detectors (ACE) and classifiers,

• SIRV/Elliptical modelling is a very nice theoretical tool for hyperspectral 
context that can match and control the heterogeneity and non-Gaussianity of 
the images, 

• Jointly used with powerful and robust estimates, hyperspectral detectors may 
provide better performances, with nice CFAR properties,

• When extended to the Hyperspectral context, all the methodologies (Random 
Matrix Theory, non-Gaussian modelling, robust estimation, ...) previously and 
currently developed in SONDRA for radar applications can enhance performance in 
detection and classification problems:

• source localization,
• linear spectral unmixing, sub-spaces techniques,
• detection, estimation, classification, ...


