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In the general framework of radar detection, estimation of

the Gaussian or non-Gaussian clutter covariance matrix is an

important point. This matrix commonly exhibits a particular

structure: for instance, this is the case for active systems using a

symmetrically spaced linear array with constant pulse repetition

interval. We propose using the particular persymmetric structure

of the covariance matrix to improve the detection performance.

In this context, this work provides two new adaptive detectors for

Gaussian additive noise and non-Gaussian additive noise which

is modeled by the spherically invariant random vector (SIRV).

Their statistical properties are then derived and compared with

simulations. The vast improvement in their detection performance

is demonstrated by way of simulations or experimental ground

clutter data. This allows for the analysis of the proposed detectors

on both real Gaussian and non-Gaussian data.
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I. INTRODUCTION

The problem of adaptive radar detection requires

the estimation of the clutter covariance matrix (CCM).

In recent years, improvements of the associated

estimation schemes have gained tremendous interest

in the radar community. For that purpose the sample

covariance matrix (SCM) has been widely used and

this nonparametric estimator may be improved by

exploiting the CCM structure. Toeplitz structure has

been addressed by Burg in [1] while Fuhrmann in [2]

used this estimator for radar detection purposes. In

radar systems using a symmetrically spaced linear

array with constant pulse repetition interval, the

CCM has the persymmetric property. This structure

information could then be exploited to improve

detection performance. In this context, we use a

particular linear transformation in order to take

into account the persymmetry of the CCM and to

study the statistical property of new detectors for

both Gaussian and non-Gaussian environments. For

Gaussian data the CCM maximum likelihood (ML)

estimator has been derived in [3]. The corresponding

generalized likelihood ratio test (GLRT) has been

investigated in [4]. For non-Gaussian clutter modeled

by spherically invariant random vectors (SIRVs),

detection schemes have been proposed in [5] and

[6]. In [5] the persymmetry is only exploited to build

two sets of independent data in order to derive a

SIRV-constant false alarm rate (CFAR) detector: the

persymmetric adaptive normalized matched filter

(P-ANMF). In [6] these sets are used to initialize an

iterative algorithm simultaneously proposed in [7]

and [8]. This allows the derivation of the recursive

P-ANMF (RP-ANMF). Our approach, based on

the fixed point adaptive normalized matched filter

(FP-ANMF), also called GLRT-FP [7, 8], exploits

an original transformation already proposed in [9]

for Gaussian case and in [10] for non-Gaussian case.

This leads to the persymmetric fixed point adaptive

normalized matched filter (PFP-ANMF) also called

GLRT-PFP, i.e., the persymmetry property of the

CCM. Its interest is to render the CCM real, leading to

a simpler problem. Moreover this approach allows the

derivation of the statistical analysis of the proposed

detection scheme.

This paper is organized as follows. Section II

presents the studied problem in terms of matrix

estimation and radar detection and introduces

persymmetry tools where it is shown how the

persymmetric structure of the CCM can be exploited

to provide the new persymmetric adaptive matched

filter (PS-AMF). In Section III we derive the statistical

distribution of the PS-AMF under hypothesis H0, in
which only noise is present in order to determine

the improvement in terms of probability of false

alarm (PFA). To confirm this improvement, some

Gaussian data are extracted from the experimental
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data to validate the study. Section III also presents

similarly the problem in non-Gaussian noise. The

purpose is to derive an estimator of the CCM based

on the secondary data and to take into account its

structure (persymmetric fixed point M̂PFP). The

statistical properties of M̂PFP are also established

and enable the investigation of the distribution of the

detector ¤GLRT-PFP, called GLRT-PFP (generalized
likelihood ratio test—persymmetric fixed point).

Finally we present in Section IV some simulated and

experimental results that illustrate the improvement in

terms of detection performance of the PS-AMF with

respect to the conventional adaptive matched filter

(AMF) for Gaussian case. Moreover, results obtained

with non-Gaussian real data demonstrate the interest

of the proposed detection scheme compared with the

existing detectors P-ANMF, RP-ANMF, and GLRT-FP.

II. BACKGROUND AND PROBLEM STATEMENT

This paragraph provides a guide to the notation

used throughout the remainder of the paper. In

general, a boldface, lowercase variable indicates a

column vector quantity; a boldface, upper variable

indicates a matrix; a variable with a caret (̂ ) is an

estimate of an unknown quantity. Superscripts T or
H applied to a vector or a matrix denote the transpose

or Hermitian (conjugate) transpose operations. The

superscript ¤ denotes the conjugate operation. E[:]
stands for the statistical expectation operator, Tr(:)
denotes the trace operator, Re(:) denotes the real
part, and j:j denotes the determinant. In this paper,
k:k stands for the usual L2-norm. Im is the mth order
identity matrix, Pr(:) stands for the probability, and the
notation » means “is distributed as.”
In radar detection the main problem consists in

detecting a signal Ap 2 Cm corrupted by an additive
clutter c. This problem can be stated as the following

binary hypothesis test:

H0 : y= c, yk = ck for 1· k ·K,
H1 : y= Ap+ c, yk = ck for 1· k · K

(1)

where y is the complex m-vector of the received
signal, A is an unknown complex target amplitude
and p stands for the known “steering vector.” Under
both hypotheses, it is assumed that K signal-free data

yk are available for clutter parameters estimation. The

yks are the so-called secondary data where they are
assumed independent, but their statistical distribution

depends on the clutter nature. In this paper two cases

are investigated according to the clutter statistics: the

Gaussian clutter and the case of non-Gaussian clutter

as modeled by SIRV.

A. Gaussian Clutter

In the Gaussian case, c and ck are complex circular
zero-mean Gaussian m-vectors sharing the same
covariance matrix M, with distribution denoted

by CN (0,M). When M is known, the GLRT for A
unknown is referred to as the optimum Gaussian

detector (OGD):

¤OGD =
jpHM¡1yj2
pHM¡1p

H1
?
H0

¸OGD (2)

where the detection threshold ¸OGD is related to the
PFA Pfa by ¸OGD =¡ ln(Pfa). However, in practice,
the CCM M is generally unknown. One solution

is to substitute for M an estimator M̂ based on the

secondary data. When no prior information on the

M-structure is available, the SCM is classically used

M̂SCM =
1

K

KX
k=1

yky
H
k : (3)

leading to the so-called AMF test [11]:

¤AMF =
jpHM̂¡1

SCMyj2
pHM̂¡1

SCMp

H1
?
H0

¸AMF: (4)

The relationship between the PFA Pfa and the
detection threshold ¸AMF is given by [11, 12]:

Pfa = 2F1

μ
K ¡m+1,K ¡m+2;K +1;¡¸AMF

K

¶
(5)

where 2F1(:) is the hypergeometric function [13]
defined by

2F1(a,b;c;z) =
¡ (c)

¡ (b)¡ (c¡ b)
Z 1

0

tb¡1(1¡ t)c¡b¡1
(1¡ tz)a dt:

B. Non-Gaussian Clutter

In recent years, there has been an increasing

interest in non-Gaussian clutter models motivated by

experimental radar clutter measurements [14], which

have shown that the clutter is perfectly modeled by

K-distribution or Weibull distribution. More generally,

c can be modeled by a SIRV [15, 16] which is the

product of the square root of a positive random

variable ¿ (called the texture) and an m-dimensional
independent complex Gaussian vector g (called the

speckle) with zero-mean and covariance matrix M

normalized according to Tr(M) =m for identifiability
considerations [17]:

c=
p
¿g: (6)

The model when M is known and texture ¿ is
unknown has been widely studied and this enables

the construction of the generalized likelihood ratio

test—linear quadratic (GLRT-LQ) [18, 17] defined by

¤GLRT-LQ =
jpHM¡1yj2

(pHM¡1p)(yHM¡1y)

H1
?
H0

¸GLRT-LQ (7)

where ¸GLRT-LQ is the corresponding detection
threshold.
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When M is unknown, one solution is to substitute

a given estimator M̂ of M in (7) resulting in an

adaptive version of the GLRT. When replacing M by

an estimator M̂, this detector is often called adaptive

cosine estimate (ACE) [19] or adaptive normalized

matched filter (ANMF).

In the non-Gaussian case, the CCM estimator M̂ is

based on the signal-free secondary data yk = ck where
the clutter samples ck are SIRVs sharing the same

CCM as c: ck =
p
¿kgk, where E[gkg

H
k ] =M. For the

case when no prior information on the M-structure
is available, Conte and Gini in [7], [8] proposed an

approximate maximum likelihood (AML) estimator

M̂FP of M, called the fixed point (FP) estimator,

which is defined as the solution of the following

implicit equation:

M̂FP =
m

K

KX
k=1

yky
H
k

yHk M̂
¡1
FPyk

: (8)

Existence and uniqueness of the above equation

solution have been proven in [20], while the complete

statistical properties of M̂FP have been derived in [21].

The estimator M̂FP does not depend on the texture

and allows to obtain the following adaptive detector

GLRT-FP:

¤GLRT-FP =
jpHM̂¡1

FPyj2
(pHM̂¡1

FPp)(y
HM̂¡1

FPy)

H1
?
H0

¸GLRT-FP: (9)

The relationship between the PFA Pfa and the
detection threshold ¸GLRT-FP is given by [22]:

Pfa = (1¡¸GLRT-FP)a¡12F1(a,a¡ 1;b¡ 1;¸GLRT-FP)
(10)

where K 0 = (m=(m+1))K, a=K 0 ¡m+2, and b =
K 0+2.

C. Persymmetry Considerations and Problem
Formulation

It is clear that the estimation accuracy of M̂

has an important impact on the adaptive detection

performance in both Gaussian and non-Gaussian

clutter. M̂SCM and M̂FP defined by (3) and (8) do

not take into account any prior information on the

CCM structure. However many applications lead to

a CCM which exhibits some particular structure, and

considering this structure may lead to a improvement

in both estimation and detection performance. Such

a situation is frequently met in radar systems using a

symmetrically spaced linear array and a symmetrically

spaced pulse train for temporal domain processing

[1, 4, 5]. In these systems, the CCM M has the

persymmetric property, defined as follows:

M= JmM
¤Jm (11)

where Jm is the m-dimensional antidiagonal matrix
having 1 as non-zero elements. The steering vector of

the problem is also persymmetric, i.e., it satisfies

p= Jmp
¤: (12)

The persymmetric structure of M is exploited in

this paper in order to improve its estimation accuracy

compared with unstructured estimators. This is done

by means of the transformation matrix T introduced

in [23] and whose properties are recalled in the

following proposition.

PROPOSITION 1 ([23]) Let T be the unitary matrix
defined as

T=

8>>>>><>>>>>:

1p
2

μ
Im=2 Jm=2

iIm=2 ¡iJm=2

¶
for m even

1p
2

0B@ I(m¡1)=2 0 J(m¡1)=2

0
p
2 0

iI(m¡1)=2 0 ¡iJ(m¡1)=2

1CA for m odd:

(13)

Persymmetric vectors and Hermitian matrices are

characterized by the following properties:

1) p 2Cm is a persymmetric vector if and only if
Tp is a real vector.
2) M is a persymmetric Hermitian matrix if and

only if TMTH is a real symmetric matrix.

Using Proposition 1, the original problem (1)

can be equivalently reformulated. Let us introduce

the transformed primary data x, the transformed

secondary data xk, the transformed clutter vector n
and the transformed signal steering vector s defined
as: x= Ty, xk = Tyk, s= Tp, n= Tc, nk = Tck.
It follows that the transformed signal steering

vector s and the transformed CCM are both real.

Then, the original problem (1) is equivalent to

H0 : x= n xk = nk for 1· k ·K
H1 : x= As+n xk = nk for 1· k · K

(14)

where x 2 Cm, s is a known real vector.
In the Gaussian case, under hypothesis H0, n and

the K transformed secondary data xk are independent
and identically distributed (IID) and share the same

CN (0,R) distribution where R= TMTH is a real
symmetric matrix according to Proposition 1.

In the non-Gaussian case, one has

n=
p
¿h (15)

nk =
p
¿khk (16)

where h= Tg and hk = Tgk denote the transformed

speckle vector with the same real covariance matrix

R= TMTH. n and nk are still SIRVs with the same
texture and CCM R= TMTH. From now on the

problem under study is the problem defined by (14).

III. DETECTION SCHEME

In this section the detection problem (14)

is investigated in Gaussian and non-Gaussian
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frameworks. More precisely, the CCM estimation

problem is addressed and adaptive detection schemes

are proposed. In both cases, the adaptive detector

properties are studied.

A. Detection in Circular Gaussian Noise

Let us first investigate the ML estimator (MLE) of

the real covariance matrix R from the K secondary

data xk. The main motivation for introducing the
transformed data is that the resulting distribution

of the ML estimator of R is very simple. This was
not the case in [3] when dealing with the original

secondary data yk with persymmetric covariance
matrix.

PROPOSITION 2 The ML estimator R̂P of the real
matrix R is unbiased and is given by

R̂P =Re(R̂SCM) (17)

where

R̂SCM =
1

K

KX
k=1

xkx
H
k = TM̂SCMT

H: (18)

R̂P is an unbiased estimator and KR̂P is real Wishart
distributed with parameter matrix 1

2
R and 2K degrees

of freedom.

PROOF It is easy to show that the MLE of the real

covariance matrix is provided by (17).

Let us now investigate its statistical properties.

Let ak and bk be the real and imaginary parts of the
secondary data:

xk = ak + ibk (19)

and

KR̂P =
KX
k=1

aka
T
k +

KX
k=1

bkb
T
k : (20)

xk is circular, i.e., E[xkx
T
k ] = 0 which leads to

E[aka
T
k ]¡E[bkbTk ] = 0

E[akb
T
k ] +E[bka

T
k ] = 0:

(21)

Moreover, xk has a real covariance matrix R which

implies:
E[aka

T
k ]+E[bkb

T
k ] =R

E[akb
T
k ]¡E[bkaTk ] = 0:

(22)

Equations (21) and (22) yield

E[aka
T
k ] = E[bkb

T
k ] =

1
2
R

E[akb
T
k ] = 0

(23)

showing that the aks and the bks are independent and
share the same covariance matrix 1

2
R.

From (20), KR̂P has a real Wishart distribution
with 2K degrees of freedom and parameter matrix 1

2
R.

Moreover,
E[KR̂P] = 2K

1
2
R (24)

resulting in E[R̂P] =R.

Actually, taking into account the real structure of

R (or equivalently the persymmetric structure of M)
in the ML estimation procedure allows to virtually

double the number of secondary data. Let us now

consider the AMF for the detection problem (14)

based on the estimator R̂P defined by (17). This leads

to the following detection test, called the PS-AMF,

¤PS-AMF =
jsTR̂¡1P xj2
sTR̂¡1P s

H1
?
H0

¸PS-AMF (25)

or equivalently, in terms of the original data,

¤PS-AMF =
jpHTH[Re(TM̂SCMT

H)]¡1Tyj2
pHTH[Re(TM̂SCMT

H)]¡1Tp

H1
?
H0

¸PS-AMF:

(26)

The distribution of (25) is well known when KR̂P is
complex Wishart distributed with parameter matrix

KR and K degrees of freedom: this is the classical

AMF distribution [8, 11]. However, in our problem,

KR̂P is real Wishart distributed with parameter matrix
1
2
R and 2K degrees of freedom while x is complex.

The following proposition establishes the statistical

distribution of the PS-AMF and the relationship

between the PFA Pfa and the detection threshold
¸PS-AMF.

PROPOSITION 3

1) Under H0, the probability density function (pdf)
p(z) of ¤PS-AMF, defined by (25), is

p(z) =
(2K ¡m+1)(2K ¡m+2)

2K(2K +1) 2F1

£
μ
2K ¡m+3

2
,
2K ¡m+4

2
;
2K +3

2
;¡ z
K

¶
:

(27)

2) The relationship between Pfa and the detection
threshold ¸ is

Pfa = 2F1

μ
2K ¡m+1

2
,
2K ¡m+2

2
;
2K +1

2
;¡¸PS-AMF

K

¶
:

PROOF The proof is given in the Appendix,

Subsection A.

As seen in Section IV for both simulated and

experimental data, the PS-AMF outperforms the AMF,

especially for a small number of secondary data.

B. Detection in Non-Gaussian Noise

The purpose of this section is to address the

non-Gaussian case for the detection problem (14). Let

us first recall some notations. The additive SIRV noise

n is defined by

n=
p
¿h (28)

where ¿ is a positive random variable, and h is a
zero-mean circular complex Gaussian vector with real
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CCM R. The K secondary data nk =
p
¿khk are IID

and share the same distribution as n.
Since the transformed CCM R is real, its structure

may be taken into account in the estimation procedure

by retaining only the real part of the FP estimator.

This leads to the proposed covariance estimator

called the PFP since it results from the persymmetric

structure of the original speckle covariance matrix:

R̂PFP = Re(R̂FP) (29)

with
R̂FP = TM̂FPT

H: (30)

In this section, the statistical properties of the

detector ¤GLRT-PFP are investigated under the null
hypothesis H0. Let us recall some basic definitions:
1) A test statistic is said to be texture-CFAR

when its distribution is independent of the texture

distribution,

2) A test statistic is said to be matrix-CFAR when

its distribution is independent of R,
3) A test statistic is said to be SIRV-CFAR when it

is both texture-CFAR and matrix-CFAR.

The statistical properties of R̂PFP are provided by
the following proposition.

PROPOSITION 4 (Statistical Performance of R̂PFP)

1) The distribution of R̂PFP does not depend on the
texture.

2) R̂PFP is a consistent estimator of R.

3) R̂PFP is an unbiased estimator of R.

4) R̂PFP=Tr(R
¡1R̂PFP) has the same asymptotic

distribution as R̂=Tr(R¡1R̂), where R̂ is real Wishart
distributed with (m=(m+1))2K degrees of freedom and

parameter matrix R.

PROOF Unbiasedness and consistency of R̂FP are
proved in [21]. Taking the real part of this estimator

does not change these two statistical properties.

It has been shown in [21] that R̂FP=Tr(R
¡1R̂FP)

has the same asymptotic distribution as R̂c=Tr(R
¡1R̂c)

with R̂c complex Wishart distributed with (m=(m+
1))K degrees of freedom and parameter matrix R.

Therefore R̂PFP=Tr(R
¡1R̂PFP) has the same asymptotic

distribution as Re(R̂FP)=Tr(R
¡1Re(R̂FP)). By noting

that Tr(AB) = Tr(ARe(B)) when A is real symmetric

and B is Hermitian, it follows that R̂PFP=Tr(R
¡1R̂PFP)

has the same asymptotic distribution as R̂=Tr(R¡1R̂),
where R̂= 2Re(Rc) is real Wishart distributed with

parameter matrix R and K 0 = (m=(m+1))2K degrees

of freedom.

DEFINITION 1 The adaptive GLRT, for the

transformed problem (14), based on (7) and on the

PFP estimator is

¤GLRT-PFP =
jsTR̂¡1PFPxj2

(sTR̂¡1PFPs)(xHR̂
¡1
PFPx)

H1
?
H0

¸GLRT-PFP: (31)

PROPOSITION 5 ¤GLRT-PFP is SIRV-CFAR. For large
K, under hypothesis H0, ¤GLRT-PFP has the same

distribution as ¤= jeT1Ŵ¡1wj2=(eT1Ŵ¡1e1)(w
HŴ¡1w)

where w» CN (0,I), e1 = (1,0, : : : ,0)T and where Ŵ is

real Wishart distributed with parameter matrix I and
K 0 = (m=(m+1))2K degrees of freedom.

PROOF Since the FP estimator M̂FP does not depend

on the texture, it follows from (29) and (30) that

R̂PFP is itself texture independent. Moreover, under
hypothesis H0, ¤GLRT-PFP is homogeneous in terms of
¿ . Therefore, ¤GLRT-PFP is texture-CFAR.
Let us now investigate the matrix-CFAR property.

Let R1=2RT=2 be a real factorization of R, and let Q be

a real unitary matrix such that:

QR¡1=2s= (sTR¡1s)1=2e1: (32)

Note that the last equation is possible with Q real

since s is itself real. The test statistic ¤GLRT-PFP may
then be rewritten

¤GLRT-PFP =
jeT1 Â¡1wj2

(eT1 Â
¡1e1)(wHÂ¡1w)

(33)

where
w=QR¡1=2h» CN (0,I) (34)

and where

Â=QR¡1=2R̂PFPR
¡T=2QT

= Re(QR¡1=2R̂FPR
¡T=2QT): (35)

It has been shown in [24] that QR¡1=2R̂FPR
¡T=2QT in

(35) is an FP estimator of the identity matrix and that

its distribution is therefore independent of R. Thus,

the same conclusion holds for its real part Â defined

by (35) and the matrix-CFAR property is proved.

From the fourth point of Proposition 4, ¤GLRT-PFP
has the same distribution as

¤=
jsTR̂¡1xj2

(sTR̂¡1s)(xHR̂¡1x)
(36)

where R̂ is real Wishart distributed with K 0 degrees of
freedom and parameter matrix R.
Let Q be the real unitary matrix defined by (32)

and let us define Ŵ=QR¡1=2R̂R¡T=2QT: The matrix
Ŵ is real Wishart distributed with K 0 degrees of
freedom and parameter matrix I. Then ¤ defined by
(36) can be rewritten as

¤=
jeT1Ŵ¡1wj2

(eT1Ŵ
¡1e1)(wHŴ¡1w)

(37)

which concludes the proof.

Moreover, in the sequel, all the statistical

properties can be analyzed by choosing n and nk to be
Gaussian distributed because of these texture-CFAR

properties. The analytical expression for the pdf of
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the detector ¤GLRT-PFP has not been derived but the
following proposition gives some insight about its

distribution. This derivation is important from an

operational point of view in order to regulate the false

alarm.

PROPOSITION 6 For large K, ¤GLRT-PFP has the same
distribution as F=(F +1) where

F =

(®1l22¡®2l21)2 +
Ã
1+

μ
¯3
l33

¶2!
(al22¡ bl21)2

(®2l11)
2 +

μ
l11l22

¯3
l33

¶2
+ l211

Ã
1+

μ
¯3
l33

¶2!
b2

(38)

and where all the following random variables are

independent and distributed according to

a,b,®1, l21 »N (0,1), ®22 » Â2m¡1, ¯23 » Â2m¡2
l211 » Â2K 0¡m+1, l222 » Â2K 0¡m+2, l233 » Â2K 0¡m+3

with K 0 = (m=(m+1))2K.

PROOF The proof of this proposition is given in the

Appendix, Subsection B.

Proposition 6 may be used to obtain, through

Monte-Carlo simulations, the relation between

the PFA and the detection threshold ¸ for the
GRLT-PFP (31).

IV. VALIDATION ON EXPERIMENTAL DATA

After the statistical study of these detectors, this

section presents some results obtained on some

experimental and simulated data in Gaussian and

non-Gaussian cases.

A. Experimental Gaussian Data Extraction and
Validation

The ground clutter data used in this paper

were collected by an operational radar at Thales

Air System. The radar is 13 m above the ground

and illuminating the ground at low grazing angle.

Ground clutter complex echoes were collected for

N = 868 range bins, for 70 different azimuth angles,
and for m= 8 pulses. Fig. 1 displays the ground
clutter data level (in dB) corresponding to the first

pulse echo. Near the radar, echoes characterize

heterogeneous ground clutter whereas beyond the

radioelectric horizon of the radar (around 15 km),

only heterogeneous thermal noise (the blue part of

the map) is present.

In order to test the PS-AMF and given the

non-Gaussian nature of experimental data, it is

necessary to select particular data on the radar

map. In addition, on some operational maps,

further parts of the data present a low amplitude.

Beyond the electromagnetic horizon of the radar,

the absence of reflectors gives a homogeneous area

Fig. 1. Ground clutter data level (in dB) corresponding to the

first pulse.

of data, characterized as Gaussian thermal noise. A

statistical selection of these data allows us to obtain

experimental Gaussian noise to test our detection

algorithm.

For that purpose, the well-known goodness-of-fit

test of Kolmogorov-Smirnov (KS) is widely used [25].

This test verifies the adequacy of a given data sample

to a Gaussian distributed sample N (¹;¾). In order
to obtain a homogeneous area of data, the KS test

is applied successively on little blocks of data. With

this test, the non-Gaussian data are rejected but the

obtained map is lacunar. Indeed, the original clutter

map presents a particular structure where there are

horizontal bands corresponding to constant azimuths

of the radar. The transitions between these bands show

a significant difference of the mean of the data and

a consequence is that the KS test is then inefficient.

This is also the case for another goodness-of-fit test

like Anderson-Darling [25].

In order to get a round this problem, a robust

algorithm using connectedness of the data is

developed. The idea is to include in the Gaussian

area all the little blocks of supposed non-Gaussian

data when they are not connected with the main

non-Gaussian area. All the little blocks of data which

are Gaussian but not characterized as Gaussian

because of the nonhomogeneity of the KS test

are now included in the main Gaussian area. We

obtain with this method a wide area of Gaussian

homogeneous data. In Fig. 2(a), we present the

Gaussian area selected by the statistical study of

the entire map. The Gaussian area is colored in

red and the non-Gaussian area is in blue. This map

confirms that only Gaussian thermal noise is present

on the radioelectric horizon of the radar. In terms of

experimental data, we present in Fig. 2(b) the clutter

map with only Gaussian data extracted. The similar
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Fig. 2. Selection of Gaussian area in data presented in Fig. 1. (a) Binary area selected for Gaussian data extraction (Gaussian area in

red and non-Gaussian in blue). (b) Gaussian map (in dB) corresponding to Gaussian selection and extracted from entire map.

color map as in Fig. 1 allows to verify the adequacy

between original and extracted data.

Once Gaussian data have been extracted from

the entire clutter map, we present the classical

performance of this detector. In Fig. 3(a) and

Fig. 4(a), the PFAs with respect to detection threshold

are presented. The theoretical relations for the OGD,

the AMF, and the PS-AMF are compared with

the experimental relation (AMF and PS-AMF) in

order to confirm the validity of the statistical study.

Experimental curves are determined by Monte-Carlo

counting, moving a (5£ 3) and (5£ 5) CFAR mask
with a different number of simulations (nsimu). The
theoretical relation is then validated. In Fig. 3(b) and

4(b), we present the probability of detection versus

signal-to-noise ratio (SNR) in order to verify and to

quantify the improvement in terms of detection for

the PS-AMF compared with the AMF. However these

figures show the benefit of taking into account the

persymmetric structure of the CCM in the Gaussian

case.

B. Non-Gaussian Experiments

In the context of non-Gaussian clutter, Conte and

De Maio in [5] and [6] have proposed two detectors

derived, respectively, from the GLRT with some

different estimators: the P-ANMF and the RP-ANMF.

In [5] the persymmetry property is only used to

separate their original set of secondary data nk into
two new uncorrelated and then independent sets

of data rek and rok, in order to render the detector
matrix-CFAR and improve the performance in terms

of detection. These new vectors have the same size

as the original, and share the same texture. Their

speckle components are IID and zero-mean complex

Gaussian vectors. These new sets of secondary data

allow the introduction of their new estimator for

the CCM:

§̂ =
1

K

KX
k=1

rekr
H
ek

(jrokrHokj)i,i
(39)

where (A)i,i stands for any (i, i)th element of the
matrix A.
The previous estimator is then replaced in the

classical GLRT-LQ given by (7) which leads to the

P-ANMF detector defined as

¤P-ANMF =
jpH§̂¡1xj2

(pH§̂¡1p)(xH§̂¡1x)

H1
?
H0

¸P-ANMF: (40)

In [6], the same method is used to define two

set of secondary data rek and rok and the FP matrix

estimator §̂(inf) is found by using the recursive
procedure:

§̂(t+1) =
N

K

KX
k=1

rekr
H
ek

rHek(§̂(t))
¡1rek

(41)

with starting point:

§̂(0) =
1

K

KX
1

rekr
H
ek

(jTrokrHokTHj)i,i
: (42)

This estimator is next replaced in the GLRT-LQ

(7) to provide the RP-ANMF:

¤RP-ANMF =
jpH§̂¡1(inf)xj2

(pH§̂¡1(inf)p)(xH§̂
¡1
(inf)x)

H1
?
H0

¸RP-ANMF:

(43)

Please note that as stated in [20], the solution §̂(inf)

of the implicit FP matrix equation is unique and does

not depend on the starting point.
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Fig. 3. Comparison between performance of detectors for Pfa = 10
¡2, m= 8, K = 14. (a) Theoretical and experimental PFA-threshold

curves for various Gaussian detectors. (b) Probability of detection versus SNR for AMF and PS-AMF.

Fig. 4. Comparison between performance of detectors for Pfa = 10
¡2, m= 8, K = 24. (a) Theoretical and experimental PFA-threshold

curves for various Gaussian detectors. (b) Probability of detection versus SNR for the AMF and PS-AMF.

In order to compare all these detectors (GLRT-LQ

with M known, generalized likelihood ratio test-

sample covariance matrix (GLRT-SCM) with the

classical SCM, GLRT-FP, GLRT-PFP, P-ANMF, and

RP-ANMF), we present in Fig. 5(a) the PFA versus

the detection threshold for all these detectors and in

Fig. 5(b), the probability of detection versus the SNR.

The simulated impulsive clutter is in this case chosen

to be K-distributed [26]:

fx(x) =
2

a¡ (º+1)

³ x
2a

´º+1
Kº

³x
a

´
where ¡ (:) is the standard Gamma function [13],
Kº is the modified Bessel function of order º
[13], and where a and º are constant positive
parameters.

These figures show the improvement in terms

of detection of the RP-ANMF on the conventional

GLRT-SCM (which is not efficient on non-Gaussian

data) but also the improvement of the GLRT-PFP on

all the other detectors. Moreover, theoretical results

based on the asymptotic Wishart distributions of R̂FP
and R̂PFP (circle lines) are displayed. It can be noticed
that the simulated results are in very good agreement

with the theory.

Similar analyses performed on experimental

sea-clutter data give the same conclusion. Fig. 6(a)

and Fig. 6(b) show the sea clutter signal (range bins

versus pulse repetition interval and range-Doppler)

collected by the operational over the horizon radar

from the French Aerospace Lab (ONERA) illumining

the Atlantic ocean, and its associated range-Doppler
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Fig. 5. Comparison between radar performance for various non-Gaussian detectors in simulated K-distributed clutter characterized by

its parameter º with Pfa = 10
¡3, m= 8, K = 16, º = 0:2. (a) Theoretical and experimental PFA-threshold curves for various non-Gaussian

detectors. (b) Probability of detection versus SNR for various non-Gaussian detectors.

Fig. 6. Atlantic Ocean sea clutter data collected by the ONERA Over the horizon radar nostradamus. (a) Sea clutter data from

over-the-horizon radar. (b) Range-Doppler image of Atlantic Ocean sea clutter.

image. In this context, we use a set of m= 8 pulses of
the signal on the entire range bins group and K = 16
reference range bins to estimate the CCM. Fig. 7(a)

and Fig. 7(b) show the improvement in detection

performance on these data and the agreement between

theoretical (circle line) and practical (solid line)

results.

V. CONCLUSION

In the radar detection framework, estimation of the

CCM is a major procedure in the detection process.

In many applications, since this matrix commonly

exhibits a particular structure, we therefore introduced

in this paper two adaptive detection tests which take

into account the widespread persymmetric structure

of the CCM. In both contexts of Gaussian and

non-Gaussian environments, we have presented and

analyzed new detectors based on a modified estimator

of the CCM.

Under Gaussian assumption, the CCM estimator is

developed based on the ML procedure. The analytical

distribution and some statistical properties of the

corresponding detector, called the PS-AMF, have

been established. These results are important since

they enable a theoretical regulation of the false alarm,

which is essential in the radar detection process.

The second detector is an extended version of

the GLRT-LQ. It has been derived in the case of
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Fig. 7. Comparison between radar performance for various non-Gaussian detectors in sea clutter data for Pfa = 10
¡2, m= 8, K = 16.

(a) Theoretical and experimental PFA-threshold curves for various non-Gaussian detectors. (b) Probability of detection versus SNR for

GLRT-FP and GLRT-PFP.

persymmetric non-Gaussian clutter modeled by

SIRVs. After a transformation of the detection

scheme, we have proposed an improved covariance

matrix estimator, the PFP estimator. Its complete

statistical analyses have exhibited good statistical

performance. Moreover the corresponding GLRT-PFP

detector has shown a wide improvement in terms of

detection performance, as compared with the classical

detectors.

Finally, all these theoretical results have been

validated on simulations for both Gaussian and

non-Gaussian environments. Moreover, we have

shown the validity and the good agreement between

the theoretical and the experimental results, on

both real ground and sea clutter data. Furthermore,

the performance of the proposed detectors and the

classical ones have been compared on these real

data which highlight the improved performance of

the former. These analysis have demonstrated the

relevance and the advantage of exploiting the CCM

structure.
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APPENDIX

A. Proof of Proposition 3

We use in this derivation the Bartlett matrix

decomposition [27]. Let us set e1 = (1,0, : : : ,0)
T,

R=R1=2RT=2 a factorization of R and Q a real unitary

matrix such that QR¡1=2s= (sTR¡1s)1=2e1. Note that

the last equation is possible with Q real since s is
itself real. Let us set

Ŵ= 2KQR¡1=2R̂PR
¡T=2QT and z=QR¡1=2x:

Ŵ is real Wishart distributed with 2K degrees of

freedom and parameter matrix Im, z» CN (0,Im).
Then, the test statistic ¤PS-AMF (25) is equal to

¤PS-AMF =
jsTR̂¡1P xj2
sTR̂¡1P s

=
jsTR¡T=2QT(QR¡1=2R̂PR¡T=2QT)¡1QR¡1=2xj2
sTR¡T=2QT(QR¡1=2R̂PR

¡T=2QT)¡1QR¡1=2s

= 2K
jeT1Ŵ¡1zj2
eT1Ŵ

¡1e1
(44)

which may be rewritten, for our statistical analysis, as

¤PS-AMF = 2Kba (45)

where

a=
jeT1Ŵ¡1xj2
eT1Ŵ

¡2e1
, b =

Ã
eT1Ŵ

¡2e1
eT1Ŵ

¡1e1

!
:

We show that a and b are independent and we derive
their statistical distribution. Let us first investigate the

distribution of a. By introducing the unitary vector v,
defined by

v=
1

(eT1Ŵ
¡2e1)1=2

Ŵ¡1e1

a may be rewritten as

a= jvTxj2:
It follows that the conditional distribution of 2a given

Ŵ is a chi-square distribution with 2 degrees of
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freedom denoted by Â22. This distribution does not

involve Ŵ, and

a» 1
2
Â22 (46)

is therefore independent of Ŵ and consequently

of b.
Now, to derive the pdf of b, we use the Bartlett

matrix decomposition Ŵ=U:UT where U=
(uij)1·i·j·m is an upper triangular matrix whose
random elements are independent and distributed as

u2i,i » Â22K+i¡m and ui,j »N (0,1) for i < j:

Let u0i,j be the elements of the matrix U
¡1 which is

itself upper-triangular. By noticing that U¡1e1 = u
0
1,1e1,

we have

b =
eT1Ŵ

¡2e1
eT1Ŵ

¡1e1

=
eT1U

¡TU¡1U¡TU¡1e1
eT1U

¡TU¡1e1

= keTU¡1k2

=

mX
j=1

u021,j : (47)

We are thus lead to investigate the distribution of the

squared norm of the first row of U¡1. Let u01,k be the
kth order vector whose components are the k first
elements of the first row of U¡1, and ui,j be the ith
order vector the components of which are the i first
elements of the jth column of U. The definition of
U¡1, i.e., U¡1U= Im, allows to determine recursively
its elements according to

u01,1 = u
¡1
1,1

and

u01,k+1 =
¡u0T1,kuk,k+1
uk+1,k+1

for 1· k < m:

It follows that u01,k is independent of the ui,js for j > k.
Now we have from the above equation:

u021,k+1 =
ju0T1,kuk,k+1j2
u2k+1,k+1

=
ju0T1,kuk,k+1j2
ku01,kk2

ku01,kk2
u2k+1,k+1

= ®k
ku01,kk2
u2k+1,k+1

: (48)

The conditional distribution of ®k given u
0
1,k is a

chi-square distribution with 1 degree of freedom

denoted by Â21. This distribution does not involve
u01,k and ®k » Â21 is therefore independent of u01,k.
Moreover, ®k is independent of ui,j for i and j >

k. Now, notice from (48) that b = ku01,mk2. Since
ku01,mk2 = ku01,m¡1k2 + u021,m, one has therefore:

b = ku0m¡1k2
μ
1+

®m¡1
u2m,m

¶

=
1

u21,1

mY
k=2

Ã
1+

®k¡1
u2k,k

!
(49)

where the ®ks are independent, independent of the
u2k,ks, and Â

2
1-distributed. SinceÃ
1+

®k¡1
u2k,k

!¡1
» ¯1

μ
2K ¡m+ k

2
,
1

2

¶
we have from [28]

b =
1

u21,1

1Qm
k=2¯1

μ
2K ¡m+ k

2
,
1

2

¶
» 1

Â22K¡m+1

1

¯1

μ
2K ¡m+2

2
,
m¡ 1
2

¶ (50)

where the ¯1s are independent (first kind) Beta
distributed random variables. Finally we obtain from

(45), (46), and (49):

¤PS-AMF »K
Â22

Â22K¡m+1

1

¯1

μ
2K ¡m+2

2
,
m¡ 1
2

¶
(51)

which can be rewritten in terms of an F-distributed

random variable:

¤PS-AMF »K
2

2K ¡m+1F(2,2K ¡m+1)

£ 1

¯1

μ
2K ¡m+2

2
,
m¡ 1
2

¶ : (52)

Let us now derive the PFA-threshold relation. From

[13, p. 946],

PFA = Pr(¤PS-AMF > ¸)

= Pr

μ
F(2,2K ¡m+1)> 2K ¡m+1

2

¸

K
¯1

£
μ
2K ¡m+2

2
,
m¡1
2

¶¶

=

Z 1

0

0B@ 1

1+
¸

K
x

1CA
(2K¡m+1)=2

fº1,º2(x)dx (53)

where fº1,º2 is the pdf of a first kind beta random
variable with parameters º1 = (2K ¡m+2)=2 and
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º2 = (m¡ 1)=2. We finally obtain

PFA =
1

B

μ
2K ¡m+2

2
,
m¡ 1
2

¶ Z 1

0

0@ 1

1+
¸

K
:x

1A(2K¡m+1)=2

£ x((2K¡m+2)=2)¡1(1¡ x)((m¡1)=2)¡1dx (54)

which may be expressed in terms of the

hypergeometric function [13, p. 558]

Pfa = 2F1

μ
2K ¡m+1

2
,
2K ¡m+2

2
;
2K +1

2
;¡ ¸
K

¶
:

(55)

The negative derivative of Pfa with respect to ¸ yields
the pdf of ¤PS-AMF. By using the expression of the
derivative of hypergeometric functions given in

[13, p. 557], we obtain (27) which concludes the

proof.

B. Proof of Proposition 6

From Proposition 5, ¤GLRT-PFP has the same
asymptotic distribution as

¤=
jeT1Ŵ¡1wj2

(eT1Ŵ
¡1e1)(wHŴ¡1w)

=

¯̄̄
eT1Ŵ

¡1
³p
2w
´¯̄̄2

(eT1Ŵ
¡1e1)

³p
2wHŴ¡1p2w

´ (56)

where (
p
2w) =w1 + iw2 with w1 and w2 uncorrelated

and N (0,I) distributed.
Thus

¤=
jeT1Ŵ¡1w1j2 + jeT1Ŵ¡1w2j2

(eT1Ŵ
¡1e1)(w

T
1Ŵ

¡1w1 +w
T
2Ŵ

¡1w2)
:

For large K, Ŵ is real Wishart distributed with K 0 =
(m=(m+1))2K degrees of freedom. The vectors w1
and w2 can be decomposed on an orthonormal vectors
triplet (e1,f2,f3):

w1 = ®1e1 +®2f2

w2 = ¯1e1 +¯2f2 +¯3f3

where ®1, ¯1 and ¯2 are N (0,1) distributed, ®22 is
Â2m¡1 distributed and ¯

2
3 is Â

2
m¡2 distributed. Moreover

®1, ®2, ¯1, ¯2, ¯3 are independent and independent of
(f2,f3).
Let (e1,e2, : : : ,em) be the canonical basis. Using

an appropriate rotation G such that G(e1,f2,f3) =
(e1,e2,e3), we have

Gw1 = ®1e1 +®2e2

= v1 (57)

Gw2 = ¯1e1 +¯2e2 +¯3e3

= v2 (58)

and ¤ can be rewritten as

¤=
jeT1 Ẑ¡1v1j2 + jeT1 Ẑ¡1v2j2

(eT1 Ẑ
¡1e1)(v

T
1 Ẑ

¡1v1 + v
T
2 Ẑ

¡1v2)
(59)

where Ẑ=GŴGT.

Conditionally (and unconditionally) to G, Ẑ is

Wishart distributed with K 0 degrees of freedom and

parameter matrix I. Let Ẑ= LTL be the Bartlett’s

decomposition of Ẑ [27] where L= (li,j)1·i·j·m is
a lower triangular matrix whose non-zeros random

elements are independent and distributed as

l2i,i » Â2K 0+i¡m and li,j »N (0,1) for i > j:

Let l0i,j be the elements of the matrix L
¡1 which is

lower-triangular itself. The following elements of L¡1

are involved in (59):

l011 =
1

l11
, l022 =

1

l22
, l021 =¡

l21
l11l22

(60)

l033 =
1

l33
, l032 =¡

l32
l22l33

, l031 =¡
1

l11

μ
l31
l33
¡ l32l21
l22l33

¶
:

From (59), we define

®=
jeT1 Ẑ¡1v1j2 + jeT1 Ẑ¡1v2j2

eT1 Ẑ
¡1e1

which can be rewritten as

®=
jeT1L¡1L¡TGw1j2 + jeT1L¡1L¡TGw2j2

eT1L
¡1L¡Te1

= (®1l
0
11 +®2l

0
21)

2 + (¯1l
0
11 +¯2l

0
21 +¯3l

0
31)

2

and

¯ = vT1 Ẑ
¡1v1 + v

T
2 Ẑ

¡1v2

which can be rewritten as

¯ = vT1L
¡1L¡Tv1 + v

T
2L

¡1L¡Tv2

= ®+(l022®2)
2 + (l022¯2 + l

0
32¯3)

2 + (l033¯3)
2:

We deduce that ¤= ®=¯ = F=(1+F) with

F =
(®1l

0
11 +®2l

0
21)

2 + (¯1l
0
11 +¯2l

0
21 +¯3l

0
31)

2

(l022®2)
2 + (l022¯2 + l

0
32¯3)

2 + (l033¯3)
2

=

(®1l22¡®2l21)2 +
μ
¯1l22¡¯2l21¡¯3

l31
l33
l22 +

l32l21
l33

¯3

¶2
(l11®2)

2 +

μ
l11l22
l33

¯3

¶2
+ l211

μ
¯2¡

¯3
l33
l32

¶2 :

(61)
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In this equation we haveμ
¯1l22¡¯2l21¡¯3

l31
l33
l32 +

l32l21
l33

¯3

¶2
=

μ
l22

μ
¯1¡

¯3
l33
l31

¶
¡ l21

μ
¯2¡

¯3
l33
l32)

¶¶2
=

Ã
1+

μ
¯3
l33

¶2!
(l22a¡ l21b)2 (62)

with

a=
1s

1+

μ
¯3
l33

¶2
μ
¯1¡

¯3
l33
l31

¶

b =
1s

1+

μ
¯3
l33

¶2
μ
¯2¡

¯3
l33
l32

¶
:

Conditionally to ¯3 and l33, a and b are independent

and N (0,1) distributed. Since their distribution does
not involve ¯3 and l33, a and b are also independent of

¯3 and u33.

By replacing it in (61), we finally obtain

F =

(®1l22¡®2l21)2 +
Ã
1+

μ
¯3
l33

¶2!
(al22¡ bl21)2

(®2l11)
2 +

μ
l11l22

¯3
l33

¶2
+ l211

Ã
1+

μ
¯3
l33

¶2!
b2

(63)

where all the following random variables are

independent and distributed according to

a,b,®1, l21 »N (0,1), ®22 » Â2m¡1, ¯23 » Â2m¡2
l211 » Â2K 0¡m+1, l222 » Â2K 0¡m+2, l233 » Â2K 0¡m+3

with K 0 = (m=(m+1))2K which concludes the proof.
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