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Abstract—In this paper, a gradient descent method is used
to build radar waveform sequences with good autocorrelation
and/or cross-correlation. The approach we propose is based
on the energy, a function that measures the sidelobe level of
a sequence, and its gradient. Then, we extend and apply it
to the optimization of the coherent MIMO (Multiple Input
Multiple Output) ambiguity function. We suggest to look for the
transmitted signals that reduce the autocorrelation sidelobe level
of the signal transmitted by the whole antenna. The obtained
results, highlighted by the low sidelobe level of the ambiguity
function, seem promising.

Index Terms—Waveform design – Aperiodic autocorrelation –
Cross-correlation – Gradient Descent – Coherent MIMO Radar
– Ambiguity Function

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) radar is an emerg-
ing concept that has been inspired from wireless communi-
cations. Transmit elements of a MIMO radar send different
signals which can be separated at the receiving end, providing
waveform diversity. Two configurations of MIMO radars are
usually considered, denoted as statistical and coherent. In a
statistical MIMO radar, antenna elements are widely separated,
hence improving detection performance [1]. On the other hand,
all the elements of a coherent (or co-located) MIMO radar are
closely spaced, providing a better spatial resolution [2]. This
paper focuses on the latter, and especially on waveform design.

MIMO radar waveforms can be classified into different
categories [3]: CDMA (Code Division Multiple Access –
phase code per antenna), FDMA (Frequency-Division Multiple
Access – one frequency per antenna), TDMA (Time Division
Multiple Access – transmission in time), etc. However, all
these signals suffer from a range/angle coupling [4]. CDMA
waveforms seem to present the best coupling, at the cost of
high range sidelobe levels.

In general, considered phase codes are sequences providing
autocorrelation and cross-correlation with low sidelobes, be-
cause a signal with a "good" autocorrelation property may be
distinguished from a time-shifted version of itself, while the
cross-correlation property enables a signal to be set apart from
another signal. Some known families of sequences have been
reviewed in [5].

Searching for those sequences can be seen as an opti-
mization problem, for instance the minimization of some
energy criteria. The energy characterizes, for instance, the
autocorrelation sidelobe level of a sequence, like the Merit

Factor introduced by Golay [6]. A branch and bound approach
[7] or an evolutionary strategy [8] can be used to solve this
optimization problem. However, these algorithms become very
expensive and ineffective with long sequences.

A recent article [9] gives a solution to the particular
problem of the autocorrelation sidelobe minimization based
on a steepest descent algorithm based on the gradient of the
sidelobe energy. This method will be extended to the coherent
MIMO radar case. Instead of optimizing on the original signals
transmitted by the antennas, the optimization will rather be
done on the signal transmitted in different directions. These
directions are obtained by linear combinations of the signals
transmitted by the antennas.

This paper is organized as follows. In Section II, a gradient
descent is used in order to improve the autocorrelation of
a sequence, the cross-correlation of a couple of sequences,
and then both simultaneously. Section III tries to reduce the
sidelobes of the coherent MIMO ambiguity function, again
with a gradient descent.

II. OPTIMIZATION OF THE AUTOCORRELATION AND THE
CROSS-CORRELATION OF A SIGNAL

This section introduces a set of polyphase sequences with
small autocorrelations and cross-correlations. At first, each
property is studied separately for one sequence for the auto-
correlation, and a couple of sequences for the cross-correlation
case; obtained results are then combined.

The procedure employed here is inspired from a recent
article (Baden et al. [9]). It is based on a real function,
called "energy", that quantifies the energy present in the
autocorrelation sidelobes of a given sequence. It may be
enough to hunt for minima of the energy function to obtain
sequences with a low sidelobe level. Hence, this search is
equivalent to an optimization problem.

As said in the introduction, stochastic methods are usually
helpful. Their convergence to a global minimum is almost
certain theoretically. In practice though, global convergence
cannot be established, and furthermore, the longer the se-
quence is, the slower the algorithms are.

Here, a gradient descent, also known as a steep descent,
will be used. The steep descent is a fast algorithm for finding
a local minimum of a function. It starts with an initial guess
of the solution, and as many times as needed, moves it
towards the opposite direction of the gradient at that point. One



then needs to compute the partial derivatives of each energy
(autocorrelation, cross-correlation) in regards to the different
phases. The derivation of the gradient of the cross-correlation
is shown in section II-A, whereas the autocorrelation one is
shown section II-B. Illustrations of optimizations from random
polyphase sequences will be shown.

Note that steepest descent algorithms are bound to converge
to local optima of the cost function. However, as will be seen
thereafter, it appears that for the particular case of the phase
codes, these local optima provide already quite interesting
sidelobe levels.

A. Optimizing polyphase cross-correlation

This part deals with the reduction of cross-correlation side-
lobes for a couple of polyphase sequences. It derives from the
computation of the energy gradient, introduced by Baden et al.
in [9]. The "energy" is a function that evaluates the sidelobes
level of a sequence (here, the cross-correlation sidelobes level).

Let us consider two polyphase sequences a and b, following
the same hypothesis: they are of length N and of constant
modulus, i.e. a = [a1, ..., aN ]T =

(
e j2παi

)
i∈J1,NK. Assume

that ai = 0 for i < 1 and i > N .
The discrete cross-correlation, denoted by x = a ∗b, is the

sequence:

xm =
N∑
i=1

aib
∗
i+m (−N < m < N) . (1)

By including some weighting w to allow shaping of the
sidelobes, and an exponent p to control the peak sidelobe,
the cross-correlation sidelobe energy Ec is defined by:

Ec(a, b) =
N−1∑

m=−N+1

wm (xmx∗m)p . (2)

As a small energy means low sidelobes, a steepest descent
should find a "better" sequence. However, it requires a gradient
computation; the procedure is detailed in [9], and main results
are given below.

In the following, we note (.)∗ the complex conjugate opera-
tor, (.)r the reverse part of any vector (i.e. ar = [aN , . . . , a1]),
the real part and imaginary part are respectively denoted by
<(.) and =(.).

According to the chain rule, the gradient of Ec with respect
to the phase angle α can be written as:

∂Ec
∂αj

= <(aj)
∂Ec

∂=(aj)
−=(aj)

∂Ec
∂<(aj)

. (3)

So we have to examine the partial derivatives of Ec with
respect to the real and imaginary parts of a. Let us set
γ = (γ−N+1, . . . , γN−1)T where γm = wm(cm c∗m)p−1. Thse
partial derivatives are:

∂Ec
∂<(aj)

= 2p
N−1∑

m=−N+1

γm

[
<(xm)<(bj+m)

−=(xm)=(bj+m)
]
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Figure 1. Optimization of the cross-correlation of a couple of sequences

∂Ec
∂<(aj)

= 2p<[((γ ◦ x) ∗ b∗)j ] , (4)

∂Ec
∂=(aj)

= 2p
N−1∑

m=−N+1

γm

[
<(xm)=(bj+m)

+ =(xm)<(bj+m)
]

= 2p =[((γ ◦ x) ∗ b∗)j ] . (5)

where ◦ denotes the Hadamard product. Putting (4) and (5)
into the equation (3) gives:

∂Ec
∂αj

= 2p<(aj)=[((γ ◦ x) ∗ b∗)j ]

− 2p=(aj)<[((γ ◦ x) ∗ b∗)j ]
= 2p=

[
a∗j ((γ ◦ x) ∗ b∗)j

]
. (6)

In the same way, the partial derivative of the cross-
correlation energy with respect to β – the phase angle of
b – should be computed. As the calculation steps are quite
analogous, the main results are listed below.

∂Ec
∂<(bj)

= 2p <[(γ ◦ x) ∗ a∗r]N+1−j ,

∂Ec
∂=(bj)

= −2p =[(γ ◦ x) ∗ a∗r]N+1−j ,

∂Ec
∂βj

= −2p = [bj((γ ◦ x) ∗ a∗r)N+1−j ] . (7)

Finally, an optimization of a and b can be done, again with
a gradient descent, in order to find a couple of sequences with
a better cross-correlation property. Figure 1 gives an example
of an optimization of the cross-correlation of two sequences
of length N = 256. Both sequences have been randomly
initialized; their cross-correlation sequence is represented by
the red-dotted line. An enhancement of around 25 dB can be
obtained after applying the previous procedure.



B. Optimizing polyphase autocorrelation

Consider now only one sequence a under the same assump-
tions as above. The autocorrelation is expressed as c = a ∗ a
and can be computed as:

cm =
N∑
i=1

aia
∗
i+m (−N < m < N) (8)

The autocorrelation sidelobe energy is defined as:

Ea(a) =
N−1∑

m=−N+1

wm(cmc∗m)p (9)

The gradient of this energy is needed to reduce the autocor-
relation with a steepest descent. Every calculation step can be
found in [9], so only major developments are listed here.

As the procedure is similar, let us start with the partial
derivatives with respect to the real and imaginary parts of a.
η is set to ηm = wm(cmc∗m)p−1 for convenience.

∂Ea
∂<(aj)

= 2p
N−1∑

m=−N+1

ηm

[
<(cm) (<(aj+m) + <(aj−m))

+ =(cm) (−=(aj+m) + =(aj−m))
]

= 2p < [((η ◦ c) ∗ a∗)j + ((η ◦ c) ∗ ar)N+1−j ] ,

∂Ea
∂=(aj)

= 2p
N−1∑

m=−N+1

ηm

[
<(cm) (=(aj+m) + =(aj−m))

+ =(cm) (<(aj+m)−<(aj−m))
]

= 2p = [((η ◦ c) ∗ a∗)j − ((η ◦ c) ∗ ar)N+1−j ] .

The gradient of Ea with respect to the phase angle α can
be deduced with the chain rule:

∂Ea
∂αj

= <(aj)
∂Ea
∂=(aj)

−=(aj)
∂Ea
∂<(aj)

= −2p= [aj((η ◦ c∗) ∗ a)j ]
− 2p= [aj((η ◦ c) ∗ ar)N+1−j ] . (10)

Figure 2 shows an illustration of an autocorrelation opti-
mization using a steep descent. A random initialization is used.
Its autocorrelation is represented with a red dotted line. A
gain of 15 dB can be observed for this sequence of length
N = 256. One can notice that the gain is smaller than the
cross-correlation one; it can be explained by the increase of
the number of degrees of freedom.

C. Optimizing both autocorrelation and cross-correlation

In general, optimization of the autocorrelation or the cross-
correlation alone is not sufficient. It is usually desired to design
a set of sequences with low sidelobes level, in both properties.
This section investigates the two-sequences case, but can easily
be generalized for a set of several sequences.

Here, the energy E should depict the autocorrelation and
the cross-correlation of two polyphase sequences a and b:

E = Ea(a) + Ea(b) + Ec(a, b) . (11)
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Figure 2. Optimization of the autocorrelation of a polyphase sequence

It is obvious that Ea(a) is independant of b. Gathering
equations (6), (7) and (10) gives:

∂E

∂αj
=
∂Ea(a)
∂αj

+
∂Ec(a, b)
∂αj

= −2p= [aj((ηa ◦ ca∗) ∗ a)j ]
− 2p= [aj((ηa ◦ ca) ∗ ar)N+1−j ]
+ 2p=

[
a∗j ((γ ◦ x) ∗ b∗)j

]
,

∂E

∂βj
=
∂Ea(b)
∂βj

+
∂Ec(a, b)
∂βj

= −2p=
[
bj((ηb ◦ ca∗) ∗ b)j

]
− 2p=

[
bj((ηb ◦ ca) ∗ br)N+1−j

]
− 2p = [bj((γ ◦ x) ∗ a∗r)N+1−j ]

where ca stands for the discrete autocorrelation sequence of
a, and ηa

m = wm(cam(cam)∗)p−1.
Figure 3 depicts the autocorrelation and the cross-

correlation of two sequences of length N = 256 after a
joint optimization. The gain in autocorrelation and in cross-
correlation sidelobe levels is reduced compared to the results
obtained with separate optimizations. However, a compromise
can be observed: each property has pretty much the same level
(the peak sidelobe level is around -28 dB).

III. COHERENT MIMO WAVEFORM DESIGN WITH A
GRADIENT DESCENT

In the coherent MIMO Radar concept, several waveforms
are sent simultaneously by different radiating elements. The
radiated signal (by the whole antenna) is a linear combination
of all the transmitted ones; it is distinct for each angular
direction through phase-shifting in space.

The literature commonly supposes that the transmitted
waveforms are orthogonal. Such orthogonality would provide
the ability to separate perfectly each component in reception.
Thus desired phase codes should ideally present perfect ape-
riodic autocorrelation and cross-correlation properties.
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Figure 3. On the top: optimization of the autocorrelation. On the bottom:
optimization of the cross-correlation

As these properties are not theoretically feasible, one should
search for the best possible sequences in terms of output
MIMO ambiguity sidelobes. A first solution would be to opti-
mize the autocorrelation and the cross-correlation sidelobes
of the sequences transmitted by the antennas. However, it
appears that the range cut of the MIMO ambiguity function
is provided by a linear combination of all autocorrelation and
cross-correlation sidelobes of the transmitted sequences, with
linear coefficients depending on the considered direction. It
is thus preferable to optimize directly the autocorrelation and
cross-correlation sidelobes of the signal transmitted in different
considered directions. We propose to study the autocorrelation
in several directions.

A. Problem Formulation

Let us consider a transmitting array of NE antennas and
a receiving array of NR antennas. The signal radiated by the
whole antenna, denoted by s(θc), is [4]:

si(θc) =
NE−1∑
m=0

ejx
T
E,mk(θc)smi , (12)

where:

• xTE,m is the position of the mth antenna,
• k(θc) is the wave vector in the direction θc,

• sm := [sm1 , ..., s
m
N ] is the waveform of length N assigned

to the mth antenna.
The cross-correlation x between two signals at different

angles θc and θ′c can be written as:

xl =
N∑
i=1

si(s′i+l)
∗

=
N∑
i=1

(
NE−1∑
m=0

ejx
T
E,mk(θc)smi

)(
NE−1∑
m′=0

ejx
T
E,m′k(θ′c)sm

′

i+l

)∗

=
∑
m,m′

ejx
T
E,mk(θc)−jxT

E,m′k(θ′c)
N∑
i=1

smi (sm
′

i+l)
∗ .

One can notice that the cross-correlation is an accumulation of
all the autocorrelation and the cross-correlation between two
transmitted signals, within a phase shift. We recall the phase
shift is ϕm,m′ = xTE,m k(θc) − xTE,m′ k(θ′c). If θ = θc, this
reduces to the autocorrelation function.

In the same way as section II, let us define the cross-
correlation sidelobe energy function:

Ec(s, s′) =
N−1∑

l=−N+1

wl(xlx∗l )
p .

This energy function shall be minimized so that the waveform
transmitted by the whole antenna has low cross-correlation
sidelobes in the direction θc. This optimization problem will
also be solved by a gradient descent: the computation of the
partial derivatives of the energy function with respect to the
phase angle of each transmitted signal is explained in the next
part.

B. Energy Gradient Calculation

The energy gradient is computed in two steps. First, partial
derivatives with respect to the real and the imaginary part of
sm (the signal transmitted by each antenna) are determined.
The energy gradient with respect to each phase is then deduced
from the chain rule. Some developments are superfluous and
are not given here.

Let us start by giving some details on the real part (and the
imaginary one) of the cross-correlation sequence x:

<(xl) =
∑
m,m′

<

(
ejϕm,m′

N∑
i=1

smi (sm
′

i+l)
∗

)

=
∑
m,m′

<(ejϕm,m′ )
N∑
i=1

[
<(smi )<(sm

′

i+l) + =(smi )=(sm
′

i+l)
]

−
∑
m,m′

=(ejϕm,m′ )
N∑
i=1

[
=(smi )<(sm

′

i+l)−<(smi )=(sm
′

i+l)
]
,

=(xl) =
∑
m,m′

=(ejϕm,m′ )
N∑
i=1

[
<(smi )<(sm

′

i+l) + =(smi )=(sm
′

i+l)
]

+
∑
m,m′

<(ejϕm,m′ )
N∑
i=1

[
=(smi )<(sm

′

i+l)−<(smi )=(sm
′

i+l)
]
.



As the radiated signal s(θc) is basically a linear combination
of the transmitted signals sm, it is not absurd to consider
the partial derivatives of the energy w.r.t. the real part (and
the imaginary part) of sm. Before that, we derive the cross-
correlation x:

∂<(xl)
∂<(suv )

=
∑
m,m′

<(ejϕm,m′ )
[
δum <(sm

′

v+l) + δum′ <(smv−l)
]

−
∑
m,m′

=(ejϕm,m′ )
[
− δum =(sm

′

v+l) + δum′ =(smv−l)
]

=
∑
m,m′

δum <(e−jϕm,m′ sm
′

v+l) + δum′ <(e jϕm,m′ smv−l)

=
∑
m

<(e−jϕu,msmv+l) + <(e jϕm,usmv−l) ,

∂=(xl)
∂<(suv )

=
∑
m

=(e jϕu,m(smv+l)
∗) + =(e jϕm,usmv−l)

∂<(xl)
∂=(suv )

=
∑
m

=(e−jϕu,msmv+l) + =(e jϕm,usmv−l)

∂=(xl)
∂=(suv )

=
∑
m

<(e jϕu,m(smv+l)
∗)−<(e jϕm,usmv−l) .

Set γ to γl = wl(xlx∗l )
p−1. Gathering all the previous

results gives:

∂Ec
∂<(suv )

= 2p
N−1∑
l=1−N

γl

(
<(xl)

∂<(xl)
∂<(suv )

+ =(xl)
∂=(xl)
∂<(suv )

)

= 2p
N−1∑
l=1−N

(
γl <(xl)

∑
m

[
<(e−jϕu,msmv+l)

+ <(e jϕm,usmv−l)
]

+ γl =(xl)
∑
m

[
=(e jϕu,m(smv+l)

∗)

+ =(e jϕm,usmv−l)
])

= 2p
∑
m

N−1∑
l=1−N

<(γlxle−jϕu,msmv+l)

+ <(γlx∗l e
jϕm,usmv−l)

= 2p
∑
m

<
[
((γ ◦ x)e−jϕu,m ∗ (sm)∗)v

]
+ <

[
((γ ◦ x∗)e jϕm,u ∗ (sm)∗r)N+1−v

]
,

∂Ec
∂=(suv )

= 2p
N−1∑
l=1−N

γl

(
<(xl)

∂<(xl)
∂=(suv )

+ =(xl)
∂=(xl)
∂=(suv )

)
= 2p

∑
m

=
[
((γ ◦ x)e−jϕu,m ∗ (sm)∗)v

]
+ =

[
((γ ◦ x∗)e jϕm,u ∗ (sm)∗r)N+1−v

]
.

Let αu(v) the phase angle of the element suv . According to
the chain rule, the partial derivative of Ec with respect to that

phase can be written as:

∂Ec
∂αu(v)

= <(suv )
∂Ec

∂=(suv )
−=(suv )

∂Ec
∂<(suv )

= −2p
∑
m

(
=
[
suv ((γ ◦ x∗)e jϕu,m ∗ sm)v

]
(13)

+ =
[
suv ((γ ◦ x)e−jϕm,u ∗ (sm)r)N+1−v

])
.

C. Application and Results

In this part, we will search for transmitted sequences sm in
such a way that the aperiodic correlation of the signal produced
by the array s(θc) is optimized. Since that signal s(θc) depends
on the direction θc (cf. equation (12)), and since we want
good sidelobes in any direction, we have to examine another
formulation of the minimization problem that considers several
directions Θ:

min
s0,...,sNE−1

E(s) :=
∑
θ∈Θ

Ec(s(θ), s(θ)) . (14)

As ∇E can easily be deduced from eq. (13), a steepest descent
is employed to find a transmitting set {s0, . . . , sNE−1} (which
is a local minima of E).

Figures 4 to 7 present some results of a simulated radar
antenna with four transmitters (NE = 4) and four receivers.
Phase codes are of length N = 256, and four directions are
inspected. Two methods are compared:

1) the proposed method, i.e. an optimization of the trans-
mitted waveforms in order to improve the autocorrela-
tion property of the radiated signal

2) the usual method, i.e. an optimization of the autocorre-
lation and the cross-correlation of the transmitting set.
This set is obtained with the procedure described in
Section II.

An improvement of the autocorrelation of the radiated signal
in a direction of interest is shown in Figure 4. A gain of
10 dB can be noticed compared to a random initialization
(represented by the red dotted line), whereas the second
method does not improve this autocorrelation. In the three
other directions of interest, sidelobe levels are quite similar.
Moreover, Figure 5 shows that it is not needed to take into
account the orthogonality of the transmitted sequences in order
to improve the autocorrelation of the radiated signal in a
direction.

Let us recall the problematic described in the introduction.
The aim of this article is to search for phase-coded wave-
forms so that the radar has a good range/angle resolution,
and low sidelobe levels (in range and in angle). The so-
called ambiguity function can provide directly a measure of
these criteria. Figure 6 and Figure 7 represent the ambiguity
function obtained for the proposed method and the usual one
respectively. We have made the assumption that there is no
Doppler effect during a pulse. Results are promising, as the
sidelobe level is around -28 dB. They are slightly better than
what we get with a Gold code, [4] or with the usual method.
Notice that the range cut at θ = 0 is equivalent to the
autocorrelation of the signal diffused by the whole antenna
(cf. Figure 4).
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Figure 4. Optimization of the aperiodic correlation of the radiated signal in
a direction of interest. On the top: with the proposed method. On the bottom:
with the usual method.
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Figure 5. On top: autocorrelation of the first transmitted sequence.
On the bottom: cross-correlation between two transmitted sequences.
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Figure 6. Ambiguity function obtained after a gradient descent (proposed
method)
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Figure 7. Ambiguity function obtained after a gradient descent (usual method)

IV. CONCLUSION

In this paper, we have seen that a gradient descent is an
interesting method for finding sequences with low sidelobes
in autocorrelation (or in cross-correlation). This method has
also been applied to search for transmitted sequences of a
coherent MIMO radar in a way that the emitted signal has a
nice autocorrelation. Results are promising as the associated
ambiguity function presents low sidelobes in range and in
angle.

Ongoing work will be focused on:
• Taking into account the cross-correlation in the MIMO

waveform optimization
• Optimizing the radiated energy in the different directions
• Jointly optimizing the code and its optimal mismatched

filter
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