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The goal of this paper is to derive the asymptotic distributions of the robust Adaptive 
Normalized Matched Filter (ANMF) built with any M-estimator under both H0 and H1 
hypotheses when the additive noise is modeled by Complex Elliptically Symmetric 
(CES) distributions:

⇢
H0 : y = c, c1, c2, . . . , cN
H1 : y = c+ ↵p, c1, c2, . . . , cN

Let us considering the following binary hypotheses test:

where {ci}i2[1,N ]are N signal free secondary data, p a known steering vector and where
↵ is the unknown amplitude of the target to be detected.

MODEL OF THE BACKGROUND

Complex Elliptically Symmetric Distributions [Kelker 70, Olilla 03]:

ROBUST ESTIMATION OF THE BACKGROUND PARAMETERS

u(.) is a weighting function acting on the quadratic form, 
Existence and uniqueness of the solution have been proven provided u(.) satisfy given 
conditions [Maronna 1976], 
Robust to outliers, to the presence of strong targets or high impulsive samples in the 
reference cells, 
Generalization of MLEs: u(t) = �h0

m(t)/hm(t)

      is a random complex m-vector characterizing each pixel of the SAR image, 

  M is the scatter matrix (covariance, up to a scalar factor), 
            , usually called density generator, is assumed to be known, 
  This model takes into account the spatial heterogeneity and/or non-Gaussianity of 

the noise (from cell to cell, pixel to pixel) by the texture PDF p(  )  
 The scatter matrix M can model the temporal fluctuations structure of the noise (ICM), 

the correlation between polarimetric/interferometric channels, the correlation existing 
within the spectral bands, ...
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The Fixed Point belongs to the family of M-estimators (Robust Statistics [Huber 1964, 
Maronna 1976, Yohai 2006]) in the more general context of CES distributions:

For an unknown but deterministic texture parameter, the Maximum Likelihood Estimate 
(MLE)            of the Covariance M, called the Fixed Point or Tyler’s M-estimator, is the 
solution of the following implicit equation:

M̂FP

ASYMPTOTIC PROPERTIES OF M-ESTIMATORS
For any M-estimators and any function H(.), homogeneous of degree 0, i.e. satisfying the 
property                               H (M) = H (↵M)

4

D. NMF statistical test

Due to the homogeneity of degree 0 of the NMF under H0

hypothesis, the corresponding theoretical relationship between
the detection threshold � and Pfa = P(H(M) > �|H0) is
still given by (5), even when the noise is CES distributed.
When the cell under test contains also SIRV or CES noise,
the PDF of pH(M) of H(M) under H1 has to be derived.
Suppose that the cell under test contains SIRV noise, the
noise c can be characterized by c =

p
⌧ n where n is a m-

dimensional complex Gaussian vector CN (0,M) and where
⌧ is a positive scalar random variable and characterized by its
PDF p⌧ (.). Conditionally to this scalar random variable, the
SNR is therefore given by ↵2

p

H
M

�1
p/⌧ . We suppose in

the following that E [⌧ ] = 1 that implies that the final SNR
is always given by � = ↵2

p

H
M

�1
p. Conditionally to ⌧ , the

PDF pH(M) of H(M) under H1 takes the following form:

pH(M)|⌧ (u) = e��/⌧ �1,m�1(u) 1F1

 
m, 1;

u �

⌧

!
, (20)

and we obtain the final PDF :

pH(M)(u) =

Z 1

0
e��/⌧ �1,m�1(u) 1F1

 
m, 1;

u �

⌧

!
p⌧ (⌧) d⌧ .

(21)
For example, in the case of K-distributed noise K⌫ with shape
parameter ⌫, the scalar variable ⌧ is distributed as �(⌫, 1/⌫)
corresponding to the PDF p⌧ (u) = �⌫,1/⌫(u).
We obtain therefore the final Pd�� relationship by integrating
(21) over the texture PDF p⌧ :

Pd = 1�
Z +1

0
d⌧

Z �

0
e� (u�1)/⌧ �1,m�1(u)

⇥ 1F1

 
1�m, 1;�u

�

⌧

!
p⌧ (⌧) du . (22)

When the cell under test is distributed according to any
CES distributions, the corresponding relationship under H1

hypothesis remains very difficult to obtain or even, to our
knowledge, impossible to be derived.

E. M-estimators, Tyler’s estimator and asymptotic properties

This section presents the M -estimators, the Tyler’s estimator
as well as their asymptotic properties. Details of the following
results can be found in [10], [9] for M -estimators and in [12],
[11], [26] for the Tyler’s estimator.
Let (c1, ..., cN ) be a N -sample of m-dimensional complex
independent vectors with ck ⇠ CES(0,M), k = 1, . . . , N .
The M -estimators are defined as the unique solution of the
following equation

c
M =

1

N

NX

k=1

u
⇣
c

H
k
c
M

�1
ck

⌘
ck c

H
k , (23)

where u(.) stands for any real-valued function that satisfies a
set of general assumptions (see [10], [9]), mainly for ensuring

the existence, uniqueness and convergence of the previous
equation. Note that MLEs are particular solutions of the
previous equation.
An attractive and powerful estimator is the Tyler’s estimator
also called the Fixed Point and defined as the solution of

c
M =

m

N

NX

k=1

ck c
H
k

c

H
k
c
M

�1
ck

. (24)

One can notice that, due to its homegeneity of degre 0, this
estimator is independent of any CES (c = ⌧ u = ⌧/||x||x) or
any SIRV (c =

p
⌧ x) distributions, i.e.

c
M =

m

N

NX

k=1

xk x
H
k

x

H
k
c
M

�1
xk

, (25)

where {x}i=1,N are Gaussian distributed.
For any M -estimator cM verifying equation (23), one has the
important asymptotical statistical behaviour:

p
N
⇣

vec(cM�M)

⌘
d�! GCN

�
0m2,1,⌃M ,⌦M

�
, (26)

where M is the consistent limit of cM and GCN (0,⌃M ,⌦M )

denotes the Generalized Complex Normal distribution with
⌃M the covariance matrix and ⌦M the pseudo-covariance
matrix defined as

⌃M = ⌫1 M
T ⌦M+ ⌫2 vec(M) vec(M)

H ,
⌦M = ⌫1 (M

T ⌦M)K+ ⌫2 vec(M) vec(M)

T ,
(27)

where K is the commutation matrix which transforms vec(A)

into vec(AT
), ⌫1 and ⌫2 are real scalars relying on the CES

distribution and given in [27], [9].
It is important to notice that the previous result is also valid
for the SCM when the observations are Gaussian (⌫1 = 1

and ⌫2 = 0, see e.g. [28]) and for the Tyler’s estimator for
CES-distributed observations (⌫1 = (m + 1)/m and ⌫2 =

�(m+ 1)/m2, see e.g. [26]). This shows that the asymptotic
behavior of all these estimators is similar. More precisely, the
M -estimators and the Tyler’s estimator behaves asymptotically
the same as the SCM, it differs only from the scalar quantities
⌫1 and ⌫2.

F. Asymptotic properties of the ANMF built with M-estimates

The asymptotic behavior of all the presented estimators can
then be extended to the ANMF thanks to the following result.
Let H(.) be a r-dimensional multivariate function on the set
of m⇥m positive-definite symmetric matrices with continuous
first partial derivatives and such as H(M) = H(↵M) for all
↵ > 0, i.e. H(.) is homogeneous of degree 0. For any cM that
verifies equation (26), one has the following result, derived in
[27], [9]:
p
N
⇣
H
⇣
c
M

⌘
�H(M)

⌘
d�! GCN (0r,1,⌃H ,⌦H) , (28)

where ⌃H and ⌦H are defined as

⌃H = ⌫1 H
0
(M) (M

T ⌦M)H 0
(M)

H ,
⌦H = ⌫1 H

0
(M) (M

T ⌦M)KH 0
(M)

T ,
(29)

where

p
N

⇣
H

⇣
M̂

⌘
�H(M)

⌘
d�! GCN (0r,1,⌃H ,⌦H) , (1)

p
N

⇣
vec(M̂�M)

⌘
d�! GCN

�
0m2,1,⌃M ,⌦M

�
, (1) 
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For example, in the case of K-distributed noise K⌫ with shape
parameter ⌫, the scalar variable ⌧ is distributed as �(⌫, 1/⌫)
corresponding to the PDF p⌧ (u) = �⌫,1/⌫(u).
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When the cell under test is distributed according to any
CES distributions, the corresponding relationship under H1

hypothesis remains very difficult to obtain or even, to our
knowledge, impossible to be derived.
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as well as their asymptotic properties. Details of the following
results can be found in [10], [9] for M -estimators and in [12],
[11], [26] for the Tyler’s estimator.
Let (c1, ..., cN ) be a N -sample of m-dimensional complex
independent vectors with ck ⇠ CES(0,M), k = 1, . . . , N .
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where u(.) stands for any real-valued function that satisfies a
set of general assumptions (see [10], [9]), mainly for ensuring

the existence, uniqueness and convergence of the previous
equation. Note that MLEs are particular solutions of the
previous equation.
An attractive and powerful estimator is the Tyler’s estimator
also called the Fixed Point and defined as the solution of
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One can notice that, due to its homegeneity of degre 0, this
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where {x}i=1,N are Gaussian distributed.
For any M -estimator cM verifying equation (23), one has the
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), ⌫1 and ⌫2 are real scalars relying on the CES
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then be extended to the ANMF thanks to the following result.
Let H(.) be a r-dimensional multivariate function on the set
of m⇥m positive-definite symmetric matrices with continuous
first partial derivatives and such as H(M) = H(↵M) for all
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                              for the Sample Covariance Matrix  ⌫1 = 1, ⌫2 = 0 M̂SCM =
1

N

NX

k=1

ck c
H
k

                                                                           for Tyler’s estimator ⌫1 = (m+ 1)/m, ⌫2 = �(m+ 1)/m2

These important properties mean that: 
 any M-estimator built with N secondary data (asymptotically) behaves like the 
SCM in Gaussian environment but with a slight smaller degrees of 
freedom           ,  
any function H built with a M-estimator behaves like those built with SCM in 
Gaussian environment but with a slight smaller degrees of freedom           .

N/⌫1

N/⌫1

ASYMPTOTIC PROPERTIES OF ANMF BUILT WITH M-ESTIMATORS
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and H 0
(M) =

@H(M)

@vec(M)

= (h0
ij) with h0

ij =

@hi

@mj
and mj’s

denote the elements of vec(M), for j = 1, ...,m2.
When comparing to the asymptotic behavior of any function H
with SCM argument M, one obtains ⌫1 = 1. For any function
H with Tyler’s argument M, we obtain ⌫1 = (m+1)/m. This
explains that any function H of M -estimators has the same
asymptotic distribution than those of a Wishart matrix (SCM)
with N/⌫1 degrees of freedom. It could also be interpreted
as follows: under Gaussian assumption, M -estimators require
⌫1 N secondary data to reach the same performance than those
of the SCM.

III. ASYMPTOTIC BEHAVIOR OF THE ANMF TEST

The goal of this section is to propose two different ways of
deriving an approximate distribution of the test H

⇣
c
M

⌘
built

with any M -estimators under both H0 and H1 hypotheses
and under Gaussian or non-Gaussian noise. The first approach
consists in using the asymptotic distribution presented in
section II-F for the different estimators while the second
approach is to compute analytically the parameters ⌃H and
⌦H characterizing the asymptotic distribution of the ANMF
given by equation (28).

A. Correction of the degrees of freedom, compared to the
Gaussian-based SCM

Let us first consider the two ANMF PDF given by (12)
under H1 hypothesis and (13) under H0 hypothesis. Note
that these two equations provide the exact distributions of
H
⇣
c
MSCM

⌘
under both H0 and H1 hypotheses when the

observations y,y1, ...,yN are Gaussian distributed and for a
cell under test containing also Gaussian noise. Now, for N
sufficiently large, equation (26) states that a M -estimator built
with N ⌫1 observations behaves as the SCM built with N
observations. This also means that M -estimators built with N
secondary data will behave as SCM built with N/⌫1 secondary
data. Consequently, combining this result with equations (12)
and (13) or equivalently with equations (14) and (15), leads to
the approximate distribution for H

⇣
c
M

⌘
under both hypothe-

ses where cM stands for any M -estimator or for the Tyler’s
estimator.

1) Homogeneous Gaussian noise: Due to the homogeneity
of degree 0 of the ANMF under H0 hypothesis, the final
theoretical relationship between the detection threshold �

and Pfa = P
⇣
H(

c
M) > �|H0

⌘
is the asymptotic corrected

version of (14), i.e. when N is replaced by N/⌫1 and is given
by:

Pfa = (1� �)a�1
2F1(a, a� 1; b� 1;�) , (30)

where a = N/⌫1 �m+ 2 and b = N/⌫1 + 2.
The theoretical relationship between � and Pd =

P
⇣
H(

c
M) > �|H1

⌘
is the corrected version (N is replaced

by N/⌫1) of (15) or (16) and is given by:

Pd = 1�
Z 1

0
du

Z �

0
ua�1 (1� u)m�1

(1� x)a�2

(1� ux)a

⇥
1

K
e��

1F1

 
a, 1;

� x (1� u)

1� xu

!
dx ,

(31)

where K = �(a� 1)�(m� 1)/�(b� 1).
Note that the final performance of this ANMF test built with
any M-estimators under homogeneous Gaussian noise will be
exactly the same than those of ANMF built with any M-
estimators under any CES distributed secondary data but with
only Gaussian contaminated cell under test.

2) SIRV or CES noise in the cell under test: Due to the
homogeneity of degree 0 of the ANMF under H0 hypothesis,
the corresponding theoretical relationship between the detec-
tion threshold � and Pfa = P

⇣
H(

c
M) > �|H0

⌘
is still given

by (30), even when the noise is CES distributed.
When the cell under test contains also SIRV or CES noise, the
PDF of pH(M) of H

⇣
c
M

⌘
under H1 has to be derived. In the

same way as for the NMF in section II-D, we obtain therefore
the final Pd�� relationship given in (31) by conditioning and
integrating over the texture PDF p⌧ :

Pd = 1�
Z +1

0
d⌧

Z 1

0
du

Z �

0
ua�1 (1� u)m�1

(1� x)a�2

(1� ux)a

⇥
1

K
e��/⌧

1F1

 
a, 1;

�

⌧

x (1� u)

1� xu

!
p⌧ (⌧) dx .

(32)
where K = �(a� 1)�(m� 1)/�(b� 1), a = N/⌫1 �m+ 2

and b = N/⌫1 + 2.
As illustrated in the simulations and although no rigorous
proof is given, the previous result provides a very accurate
PDF for H

⇣
c
M

⌘
even for small N .

B. Asymptotic covariance of the ANMF

Let us now turn to the asymptotic distribution of the ANMF
for any covariance matix estimator.

Proposition III.1 Let us consider the ANMF test defined by

H(

c
M) =

���pH c
M

�1
y

���
2

⇣
p

H c
M

�1
p

H
⌘⇣

y

H c
M

�1
y

⌘ . (33)

This scalar function H(.) is homogeneous of degree 0 and one
can apply result given in (28). For any estimator cM satisfying
equation (26), one has

p
N
⇣
H(

c
M)�H(M)

⌘
d�! N (0,⌃H) , (34)

where the asymptotic variance ⌃H and pseudo-covariance
⌦H of the ANMF statistic is given by

⌃H = ⌦H = 2 ⌫1 H(M) (H(M)� 1)

2
. (35)

p
N

⇣
H(M̂)�H(M)

⌘
d�! N (0,⌃H) , (1)

H
⇣
M̂

⌘
=

|pH M̂�1 y|2⇣
pH M̂�1p

⌘ ⇣
yH M̂�1 y

⌘
H1

?
H0

�.

When considering the ANMF test which is homogeneous of degree 0,

one has the following result
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under H1 has to be derived. In the

same way as for the NMF in section II-D, we obtain therefore
the final Pd�� relationship given in (31) by conditioning and
integrating over the texture PDF p⌧ :

Pd = 1�
Z +1

0
d⌧

Z 1

0
du

Z �

0
ua�1 (1� u)m�1

(1� x)a�2

(1� ux)a

⇥
1

K
e��/⌧

1F1

 
a, 1;

�

⌧

x (1� u)

1� xu

!
p⌧ (⌧) dx .

(32)
where K = �(a� 1)�(m� 1)/�(b� 1), a = N/⌫1 �m+ 2

and b = N/⌫1 + 2.
As illustrated in the simulations and although no rigorous
proof is given, the previous result provides a very accurate
PDF for H

⇣
c
M

⌘
even for small N .

B. Asymptotic covariance of the ANMF

Let us now turn to the asymptotic distribution of the ANMF
for any covariance matix estimator.

Proposition III.1 Let us consider the ANMF test defined by

H(

c
M) =

���pH c
M

�1
y

���
2

⇣
p

H c
M

�1
p

H
⌘⇣

y

H c
M

�1
y

⌘ . (33)

This scalar function H(.) is homogeneous of degree 0 and one
can apply result given in (28). For any estimator cM satisfying
equation (26), one has

p
N
⇣
H(

c
M)�H(M)

⌘
d�! N (0,⌃H) , (34)

where the asymptotic variance ⌃H and pseudo-covariance
⌦H of the ANMF statistic is given by

⌃H = ⌦H = 2 ⌫1 H(M) (H(M)� 1)

2
. (35)where

H
⇣
M̂
⌘

d�! N
 
H(M),

2 ⌫1
N

H(M) (H(M)� 1)2
!
. (1)

Conditioned to the cell under test y, one obtains the following asymptotic behavior of the ANMF 

H
⇣
M̂

⌘
=

|pH M̂�1 y|2⇣
pH M̂�1p

⌘ ⇣
yH M̂�1 y

⌘
H1

?
H0

�.

M̂FP =
m

N

NX

k=1

ck cHk
cHk M̂�1

FP ck

M̂ =
1

N

NX

k=1

u
⇣
cHk M̂�1 ck

⌘
ck c

H
k

2

observation vector y can be stated as the following binary
hypothesis test:

⇢
H0 : y = c yi = ci i = 1, . . . , N
H1 : y = ↵p+ c yi = ci i = 1, . . . , N

, (1)

where p is a perfectly known complex steering vector, ↵ is
the unknown signal amplitude and where the ci ⇠ CN (0,M)

are N signal-free independent measurements, traditionally
called the secondary data, used to estimate the background
covariance matrix M. When M is known and the variance
�2 is unknown, this binary hypothesis test is solved by the
Generalized Likelihood Ratio Test (GLRT) theory leading to
a well-known Normalized Matched Filter [13] denoted H(.)
and defined on [0, 1] by

H(M) =

|pH
M

�1
y|2

(p

H
M

�1
p)(y

H
M

�1
y)

. (2)

It can be noting that the later expression is homogeneous of
degree 0, i.e., replacing y, M or p by any of their scaled
version always leads to the same form. This property is playing
a big role, especially for regularizing false alarm rate under
heterogeneous Gaussian or non Gaussian environment.
In order to derive the probability density function (PDF) of
H(M) under H1 and H0 hypothesis, let us set the signal-
to-noise ratio (SNR) equal to � = ↵2

p

H
M

�1
p. It can be

shown in [4] that H(M), derived for heterogeneous Gaussian
environment, can be rewritten as F/(F+1) where (m�1)F is
distributed according to a non-central F -distribution denoted
by F↵1,↵2,� where ↵1 = 1, ↵2 = m � 1 and where � is the
noncentrality parameter. The PDF of F is given by:

pF (u) = (m� 1) e��
(1 + u)�m

1F1

 
m, 1;

u �

u+ 1

!
, (3)

where 1F1(↵1,↵2; .) is the complex confluent hypergeometric
function. After a simple change of variable, the distribution of
H(M) takes the following form:

pH(M)(u) = e�� �1,m�1(u) 1F1 (m, 1;u �) , (4)

where �1,m�1(u) = (m� 1) (1� u)m�2
[0,1](u) is the PDF

of the central beta distribution with degrees of freedom 1

and m � 1 and denoted by �(1,m � 1). Thus, setting � to
zero simply leads to the �(1,m � 1) PDF for H(M) under
H0 hypothesis. Hence, the theoretical relationship between the
detection threshold � and the Probability of False Alarm (PFA)
is defined as:

Pfa = P (H(M) > �|H0) = (1� �)m�1 . (5)

This relation will serve as a benchmark since it characterizes
the case of a perfectly known covariance matrix for the
detection test. When � 6= 0, the Probability of Detection Pd for
a given SNR � and for a fixed value of the detection threshold
� is given by:

Pd = P (H(M) > �|H1)

= 1� e��

Z �

0
�1,m�1(u) 1F1 (m, 1;u �) du . (6)

Note that, for efficient numerical computation of the previous
equation (for any non-zero noncentrality parameter of the
confluent hypergeometric function), it is better and more
efficient to use the following Kummer’s relationship:

1F1 (a, b; z) = ez 1F1 (b� a, b;�z) , (7)

leading to

Pd = 1�
Z �

0
�1,m�1(u) e

� (u�1)
1F1 (1�m, 1;�u �) du .

(8)
Note that for any positive integer n, we have the particular
useful relation to compute the confluent hypergeometric func-
tion:

1F1 (�n, 1; z) =
nX

k=0

�(n+ 1)

�(n+ 1� k)

(�z)k

�(k + 1)

2
(9)

As 1 � m < 0, the above expression (8) can be, for a
computational point of view, judiciously replaced by:

Pd = 1�
m�1X

k=0

Z �

0

�(m)

�(m� k)
�1,m�1(u) e

� (u�1) (u �)k

�(k + 1)

2
du .

(10)

B. The Adaptive Normalized Matched Filter (ANMF)

When an estimate cM of M is plugged into the NMF (two-
step GLRT), this results in the so-called ANMF or ACE
(Adaptive Coherence Estimator) [1], [3]. Assuming that the

SCM, defined as cMSCM =

1

N

NX

k=1

ck c
H
k is used, Kraut et al.

have shown in [4] that H(

c
MSCM ) has the same distribution

as ˆF/( ˆF + 1) where

ˆF ⇠
C�2

1(�)

C�2
N�m+1(0)

1

1� b
, (11)

and where b ⇠ �(N�m+2,m�1). After simple but fastidious
derivations, one obtains:

f
H(cM

SCM

)(x) =

Z 1

0
uN�m+1 (1� u)m�1

(1� x)N�m

(1� ux)N�m+2

⇥
e��

K
1F1

 
N �m+ 2, 1;

� x (1� u)

1� xu

!
du , (12)

where K = �(N � m + 1)�(m � 1)/�(N + 1). By setting
� = 0 in the previous equation, the resulting PDF f

H(cM
SCM

)

of H(

c
MSCM ) under H0 hypothesis can be retrieved [15]:

f
H(cM

SCM

)(x) =
(N �m+ 1) (m� 1)

N + 1

(1� x)N�m

⇥ 2F1(N �m+ 2;N �m+ 2;N + 2;x) , (13)

Conditionally to a cell under test y containing Gaussian noise 
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observation vector y can be stated as the following binary
hypothesis test:

⇢
H0 : y = c yi = ci i = 1, . . . , N
H1 : y = ↵p+ c yi = ci i = 1, . . . , N

, (1)

where p is a perfectly known complex steering vector, ↵ is
the unknown signal amplitude and where the ci ⇠ CN (0,M)

are N signal-free independent measurements, traditionally
called the secondary data, used to estimate the background
covariance matrix M. When M is known and the variance
�2 is unknown, this binary hypothesis test is solved by the
Generalized Likelihood Ratio Test (GLRT) theory leading to
a well-known Normalized Matched Filter [13] denoted H(.)
and defined on [0, 1] by

H(M) =

|pH
M

�1
y|2

(p

H
M

�1
p)(y

H
M

�1
y)

. (2)

It can be noting that the later expression is homogeneous of
degree 0, i.e., replacing y, M or p by any of their scaled
version always leads to the same form. This property is playing
a big role, especially for regularizing false alarm rate under
heterogeneous Gaussian or non Gaussian environment.
In order to derive the probability density function (PDF) of
H(M) under H1 and H0 hypothesis, let us set the signal-
to-noise ratio (SNR) equal to � = ↵2

p

H
M

�1
p. It can be

shown in [4] that H(M), derived for heterogeneous Gaussian
environment, can be rewritten as F/(F+1) where (m�1)F is
distributed according to a non-central F -distribution denoted
by F↵1,↵2,� where ↵1 = 1, ↵2 = m � 1 and where � is the
noncentrality parameter. The PDF of F is given by:

pF (u) = (m� 1) e��
(1 + u)�m

1F1

 
m, 1;

u �

u+ 1

!
, (3)

where 1F1(↵1,↵2; .) is the complex confluent hypergeometric
function. After a simple change of variable, the distribution of
H(M) takes the following form:

pH(M)(u) = e�� �1,m�1(u) 1F1 (m, 1;u �) , (4)

where �1,m�1(u) = (m� 1) (1� u)m�2
[0,1](u) is the PDF

of the central beta distribution with degrees of freedom 1

and m � 1 and denoted by �(1,m � 1). Thus, setting � to
zero simply leads to the �(1,m � 1) PDF for H(M) under
H0 hypothesis. Hence, the theoretical relationship between the
detection threshold � and the Probability of False Alarm (PFA)
is defined as:

Pfa = P (H(M) > �|H0) = (1� �)m�1 . (5)

This relation will serve as a benchmark since it characterizes
the case of a perfectly known covariance matrix for the
detection test. When � 6= 0, the Probability of Detection Pd for
a given SNR � and for a fixed value of the detection threshold
� is given by:

Pd = P (H(M) > �|H1)

= 1� e��

Z �

0
�1,m�1(u) 1F1 (m, 1;u �) du . (6)

Note that, for efficient numerical computation of the previous
equation (for any non-zero noncentrality parameter of the
confluent hypergeometric function), it is better and more
efficient to use the following Kummer’s relationship:

1F1 (a, b; z) = ez 1F1 (b� a, b;�z) , (7)

leading to

Pd = 1�
Z �

0
�1,m�1(u) e

� (u�1)
1F1 (1�m, 1;�u �) du .

(8)
Note that for any positive integer n, we have the particular
useful relation to compute the confluent hypergeometric func-
tion:

1F1 (�n, 1; z) =
nX

k=0

�(n+ 1)

�(n+ 1� k)

(�z)k

�(k + 1)

2
(9)

As 1 � m < 0, the above expression (8) can be, for a
computational point of view, judiciously replaced by:

Pd = 1�
m�1X

k=0

Z �

0

�(m)

�(m� k)
�1,m�1(u) e

� (u�1) (u �)k

�(k + 1)

2
du .

(10)

B. The Adaptive Normalized Matched Filter (ANMF)

When an estimate cM of M is plugged into the NMF (two-
step GLRT), this results in the so-called ANMF or ACE
(Adaptive Coherence Estimator) [1], [3]. Assuming that the

SCM, defined as cMSCM =

1

N

NX

k=1

ck c
H
k is used, Kraut et al.

have shown in [4] that H(

c
MSCM ) has the same distribution

as ˆF/( ˆF + 1) where

ˆF ⇠
C�2

1(�)

C�2
N�m+1(0)

1

1� b
, (11)

and where b ⇠ �(N�m+2,m�1). After simple but fastidious
derivations, one obtains:

f
H(cM

SCM

)(x) =

Z 1

0
uN�m+1 (1� u)m�1

(1� x)N�m

(1� ux)N�m+2

⇥
e��

K
1F1

 
N �m+ 2, 1;

� x (1� u)

1� xu

!
du , (12)

where K = �(N � m + 1)�(m � 1)/�(N + 1). By setting
� = 0 in the previous equation, the resulting PDF f

H(cM
SCM

)

of H(

c
MSCM ) under H0 hypothesis can be retrieved [15]:

f
H(cM

SCM

)(x) =
(N �m+ 1) (m� 1)

N + 1

(1� x)N�m

⇥ 2F1(N �m+ 2;N �m+ 2;N + 2;x) , (13)

where

Conditionally to a cell under test y containing SIRV noise 

pH(M)(u) =

Z 1

0
e��/⌧ �1,m�1(u) 1F1

 
m, 1;

u �

⌧

!
p⌧ (⌧) d⌧ . (1)
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Now, if we denote �(.) the cumulative distribution of the Nor-
mal distribution, one obtains respectively the corresponding
asymptotical Pfa-� relationship:

Pfa = 1�
Z 1

0
�1,m�1(x)�

 p
N (�� x)

p
2 ⌫1 x (x� 1)

2

!
dx . (44)

and the corresponding asymptotical Pd-� relationship for a
given detection threshold �, :

Pd = 1�
Z 1

0
�1,m�1(x) e

� (x�1)
1F1 (1�m, 1;�x �)

⇥�

 p
N (�� x)

p
2 ⌫1 x (x� 1)

2

!
dx .

(45)

When the cell under test contains CES or SIRV noise, the
PDF pH(M) of H(M) under H1 hypothesis is no more simply
given by (4). The final evaluation of performance is therefore
discussed in the next subsection.
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Fig. 1. Comparison between PFA-threshold relationships for the NMF, the
ANMF built with the Tyler’s estimator and its asymptotic form, m = 10,
N = 200, ⌫1 = 1.1, p = [1, . . . , 1]T , y ⇠ K⌫ where K⌫ is a multivariate
K-distribution with shape parameter ⌫ = 0.1 and covariance matrix M.

B. Evaluation of performances for SIRV noise in the cell under
test

When the cell under test contains SIRV noise, the PDF
pH(M) of H(M) under H0 is still given by (4) because
of the homogeneity of the function H(.) by CES or SIRV
noise family. The PFA-threshold relationship is therefore still
given by (44). Under H1 hypothesis, the PDF of pH(M) of
H (M) has been derived and is given by (21), leading to the

final expression of the asymptotic distribution fa
H
(

cM
)

(u) of

H
⇣
c
M

⌘
:

fa
H(cM)

(u)=

Z 1

0
d⌧

Z 1

0

p
N exp

 
�

N (u� x)2

4 ⌫1 x (x� 1)

2

!

p
4⇡ ⌫1 x (x� 1)

2

⇥ e��/⌧ �1,m�1(u) 1F1

 
m, 1;

u �

⌧

!
p⌧ (⌧) dx . (46)

The final Probability of Detection expression if then obtained
by evaluating Pd = P

⇣
H
⇣
c
M

⌘
> �|H1

⌘
:

Pd = 1�
Z 1

0
p⌧ (⌧) d⌧

Z 1

0
�1,m�1(x) e

� (x�1)/⌧

⇥1F1

 
1�m, 1;�x

�

⌧

!
�

 p
N (�� x)

p
2 ⌫1 x (x� 1)

2

!
dx

(47)

C. Evaluation of performances for CES noise in the cell under
test

When the cell under test contains SIRV noise, the PDF
pH(M) of H(M) under H0 is still given by (4) because of
the homogeneity of the function H(.) by CES or SIRV noise
family. The PFA-threshold relationship is therefore still given
by (44).
Under H1 hypothesis, the previous developments are not valid
for any CES distributed cell under test because this latter can
be written as y = ↵p+⌧ u = ↵p+⌧ x/||x||. We can remark
that x and ⌧/||x|| are not independent. The conditioning
approach proposed in this paper is hence not at all valid.
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Fig. 2. Comparison between Pd and SNR � relationships for the NMF, for
the ANMF built with Tyler’s estimator and its asymptotic form, m = 10,
N = 500, ⌫1 = 1.1 and Pfa = 10

�3, p = [1, . . . , 1]T , {yi}i2[1,N ] ⇠
K⌫ where K⌫ is a multivariate K-distribution with shape parameter ⌫ = 0.1
and covariance matrix M and y ⇠ CN (↵p,M).

V. SIMULATIONS

A. Gaussian noise in the cell under test
In this section, we set the Toeplitz covariance matrix M

whose entries are defined as Mij = ⇢|i�j| where ⇢ is equal

Conditionally to a cell under test y containing Gaussian noise 

P

d

= 1�
Z 1

0
�1,m�1(x) e

� (x�1)
1F1 (1�m, 1;�x �) �

 p
N (�� x)

p
2 ⌫1 x (x� 1)2

!
dx . (1)

Conditionally to a cell under test y containing K-distributed noise 
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Now, if we denote �(.) the cumulative distribution of the Nor-
mal distribution, one obtains respectively the corresponding
asymptotical Pfa-� relationship:

Pfa = 1�
Z 1

0
�1,m�1(x)�

 p
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2 ⌫1 x (x� 1)

2

!
dx . (44)

and the corresponding asymptotical Pd-� relationship for a
given detection threshold �, :

Pd = 1�
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⇥�
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2
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When the cell under test contains CES or SIRV noise, the
PDF pH(M) of H(M) under H1 hypothesis is no more simply
given by (4). The final evaluation of performance is therefore
discussed in the next subsection.
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Fig. 1. Comparison between PFA-threshold relationships for the NMF, the
ANMF built with the Tyler’s estimator and its asymptotic form, m = 10,
N = 200, ⌫1 = 1.1, p = [1, . . . , 1]T , y ⇠ K⌫ where K⌫ is a multivariate
K-distribution with shape parameter ⌫ = 0.1 and covariance matrix M.

B. Evaluation of performances for SIRV noise in the cell under
test

When the cell under test contains SIRV noise, the PDF
pH(M) of H(M) under H0 is still given by (4) because
of the homogeneity of the function H(.) by CES or SIRV
noise family. The PFA-threshold relationship is therefore still
given by (44). Under H1 hypothesis, the PDF of pH(M) of
H (M) has been derived and is given by (21), leading to the

final expression of the asymptotic distribution fa
H
(

cM
)

(u) of

H
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⌘
:
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(u)=
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0
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The final Probability of Detection expression if then obtained
by evaluating Pd = P

⇣
H
⇣
c
M

⌘
> �|H1

⌘
:

Pd = 1�
Z 1

0
p⌧ (⌧) d⌧
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(47)

C. Evaluation of performances for CES noise in the cell under
test

When the cell under test contains SIRV noise, the PDF
pH(M) of H(M) under H0 is still given by (4) because of
the homogeneity of the function H(.) by CES or SIRV noise
family. The PFA-threshold relationship is therefore still given
by (44).
Under H1 hypothesis, the previous developments are not valid
for any CES distributed cell under test because this latter can
be written as y = ↵p+⌧ u = ↵p+⌧ x/||x||. We can remark
that x and ⌧/||x|| are not independent. The conditioning
approach proposed in this paper is hence not at all valid.
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Fig. 2. Comparison between Pd and SNR � relationships for the NMF, for
the ANMF built with Tyler’s estimator and its asymptotic form, m = 10,
N = 500, ⌫1 = 1.1 and Pfa = 10

�3, p = [1, . . . , 1]T , {yi}i2[1,N ] ⇠
K⌫ where K⌫ is a multivariate K-distribution with shape parameter ⌫ = 0.1
and covariance matrix M and y ⇠ CN (↵p,M).

V. SIMULATIONS

A. Gaussian noise in the cell under test
In this section, we set the Toeplitz covariance matrix M

whose entries are defined as Mij = ⇢|i�j| where ⇢ is equal
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Fig. 4. Comparison between Pd and SNR � relationships for the NMF,
the ANMF built with Tyler’s estimator and its asymptotic form, m = 10,
N = 500, ⌫1 = 1.1 and Pfa = 10

�3, p = [1, . . . , 1]T , y = ↵p+c where
c ⇠ K⌫ where K⌫ is a multivariate K-distribution with shape parameter
⌫ = 0.5 and covariance matrix M
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C. Evaluation of performances for CES noise in the cell under
test

When the cell under test contains SIRV noise, the PDF
pH(M) of H(M) under H0 is still given by (4) because of
the homogeneity of the function H(.) by CES or SIRV noise
family. The PFA-threshold relationship is therefore still given
by (44).
Under H1 hypothesis, the previous developments are not valid
for any CES distributed cell under test because this latter can
be written as y = ↵p+⌧ u = ↵p+⌧ x/||x||. We can remark
that x and ⌧/||x|| are not independent. The conditioning
approach proposed in this paper is hence not at all valid.
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CONCLUSION
Derivation of the asymptotic performance of the robust ANMF built with any M-
estimator 
Good approximation validated both by Monte-Carlo and by the correction of the degree of 
freedom in the Gaussian ANMF statistics 
Valid for quite small number of secondary data


