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GOAL OF THE PAPER

Let us considering the following binary hypotheses test:

H()Z Y = C,
Hll

y =c+ap,
where {Ci}z'e[l,N] are N signal free secondary data, p a known steering vector and where
< is the unknown amplitude of the target to be detected.
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The goal of this paper is to derive the asymptotic distributions of the robust Adaptive
Normalized Matched Filter (ANMF) built with any M-estimator under both Ho and Hj
hypotheses when the additive noise is modeled by Complex Elliptically Symmetric
(CES) distributions :

H(M):( A

MODEL OF THE BACKGROUND
Complex Elliptically Symmetric Distributions [Kelker 70, Olilla 03]:
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fe(e) = M| hpy, (¢ M~ c)
@ c is a random complex m-vector characterizing each pixel of the SAR image,

¢ M is the scatter matrix (covariance, up to a scalar factor),

¢ hm(.), usually called density generator, is assumed to be known,

¢ This model takes into account the spatial heterogeneity and/or non-Gaussianity of
the noise (from cell to cell, pixel to pixel) by the texture PDF p(7)

¢ The scatter matrix M can model the temporal fluctuations structure of the noise (ICM),
the correlation between polarimetric/interferometric channels, the correlation existing
within the spectral bands, ...

ROBUST ESTIMATION OF THE BACKGROUND PARAMETERS

For an unknown but deterministic texture parameter, the Maximum Likelihood Estimate
(MLE) Mgpp of the Covariance M, called the Fixed Point or Tyler's M-estimator, is the
solution of the following implicit equation:
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The Fixed Point belongs to the family of M-estimators (Robust Statistics [Huber 1964,
Maronna 1976, Yohai 2006]) in the more general context of CES distributions:
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u(.) is a weighting function acting on the quadratic form,

Existence and uniqueness of the solution have been proven provided u(.) satisfy given
conditions [Maronna 1976],

Robust to outliers, to the presence of strong targets or high impulsive samples in the
reference cells,

Generalization of MLEs: u(t) = —h! (t)/hm(t)
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ASYMPTOTIC PROPERTIES OF M-ESTIMATORS

For any M-estimators and any function H(.), homogeneous of degree 0, i.e. satisfying the
property H(M)=H(aM)

@ VN (VeC(M — M)) -4, GeN (02,1, 201, Qs )

Sy =vi M @M + vy vec(M) vec(M) £,
Q= v (MT @ M) K + v vec(M) vec(M)?

where

o VN (H (M) = H(M)) =% GCN (0,1, 1, 1),

S =uv HM)M! @ M) H' (M),
Where Oy = vy H'(M) (MT © M) K H'(M)T
, OH (M)
H'(M) = Ovec(M)

N
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Q v1 = 1,v9 = 0 for the Sample Covariance Matrix M sc s = N Z Ck ckH
k=1

Q@ 1= (m + 1)/m, Vg = —(m + 1)/m2 for Tyler’s estimator
These important properties mean that:

© any Me-estimator built with N secondary data (asymptotically) behaves like the
SCM in Gaussian environment but with a slight smaller degrees of
freedom N/vq,

< any function H built with a M-estimator behaves like those built with SCM in
Gaussian environment but with a slight smaller degrees of freedom N /v .

When considering the ANMF test which is homogeneous of degree 0,
X H N1 v|2 H
- (M) _ A p Yl A =5\
(pH M—lp) (yH N[-1 y) H,
One has the following result
VN (H(N) — H(M)) =5 N (0, Z),

where X = Qpy = 214 HM) (H(M) — 1)°

Conditioned to the cell under test y, one obtains the following asymptotic behavior of the ANMF

H (M) N BV, %H(M) (H(M) — 1)

& Conditionally to a cell under test y containing Gaussian noise

pH(M) (U) = 6_5 Bl,m_l(u) 1F1 (m, 1; u5) where o = 042 pHM_l P

& Conditionally to a cell under test y containing SIRV noise

o0 uo
PrMM) (1) =/ e By o1 (u) 1 Fy (m,l; T> pr(7)dT.
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PERFORMANCE ANALYSIS OF ANMF BUILT WITH M-ESTIMATORS

& Conditionally to a cell under test y containing Gaussian noise
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& Conditionally to a cell under test y containing K-distributed noise

ASYMPTOTIC PROPERTIES OF ANMF BUILT WITH M-ESTIMATORS
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& Derivation of the asymptotic performance of the robust ANMF built with any M-
estimator
& Good approximation validated both by Monte-Carlo and by the correction of the degree of
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CONCLUSION

freedom in the Gaussian ANMF statistics
& Valid for quite small number of secondary data
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