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4 ABSTRACT N

In this paper, a simultaneous sparsity representation-based binary hypothesis (S-
SRBBH) model for target detection in hyperspectral image (HSI) is proposed. The S-
SRBBH exploits the interpixel correlation within neighboring pixels in HSI, and then,
each test pixel is represented by only the background dictionary (A4;) under null
hypothesis or from the union of A, and target dictionary (A4;) under alternative
hypothesis. Usually, an inner window region (IWR) centered within an outer window
region (OWR) contribute in constructing A4, . Indeed, the use of IWR has a huge effect
on the detection performance since it encloses the targets of interests, but its use
requires the information of the size of the targets which is usually hardly available. That
IS why, this paper also serves to construct 4, without IWR by exploiting the low-rank
and sparse matrix decomposition (LRaSMD) technique to decompose the HSI into low-
rank background HSI and sparse target HSI. Then for each test pixel, a concentric
window is located on the low-rank background HSI, and all the pixels (except the center
pixel) within the window contribute to form A4,. Two real HSIs are used to demonstrate
that S-SRBBH achieves good target detection especially when the LRaSMD technique
IS exploited to construct 4,

INTRODUCTION TO HYPERSPECTRAL IMAGERY

What is a hyperspectral image (HSI)?:

T

X = [x11x2' lxp]

spatial

spatial
Fig. 1. HSI example

An airbone hyperspectral imaging sensor consists of simultaneously acquiring the same
spatial scene in a contiguous and very narrow (10 — 20 nm) spectral wavelength (color)

bands [1][2]. The result is thus a 3-D data cube which provides both spatial and spectral
information. Thanks to the narrow acquisition, the HSI could have hundreds of
thousands of spectral bands.

Each pixel x in HSI is represented as a p-dimensional vector, where p denotes the total
number of spectral bands.

Hyperspectral Target detection:

With the rich information afforded by the high spectral dimensionality, hyperspectral
target detection is not surprisingly one of the most important applications of HSI, where
each pixel is labeled as target or background based on its spectral signature
[1,2,3,4,5,6,7]. Usually the detection is built using a binary hypothesis testing model:

Hy: x = only background (target absent)

H,: x = target + background (target present)
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4 MAIN CONTRIBUTIONS (1/2) N

Our S-SRBBH model is as follows:

It is expected that for real world HSI, neighboring pixels usually consist of similar
materials and thus have similar spectral characteristics [8]. In this case, all the pixels in
a small neighborhood can be simultaneously represented as a sparse linear combination
of the common training samples but weighted with different coefficients.

We suppose a matrix X = [x4,X,, ..
the neighborhood.

., Xg] € RP*9, where g is the number of pixels in

 IfxeHy:

_ b b b
Xy =C,1d1 +C a3 + ..+ Cq Ny Ay,

— b b b

X=[ab, ab, ...a% 1[c1, €z ... g1 = ACy  |(1)

where aP | ab, ..

.,aﬁb are the background training samples, N,, is the total number
of background training samples, A, € RP*Nb € e RNb X4,

e IfxeHy:
— A b / b / b
X;1=C,p a3+t Cpat+ ..t N, Ay,

t t t

— I b / b ; b
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X =[a?, ab, ...,aﬁb] [ci, €z, ..., €q]

+[af, a3, ....ax,] [21,2Z; ..., Zg] (2)

=[A, Al (D) =As.

where a! | at, ...,atNt are the target training samples, N; is the total number
of target training samples, A, e RP*Nt, C{ e RNb X4, Z.e RNtX4d, A ¢ RP X (No+No)
and S e R(Nb+Ne) xq

Both C,, and S stand to be sparse in rows:

é Y

Cy = argming, |IX — ApCollr St [IColloa<K, |(3)

S = argming||X — A S||F S.t. 11102 < Ko

\ v

(3b)

where K, and K, denote the upper bound on the sparsity level (we assume K, = K, )
and ||.||o 2 is the Ly »-norm that counts the number of non-zero rows in the matrix.
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Sub-problems (3a) and (3b) are non-convex and NP-HARD =» we solve them using the
Simultaneous Orthogonal Matching Pursuit (SOMP) greedy algorithm [9].

We obtain our detector:

~ - H,
Ds_srpeu(X) =X = ApCp |l = IX—AS|. 2 v |(4)

0

where vy is a prescribed threshold value.

Construction of the background and target dictionaries:
« A, construction:

There can be a priori information about the target of interest to be detected.
Therefore, the A; is known and can be constructed using the MORTRAN
atmospheric modeling program [10] to generate a large number of target signatures
under various atmospheric conditions. In addition, the A; can also be formed by the
USGS [11] and the ASTER [12] digital spectral libraries.

In our work, we construct it from some of the target pixels present in the global
Image scene.

* Ay construction:

1. The targets in HSI always occupy a small part of the entire image and thus are
characterized by the sparsity property (in the spatial domain) [13][14].

2. The background is usually assumed to have a low rank property [13][14].

Based on the aforementioned analysis, the Low rank and Sparse Matrix
Decomposition (LRaSMD) technique [15][16] is exploited to construct A,

Step 1

LRaSMD process

OWR

IWR

Test pixel

()

Concentric window

(b)

Fig. 2. A}, construction: (a) Traditional method (b) via the LRaSMD technique

For any HSI of size h x w X p, where h and w are the height and width of the image
scene, respectively, and after rearranging it into a two-dimensional matrix D €
R®*P where e = h x w, the model of HSI can be modeled as D = B + E + N, where
B is the (low-rank) background matrix, E is the (sparse) target matrix, and N is
usually assumed to be independent and identically distributed Gaussian noise.

After that the background matrix B and the target matrix E are being estimated
using the SSGoDec optimization algorithm [17], we use only the estimation of B
and we resize it to a cube of the same size h x w x p (we shall call it as low-rank
background HSI). Next, for each test pixel, we create a concentric window (on the
low-rank background HSI), and all the pixels (except the center pixel) within the
window will each contribute to one column in Ay,.

4 RESULTS R

The first HSI (DATA)[18] is an 201x200 image and consists of 167 spectral bands. We
have only used a small zone (pixels in rows 1 to 150 and columns 80 to 180) for the
detection. The main background materials of the selected zone are road and vegetation.
There are three cars on the road and we will consider them as targets to be detected.
Figure 3 exhibits the mean power in dB over the 167 bands.

The second HSI is the Pavia Center City (PaviaC) [14]. It is a 1096 x 1096 image and
consists of 102 bands in wavelengths ranging from 430 to 860 nm. We used a small
zone (pixels in rows 1 to 130 and columns 223 to 350) for the detection. The main
background materials of this zone are bridge and water. There are some vehicles on the
bridge and bare soil near the bridge pier and hence they will be selected as targets to be
detected. Figure 8 exhibits the mean power in dB over the 102 bands.

» Case 1: using Figure 2(a) with IWR of size 5 x 5,
» Case 2: using Figure 2(a) but without IWR (and by excluding the test pixel),
» Case 3: using Figure 2(b).

We evaluate the target detection performance of S-SRBBH by comparing it to some
others (AMF [19][20], ANMF [21], MSD [22] and SRBBH [23]) on the three cases.

Note that if g = 1, we return back to the SRBBH model. Hence, the S-SRBBH can be
considered as a generalization of SRBBH when q > 1.

The detection performances are evaluated quantitatively by the receiver operating
characteristics (ROC) curves [14][23] which describe the probability of detection (P,)
as a function of probability of false alarm (P¢,).

In Case 1, the OWR is of size 15 x 15 = N, = 200 = A, € RP X200,

In both Case 2 and 3, the concentric window is of size 15x 15 =» N, =224 =» A, €
RP X224

We select N, =9 A, e RP*°,

We set K, = K; = 8. We choose g = 25, that is, a neighborhood of size 5 x 5.
Importantly, the same Case (Case 1, 2 or 3) applied to construct Ay, for S-SRBBH is
also applied to all the other detectors in comparison.

The covariance matrix in AMF, ANMF is estimated via the Fixed Point (FP) estimator
[24] and then shrinked towards the identity matrix [25].

In the case of MSD, the eigenvectors corresponding to the significant eigenvalues of the
FP matrices obtained from A, and Ay, are used to generate the basis for target and
background subspaces, respectively [26].
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Fig. 6. ROC: Case 2

Fig. 7. ROC: Case 3

e 5 — 5 SREEH (AUC=0 9308
: — ‘SREBH (AUC=0.9620) |
—- AMF [ALIC=0.9175)
* ANMF (AUC = 0.7998) i

£ — 5-SREBH [AUC=05458)
: — SREEH (AUC=0.8800)

—- AMF [ALC=08864)

& ANMF (AUC=0.TT04)

- 1—5-SRBBH (AUC=06215)
* J— SRBBH (AUC=0.7284)
—AMF (AUC=0.8834)

® ANMF (AUC=0.7604)

A =0.00T8
=i |- 5—SKEBBH Caze 3

—- MSD [AUC=0.5882) == MSD (AUC=0.8216) ==~ M5D [AUC = 0.919T) |

D T & Ed B
e - o o

Fig. 8. PaviaC (average) Fig. 9. AUCs: Case 3 Fig. 10. ROC: Case 1 Fig. 11. ROC: Case 2 Fig. 12. ROC: Case 3

4 CONCLUSION N

In this paper, we first developed the S-SRBBH model that is similar to SRBBH but it
further considers the interpixel correlation in hyperspectral imagery. Then, we served to
achieve good target detection even without using an IWR in the Ay construction. This is
done by first, exploiting the LRaSMD technique based on the SSGoDec optimization
algorithm to approximately separate the given HSI into low-rank background HSI and
sparse target HSI. Second, for each test pixel, a concentric window is used on the low-
rank background HSI and the pixels (except the center pixel) within the window are
used to form A;,. Two real hyperspectral images demonstrate that S-SRBBH has higher
AUC values than of all the other detectors in comparison for both Case 1 and Case 3. In
addition, exploiting the LRaSMD to construct A, for both S-SRBBH and SRBBH
greatly improves their target detection performances as shown between Case 2 and Case
3.
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