

FALSE-ALARM REGULATION FOR TARGET DETECTION IN HYPERSPECTRAL IMAGING

Joana Frontera-Pons¹, Frédéric Pascal^{1,} Jean-Philippe Ovarlez^{1,2} (1) Supélec/SONDRA, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France (2) French Aerospace Lab, ONERA DEMR/TSI, Palaiseau, France

joana.fronterapons@supelec.fr

Hotteling T

PROBLEMS DESCRIPTION

DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES

To detect targets (characterized by a given spectral signature p) - Regulation of False Alarm.

The hyperspectral data are positive as they represent radiance or reflectance.

- In the adaptive detection framework, a mean vector and has to be included in the statistical model and estimated jointly with the covariance matrix,
- Some hyperspectral data are proven to be **spatially hetereogeneous** in intensity and/or **cannot be only** characterized by Gaussian statistic.

TARGET DETECTION SCHEMES - ANMF

Derived under Gaussian hypothesis, lt is invariant under scale change of the observation vector, lts false alarm is independent of the covariance matrix, CFAR-matrix.

NORMALIZED MATCHED FILTER

PFA-THRESHOLD RELATIONSHIP

Known covariance matrix and mean vector

$$\Lambda_{NMF} = \frac{|\mathbf{p}^{H} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})|^{2}}{(\mathbf{p}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{p}) ((\mathbf{x} - \boldsymbol{\mu})^{H} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))} \overset{H_{1}}{\underset{H_{0}}{\gtrsim} \lambda}$$

$$PFA_{NMF} = (1 - \lambda)^{(m-1)}$$

A *m*-dimensional vector \mathbf{x} has a complex normal distribution, and if the probability density function exists, it is of the form:

$$f_{\mathbf{x}}(\mathbf{x}) = \pi^{-m} |\mathbf{\Sigma}|^{-1} \exp\{-(\mathbf{x} - \boldsymbol{\mu})^{H} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\}.$$

$$\sum_{\text{covariance matrix}}^{N} \max_{\text{mean vector}} \sum_{\text{mean vector}}^{N} \sum_{i=1}^{N} \mathbf{x}_{i} \quad \hat{\mathbf{\Sigma}}_{SCM} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{H}$$
The resulting Maximum Likelihood Estimates are : $\hat{\boldsymbol{\mu}}_{SMV} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \quad \hat{\boldsymbol{\Sigma}}_{SCM} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{H}$

COMPLEX WISHART DISTRIBUTION

Let $\mathbf{x}_1, ..., \mathbf{x}_N$ be an IID N-sample, where $\mathbf{x}_i \sim \mathcal{CN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. And let $\hat{\boldsymbol{\mu}} = \hat{\boldsymbol{\mu}}_{SMV}$ and $\hat{\mathbf{W}} = N \hat{\boldsymbol{\Sigma}}_{SCM}$ referred to as the Wishart matrix. Thus, one has:

 $\widehat{\Psi}$ and \widehat{W} are independently distributed;

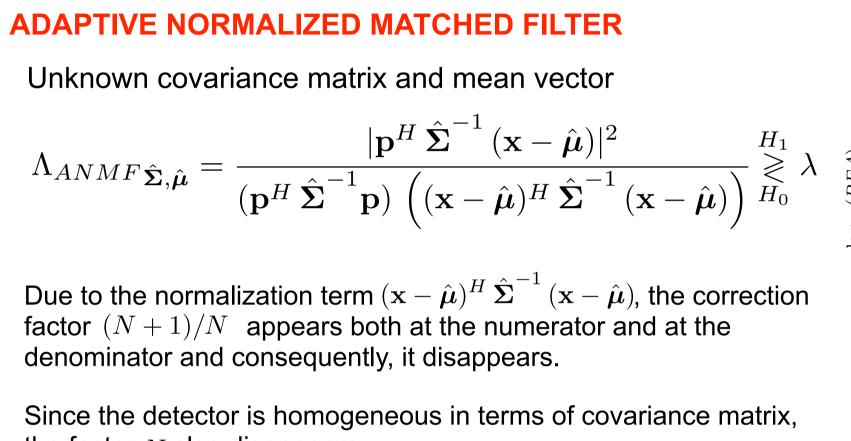
$$\bigcirc \hat{\boldsymbol{\mu}} \sim \mathcal{CN}\left(\boldsymbol{\mu}, \frac{1}{N}\boldsymbol{\Sigma}
ight)$$

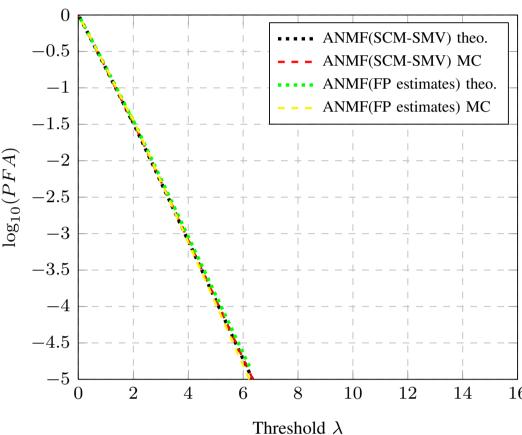
ADAPTIVE NORMALIZED MATCHED FILTER

Unknown covariance matrix and known mean vector

$$\Lambda_{ANMF\hat{\boldsymbol{\Sigma}}}^{(N)} = \frac{|\mathbf{p}^{H}\hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}-\boldsymbol{\mu})|^{2}}{(\mathbf{p}^{H}\hat{\boldsymbol{\Sigma}}^{-1}\mathbf{p})\left((\mathbf{x}-\boldsymbol{\mu})^{H}\hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)} \overset{H_{1}}{\stackrel{\geq}{\gtrsim} \lambda}$$

$$PFA_{ANMF\hat{\Sigma}} = (1-\lambda)^{N-m+1} {}_2F_1(N-m+2, N-m+1; N+1; \lambda)$$





the factor N also disappears.

 $PFA_{ANMF\hat{\Sigma},\hat{\mu}} = (1-\lambda)^{N-m} {}_2F_1 \left(N-m+1, N-m; N; \lambda\right)$

 $\mathbf{\widehat{W}} \sim \mathcal{CW}(N-1, \mathbf{\Sigma})$ is Wishart distributed with N-1 degrees of freedom.

TARGET DETECTION SCHEMES - AMF

Derived under Gaussian hypothesis,

lt is the optimal linear filter in terms of SNR maximization under Gaussian assumption, lts false alarm is independent of the covariance matrix, **CFAR-matrix**.

MATCHED FILTER

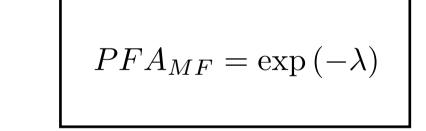
PFA-THRESHOLD RELATIONSHIP

20

25

Known covariance matrix and mean vector

$$\Lambda_{MF} = rac{|\mathbf{p}^H \, \mathbf{\Sigma}^{-1} \, (\mathbf{x} - oldsymbol{\mu})|^2}{(\mathbf{p}^H \, \mathbf{\Sigma}^{-1} \, \mathbf{p})} \mathop{\gtrless}\limits_{H_0}^{H_1} \mathcal{X}$$



ADAPTIVE MATCHED FILTER

Unknown covariance matrix and known mean vector

$$\Lambda_{AMF\hat{\Sigma}}^{(N)} = \frac{|\mathbf{p}^H \hat{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})|^2}{(\mathbf{p}^H \hat{\Sigma}^{-1} \mathbf{p})} \underset{H_0}{\overset{K_1}{\geq} \lambda} \left[PFA_{AMF\hat{\Sigma}} = {}_2F_1 \left(N - m + 1, N - m + 2; N + 1; -\frac{\lambda}{N} \right) \right]$$

ADAPTIVE MATCHED FILTER

Unknown covariance matrix and mean vector

$$\Lambda_{AMF\hat{\boldsymbol{\Sigma}},\hat{\boldsymbol{\mu}}}^{(N)} = \frac{|\mathbf{p}^{H}\hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}-\hat{\boldsymbol{\mu}})|^{2}}{(\mathbf{p}^{H}\hat{\boldsymbol{\Sigma}}^{-1}\mathbf{p})} \stackrel{H_{1}}{\underset{H_{0}}{\gtrsim} \lambda$$

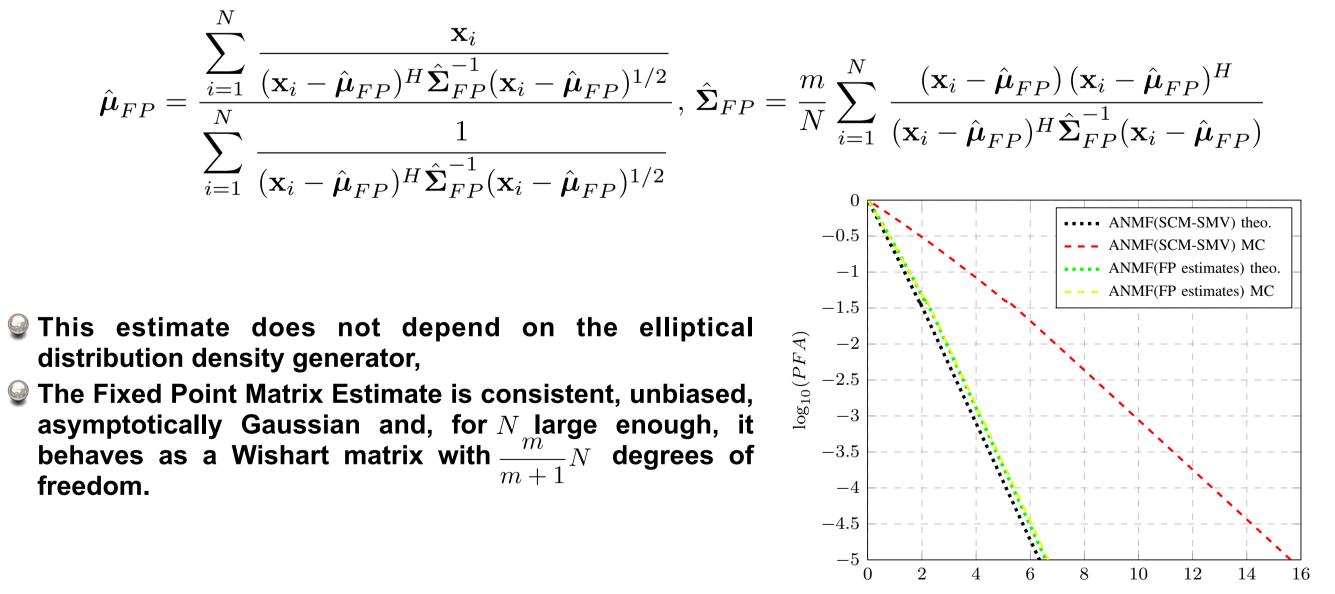
ROBUST TARGET DETECTION - ANMF

In order to take into account **heterogeneity** and **non-Gaussianity** for background modeling, the class of **Elliptical Distribution Model** is considered:

 $f_{\mathbf{x}}(\mathbf{x}) = |\mathbf{\Sigma}|^{-1} h_m \left((\mathbf{x} - \boldsymbol{\mu})^H \, \mathbf{\Sigma}^{-1} \, (\mathbf{x} - \boldsymbol{\mu}) \right)$ density generator

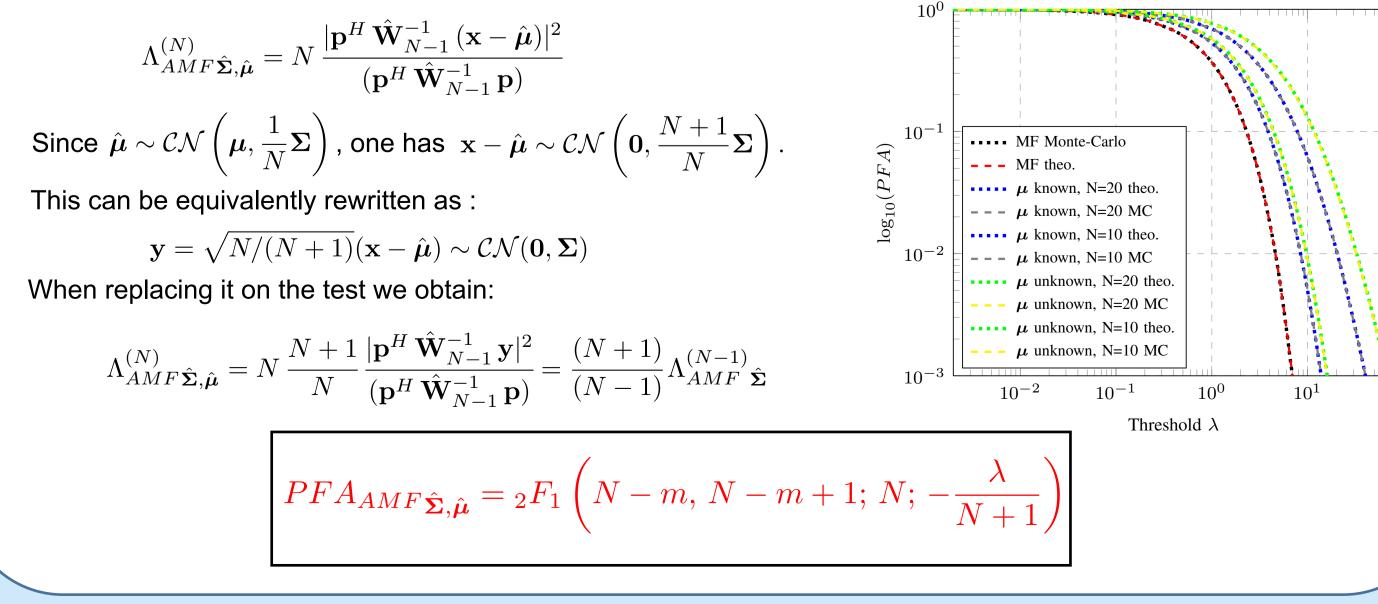
- Due to its invariance properties ANMF detector provide the best detection results in non-Gaussian environment,
- One has to introduce Robust Estimation procedures to achieve robustness in the detection scheme.

FIXED POINT ESTIMATORS



Firstly remark that as we jointly estimate the mean and the covariance matrix we lose a degree of freedom.

Let us know consider the AMF replacing $\hat{\Sigma}_{SCM}$ by the Wishart matrix \hat{W}_{N-1} :



$PFA_{ANMF-FP} = (1-\lambda)^{\frac{m}{m+1}(N-1)-m+1} {}_{2}F_{1}\left(\frac{m}{m+1}(N-1)-m+2, \frac{m}{m+1}(N-1)-m+1; \frac{m}{m+1}(N-1)+1; \lambda\right)$

CONCLUSIONS

- The AMF and the ANMF have been analyzed in the case where both the covariance matrix and the mean vector are unknown and need to be estimated,
- Closed-form expressions for "PFA-threshold" relationships have been derived under Gaussian assumptions,
- Additionally, Kelly detector has been studied for non-zero mean Gaussian distribution but non-closed form for "PFA-threshold" relationship can be obtained,
- In Elliptical distributions framework, the joint robust location and scale estimators have been proposed and they provide better false-alarm regulation and an improvement for detection in heterogeneous and/or non-Gaussian background.

Threshold λ