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Abstract—This paper studies a statistical model for het-
eroscedastic (i.e., power fluctuating) signals embedded in white
Gaussian noise. Using the Riemannian geometry theory, we pro-
pose an unified approach to tackle several problems related to
this model. The first axis of contribution concerns parameters
(signal subspace and power factors) estimation, for which we derive
intrinsic Cramér-Rao bounds and propose a flexible Riemannian
optimization algorithmic framework in order to compute the max-
imum likelihood estimator (as well as other cost functions involving
the parameters). Interestingly, the obtained bounds are in closed
forms and interpretable in terms of problem’s dimensions and SNR.
The second axis of contribution concerns the problem of clustering
data assuming a mixture of heteroscedastic signals model, for
which we generalize the Euclidean K-means++ to the considered
Riemannian parameter space. We propose an application of the
resulting clustering algorithm on the Indian Pines segmentation
problem benchmark.

Index Terms—Covariance matrices, probabilistic pca,
heteroscedastic data, robust estimation, Riemannian optimization,
clustering.

I. INTRODUCTION

RINCIPAL Component Analysis (PCA) [1] is a standard
P tool used in signal processing and machine learning liter-
ature for dimensional reduction and statistical interpretation. In
this scope, Probabilistic PCA (PPCA) refers to a reformulation
of PCA as a parametric estimation problem. This approach
was proposed in [2], which considered a model of white Gaus-
sian noise (WGN) plus a linear mapping of a low-dimensional
centered Gaussian latent space with unit variance (the signal
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contribution). The maximum likelihood estimate (MLE) of the
signal subspace basis corresponds to the sample covariance
matrix’s (SCM) first principal eigenvectors.

Leveraging the statistical formulation of PPCA allows going
beyond Gaussian models. For example, the two independent
contributions (either signal or noise) can be generalized to
the distribution of Compound Gaussian (CG). CGs represent
a family of elliptical distributions (cf. review in [3]) that en-
compasses numerous standard heavy-tailed models, such as the
multivariate ¢-distribution. Its stochastic representation involves
a Gaussian vector multiplied by an independent random power
factor referred to as fexture. In order to be robust to various
underlying distributions, this parameter is often assumed to
be unknown deterministic, which yields the so-called scaled
Gaussian model [4], also referred to as heteroscedastic (HS) [5].
In this scope [6]—[8] considered HS distributions for the signal
component to perform robust PCA for non-Gaussian signals.
Conversely, [5] considered Gaussian signals embedded in white
CG noise to model data where some samples are noisier than
others. Alternatively, [9] uses a t-distribution to model both of
the contributions. Finally, [10] considered a mixture of three
components to account for potential outliers (the thirds contri-
bution being orthogonal to the signal subspace).

In the following, we will focus on HS plus WGN model [6]—
[8] which is interpreted as impulsive signals (power variation
across samples) plus thermal noise due to electronics. A common
relaxation of this model is to assume that eigenvalues of the
(low-rank) signal covariance matrix are identical as in [11],
[12]. Indeed, this hypothesis is relevant since we still estimate
the power variations which contain, the information of the
eigenvalues. Moreover, [6], [10], [13] showed that neglecting
the differences between eigenvalues does not harm the accuracy
of subspace estimation while allowing for a more meaningful
statistical interpretation [11].

Yet, the previous studies still left some unanswered issues:
first, the algorithms in [11], [12] are dedicated bloc-coordinate
descent type. Thus, they can be limited in practice, as they
offer no generalization to on-line (or stochastic) settings. It
would then be relevant for the estimation problem to be cast
in a more generic optimization framework that can account for
the parameter structure (e.g., subspaces, vectors with strictly
positive values). Second, the MLE of the considered model is
the solution of a nonconvex problem with no guarantee for global
optimality. Thus, it would be interesting to derive performance
bound in order to assess for various algorithms performance.
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Such bound is not trivial for these models because structured
parameters require accounting for specific constraints, as well
as for the use of relevant distances as error measure (e.g. to ensure
for some invariance). Finally, one can inquire if the features of
such statistical model can be meaningfully leveraged in machine
learning tasks such as clustering.

Therefore, this paper conducts a study of the HS plus WGN
model [11], [12] through the prism of Riemannian geometry, as
this this theoretical framework allows us to propose a unified
view to tackle the aforementioned questions. The contributions
concern the following directions:

1) Riemannian optimization framework for model features:
HS plus WGN model involves parameters that are textures
(power factors) and a low-rank subspace. Endowing this param-
eter space with a Riemannian metric yields a Riemannian mani-
fold, which can be leveraged in an optimization framework [14].
In this context, we consider the model’s Fisher information
metric (FIM). We then obtain several essential tools (tangent
space, Riemannian gradient, retraction) from established results
on the Grassman manifold [15]. These tools are then used to
propose algorithms in order to compute the MLE, as well as
the Riemannian means used in clustering algorithms (cf. next
points). We notably propose a Riemannian stochastic gradient
descent algorithm [16] suited to large datasets (or online set-
tings [17]).

11) Performance bounds: We show that the FIM of the consid-
ered model (and its corresponding Riemannian distance) permits
to derive closed forms and decoupled intrinsic Cramér-Rao
lower bound (iCRLB) for the model’s parameters. These lower
bounds represent partial extensions of [7] (Euclidean CRLB in
the case of colored signals) to the iCRLB framework of [18].
Interestingly, the proposed approach offers a new interpretable
result regarding problem dimensions and signal-to-noise ratio
(SNR). Then, we assess the performance of different estimation
algorithms numerically. We show that both the proposed estima-
tion algorithm and the previously established block-coordinate
algorithm [12] are statistically efficient for the signal subspace
estimation. In a low SNR scenario, they also both outperform
subspace estimated by singular value decomposition (SVD) in
terms of MSE.

117) Applications to clustering: we propose a Riemannian
clustering algorithm for data following the HS plus WGN model.
Indeed, the use of the Riemannian geometry of statistical fea-
tures in order to classify batches of samples has already demon-
strated its merits; see e.g. [19], [20] for such methods based on
covariance matrices. Here, we extend such methodology to the
considered statistical model using the principle of K-means++
[21], which optimizes the within-cluster sum of squares (WCSS)
iteratively. Replacing the Euclidean distance by a Riemannian
one allows for this clustering algorithm to takes into account the
geometrical constraints of the parameter space (invariance prop-
erties of subspaces and positivity of powers), which is shown to
improve the clustering performance on the hyperspectral image
Indian Pines benchmark [22]. We also show that this replacement
still preserves the upper bound on the expectation of the WCSS
in [21], which guarantees (in expectation) a clustering close to
the optimal one.

6547

This paper is organized as follows. Section II presents the sta-
tistical model and the parameter space as a manifold. Section III
presents a Riemannian geometry for this manifold, and essential
tools driven from two possible metrics. Section IV presents
results related to parameter estimation (MLE algorithms based
on Riemannian optimization and iCRLBs). Section V presents
a clustering algorithm (Riemannian K-means++) adapted to the
considered parameter manifold. Numerical results are presented
in Section VI. Appendix A contains the technical proofs.

II. MODEL AND PARAMETER SPACE
A. Heteroscedastic Signal Model

Let {x;}I'_; be a data set of p-dimensional complex vectors.
We consider a k-dimensional linear signal representation em-
bedded in white Gaussian noise, i.e. the model:

tLUg+n, (1)

where g € C* is the signal of interest, n ~ CA(0,021,) is a
white Gaussian noise, and U € St,, ;; is an orthonormal basis of
the signal subspace, where

St = {U e CP*: U"U =1,,}, 2)

denotes the complex Stiefel manifold. In array-processing litera-
ture it is classically assumed that g, ~ CA/(0, X), which yields
a low-rank structured Gaussian model, also referred to as the
(Gaussian) Probabilistic PCA (PPCA) model in [2]. Note that

these models often rely on the unconstrained identification x 4
W §+mn, with W = USY? and g; ~ CN(0,I). However,
using U € St ;. is here more coherent with later developments.

In order to model heavy-tailed signals (e.g., outliers or power
discrepancies), several works [6]—[8], [11] considered general-
izing the Gaussian PPCA to Compound Gaussian (CG) distri-
butions [3]. Such signal model yields

zi|r £ 7 Ug; +ni, 3)

where g, ~ CN(0,X) and 7; € R is a random power factor
referred to as texture, which is statistically independent of g;.
Starting from this representation, we make the following addi-
tional assumptions:

e Known noise floor: The variance o is considered known. If
o2 is unknown in practice, it can be accurately pre-estimated by
averaging lowest eigenvalues of the SCM [2]. The hypothesis
of known o2 simplifies the exposition and does not change sig-
nificantly the performance in practice when compared to a joint
estimation scheme (see e.g. [23]). Without loss of generality,
such assumption allows us to set 02 = 1.

o Unknown deterministic textures: In order to provide a model
that is robust to any underlying CG distribution, it is often
assumed that the textures {7}, are unknown deterministic
rather than assigning it a pre-determined probability density
function [6]-[8]. Such distribution is then referred to as scaled
Gaussian model [4] or heteroscedastic signals [5].

e [sotropic signal: We consider the relaxation from [11],
[12], assuming that the eigenvalues of the signal covariance
matrix are identical, i.e., g; ~ CN(0,05I}). In conjunction
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with the unknown deterministic textures assumption, this allows
the change of variable 7, = 0,7;, and thus setting o, = 1 without
loss of generality. While apparently not realistic, this hypothesis
is still representative since the average signal power information
is accounted for by the texture parameters. Moreover, [6], [10],
[13] showed that neglecting the differences between eigenval-
ues does not harm the accuracy of subspace estimation while
allowing for a more meaningful statistical interpretation [11].

Finally, we have the data {x;}?_, distributed as in (3) where
g; ~ CN(0,I) and n; ~ CN(0,I,). The unknown model
parameters are the textures {7;}}_; (denoted by the vector T €
(R*+)™) and the signal subspace, represented by a basis U €
St,, 1. The following section will recast this parameter space
as a manifold. This reformulation will then allow us to leverage
tools from the Riemannian geometry in order to derive distances,
intrinsic Cramér-Rao Bounds and optimization methods with a
unified view.

B. Manifold Approach to the Parameter Space

Due to their specific geometrical structure, the parameters
(U, 1) of model (3) can be embedded into the product manifold
Mo kn = Sty x (RTH)™. With this model, from M, j ,,, the
scaled covariance matrix in 7—[;’ T of sample x; is obtained

through the function

Bi: Myjon — Hit

(U,7)— I,+7,UU". @)

It follows that the negative log-likelihood corresponding to
model (3) is given, for all = (U, 7) € M, 1, by

I(0) = Zlog 0:0)| + 2 (5:0) " = )

The model (3) is ambiguous since the representation by the
basis U is invariant by rotation: for all O € U}, (where U}, is
the unitary group of degree k), (U O, 7) is equivalent to (U, 7),
i.e., it yields the same scaled covariance matrices in 7—[; . The
consequence is that the manifold M, j , is not optimal with
respect to the model of interest. In terms of optimization, for
instance for maximum likelihood estimation, it is possible to
exploit M, 1. , directly but it is advantageous to take into ac-
count the invariance. Moreover, to measure estimation errors or
perform geometrical classification and clustering, employing a
distance function onto M, j ,, is not ideal: the distance between
two equivalent points is not equal to zero. It thus appears very
attractive to take this invariance into account.

Fortunately, it is possible to naturally handle this rotation
invariance from a geometrical perspective. It is achieved by
considering the Grassmann manifold Gr,, ,, which is the set of
all k-dimensional subspaces of CP. The Grassmann manifold
can be identified to the quotient manifold [14], [15], [24]

Grpr = {{UO: O €Uy} : U € Sty 1.} (6)

From there, to optimally embed the parameters of model (3),
we construct the manifold M, ., = Grpx x (RT)™. This
manifold can be viewed as a quotient manifold of M, . , i.e.,
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it can be defined as
MPJC,H = {ﬂ-(é) : @ € -/Vp,k,n}a (7)

where, for all 6 = (U,r) € /Vp,k,n, the equivalence class is
defined as

7(0) = {(UO,T): O €Uy} (8)

Functions 1); defined onto /\7/!,;, %,n induce functions v; onto
My nsice. ;i (0) = ;(m(0)). Thus, ; in (3) is drawn as x; ~
CN(0,;(0)). It follows that the log-likelihood L in (5) defined
onto M,, 1., can also be defined onto M, . ,, by using functions
1p; instead of ;. This log-likelihood function is denoted L in
the following.

Besides acknowledging the model invariances, considering
M, i;.n as a manifold allows for advantageously exploiting
Riemannian geometry, i.e., the geometries of M,, 1 ,, induced
by Riemannian metrics. In particular for signal processing ap-
plications, it can be leveraged for:

1) Estimation: the Riemannian optimization framework can
be employed to compute maximum likelihood estimators
(Section IV-A) and Riemannian means (Section V) in
various practical scenarios.

2) Performance measuring: the Riemannian distance natu-
rally defines an error measure, which can then be bounded
using the framework of intrinsic Cramér-Rao bound [18].
This point will be detailed in Section I'V-B.

3) Machine learning: the Riemannian distance can also be
exploited to cluster and classify various data which follow
model (3), which will be further discussed in Section V.

In order to achieve these, different geometrical objects are
needed. Section IIT will introduce these tools conditionally to
the choice of the Riemannian metric.

II. GEOMETRY OF My, 1, »,

Various choices of Riemannian geometries are available for
M, 1..n, entirely depending on the choice of the Riemannian
metric. Among different possibilities, one is optimal with re-
spect to the considered statistical model: the Fisher information
metric [25]. Indeed, it is derived from the log-likelihood func-
tion of the distribution at hand and thus perfectly captures the
particularities of the model. However, the geometry induced by
the Fisher information metric is often hard to fully leverage. One
has therefore to compromise and define an alternate geometry
(induced by a metric as close as possible to the Fisher one) in
order to obtain tractable expressions for the needed geometrical
tools.

In this section, we first provide an introduction on M, 1. ,,
viewed as a Riemannian quotient manifold in Section III-A.
We then study the Fisher information metric of likelihood (5)
and derive the geometrical objects needed for Riemannian op-
timization in Section III-B. However, required objects related
to Riemannian distances cannot be obtained in closed-form. An
alternate geometry using a decoupled metric (close to the Fisher
one) is thus proposed in order to achieve these in Section III-C.
The obtained results are summarized in Table I.
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TABLE I
SUMMARY OF THE GEOMETRIC TOOLS (AND THEIR INTENDED USE) OBTAINED FOR Mp,k:,n- SYMBOL ~ MEANS THAT IT IS NOT PROVIDED IN THIS PAPER BUT
THAT IT COULD BE EASILY DERIVED; AND SYMBOL X MEANS THAT IT IS COMPLICATED TO FIND AND REMAINS UNKNOWN.

Tools for Riemmanian optimization Tools for Riemannian distances
Metric Horizontal space Hz | Riemannian gradient | Retraction | Orthonormal basis of Hz | Distance | Exp. | Log.
Fisher information metric (12) (13) (15) (Prop. 2 for L) (16) ~ X X X
Decoupled metric (17) (13) ~ ~ Prop. 5 (18)-(19) | (21) (20)

TOMp,k,n Mp,k,n
Fig. 1.
/\7/lp,k7n. The set of all representations of 8 = 7(0) € My, ,n is the equiv-
alence class 7! (7 () C Mp,k',n- The tangent space Téj\i/lp,k,n can be

Ilustration of the quotient My, . , represented by elements of

decomposed into the vertical space V; = T um 1 (m()) and its orthogonal
complement, the horizontal space H, which provides proper representatives
for tangent vectors in Ty M, j 1.

A. My, 1. as a Riemannian Quotient Manifold

Since Gr, 1, is a quotient manifold of St, j, with respect to
the action of Uy, [15], My k. = Grp . x (RTT)™ is a quotient
of My k.n = St, . x (RTT)". To handle elements of M, j ,,,
which are equivalence classes {(UO, ) : O € Uy}, one usu-
ally exploits the canonical projection 7 : ./\7/lp7k,n — My kn in
(8). Equivalence classes are obtained through 7 as {(UO, 7) :
O €Uy} = m 1 (m(U, 7)) andeachelementd € M,, ;. ,, canbe
represented by any 6 = (U,7) € M, 1, such that § = 7(0).
In general, geometrical objects on M,, ;. , can be represented
by objects on M pk,n- A schematic illustration of the quotient
manifold is provided in Fig. 1.

The tangent space Ty M, j, , of § = () € M, 1, can be
represented by a subspace of the tangent space T@/VPA, %e,n- FITSt,
we note that

Téﬂp,k,n = TUStp,k % T-,—(R++)n
= {(€v,&,) TP xR UMgy +£5U =0} )

thanks to T;M,, 1., being a product manifold, and standard
results on St, ;, and (R*T)™ respectively. The tangent space
T;M, k., can now be decomposed into two complementary
subspaces: the vertical and horizontal subspaces [14]. The ver-
tical space is defined as the tangent space Ty~ ! (m(6)) of the
equivalence class 7 1(7(6)) at 0. In the case of M, j ,, the
vertical space at 0 is

V; ={(UA,0): AcH}, (10)

where Hj = {A € C**F . AT = —A} is the set of k x k
skew-Hermitian matrices. The orthogonal complement of the
vertical space V5 is the horizontal space Hj, which provides
proper representations of the tangent vectors in Tp M, i n:
there is a one-to-one correspondance between elements of these
two spaces. Note that the notion of orthogonal complement is
conditioned by the choice of an inner product (-,-); defined
on T35 My, 1., which will also turn M, . , into a Riemannian
manifold.

Indeed, a Riemannian manifold is a manifold endowed with
a Riemmanian metric (inner product defined for every tangent
space). In the case of a Riemannian quotient manifold, such
metric can be represented by a metric on M,, 1, ,,, i.€., an inner
product (-, -); defined for T;M,, ., at each point 6. Still, for
M, 1. to be properly defined as a Riemannian quotient mani-
fold, this metric on M p.k,n has to be invariant along each equiv-
alence class. In our case, forall O € Uy, 0 = (U,7) € Ai/lpyk,n,

g = (EU?ET) and 77 = (nU7 n‘r) in TéMp,k,ns we must have
<£a 77]>@ = <(£U0a€7')7 (77U0a777)>(Uo,r)~ (11)

The choice of such Riemannian metric on M,, 1, , will then
induce a specific geometry (and corresponding theoretical tools)
for this space.

B. Fisher Information Metric: Geometry for Optimization

First, we consider the geometry resulting from the Fisher in-
formation metric of corresponding to likelihood (5) on /Vp, k-
Since the statistical model is invariant along equivalence classes,
the corresponding Fisher metric satisfies (11). It thus induces a
Riemannian metric onto M, . ,. To do so, we first derive this
metric in Proposition 1.

Proposition 1 (Fisher information metric): The Fisher infor-
mation metric at § corresponding to the negative likelihood (5)
is, for all £, ne Té./vp,k,n,

€ MEM = 2nc, Re (Tr (&5 nw))

th(E o+ ) (o)),

12)
1o~ 72
h == .
where ¢ - ; T r
Proof: See Appendix Al. |

The part of the Fisher metric in the above proposition which
is related to U, i.e., the part that depends on components &¢;
and 7;, is equal to the classical metric on Grassmann [14],
[15], [24], up to the factor 2nc,. We can also note that this
factor does not affect the classical definition of the horizontal
space of the Grassmann manifold. This directly yields that the
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horizontal space H; in T3 M, 1, ,, associated with the metric of
Proposition 1 is

Hy ={(€uv, &) 13)

Unfortunately, the geometry of M, ;. ,, associated with the
Fisher information metric of Proposition 1 is complicated to
fully characterize. In particular, finding the geodesics of M, 1. »,
(curves of minimal length between two points in M, 1 ) is
very hard because of the factor ¢, in the metric. In this part,
we will focus on the use of the Fisher information metric in the
framework of Riemannian optimization [14]. Alternate tractable
geometric tools regarding geodesics and distance measurements
(Riemannian exponential and logarithm mapping, Riemannian
distance), will be obtained from a decoupled metric in Sec-
tion II-C.

We will consider optimization problems of the form

e CrF xR": U¢, =0}

1;11mmlze f(9) (14)

p,k,mn

for a cost function f : M, . , — R, induced byf : /V,,kn —
R invariant along equivalence classes (i.e., f = f o 7). In order
to perform first order Riemannian optimization algorithms, we
essentially need two tools: the Riemannian gradient and a re-
traction (operator transforming tangent vectors into points onto
the manifold) [14].

The Riemannian gradient grad f(6) of f at § =n(9) €
M, 1 n is represented by the Riemannian gradient grad f(0) of
f at@ € M, 1..,. By definition, the gradient is the only tangent
vector in Ty M,, . , satisfying

VE € TyMpkn, DF(0)[E] = (grad f(B), E)5™.

Note that this vector always belongs to the horizontal space
‘Hj due to the invariance of f along equivalence classes. In
upcoming sections, this definition of the Riemannian gradient
will then be used to construct descent direction depending on
the considered cost function and optimization algorithm.

To obtain a pointon M, . , fromadescent direction (vectorin
‘Hj) one needs a retraction, i.e., an operator g : Ty My, 1 n —
M, 1., Which maps tangent vectors onto the manifold. Such
retraction on M, 1, can be obtained by a retraction on
My k,n (denoted Ry : TyM,, 1., — M,y k,,) using the relation
Rg(€) = m(R;()). This requires two conditions

1) Re is a proper retraction on ./\/lp kont (V0 e /\/lp k,n and
& € TyMyin Ry(0) = 8 and DRy(0)[E] = E.

2) The induced retraction on M, ;. ,, invariant along the
equivalence classes: in our case, this translates into
7(Rg(9) = 7(Rwor ((€y0.£,)). for all O €U,
0= (U,7) € Mprnand§ = (§y,&;) € TyMy g n-

Notice that the notion of retraction does not depend on the
choice of the metric, so several options are generally available.
In this paper, we consider the following retraction from classical
results on St,, . [26] and (R*)". This retracion defined on
My foral 0 = (U,7) € My, and € = (€, €,) € H;
as

5)

(16)

R, (€ 1 e
Ré(g) = <XYH7T + ET + 27_c/1£;-_/2> 7
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where U + &;; = X XY is the thin SVD. Notice that for the
part that concerns 7, we have a second degree polynomin & . with
anegative discriminant, thus the resulting vector contains strictly
positive numbers. It can be checked that the two conditions are
satisfied, and this option was chosen for its numerical stability.

C. Decoupled Metric: Geometry for Distances

Riemannian distances can be used either for performance
assessment, or in machine learning algorithms (e.g. for clus-
tering). Their interest can notably be their natural invariances
with respect to the manifold and/or metric of interest. These
distances are obtained by measuring the length of geodesics,
which generalize straight lines onto manifolds while taking into
account the curvature induced by the metric and geometric con-
straints. Unfortunately the Riemannian distance induced by the
Fisher information metric of Proposition 1 cannot be obtained
in closed-form. To overcome this difficulty, we propose to use a
decoupled metric from the following definition.

Definition 1 (Decoupled metric): The Riemannian metric

(+,-).is defined, forall§ = (U, 7) € My xn.& = (£, &,) and
ﬁ = (nU7 777—) € TfMp,k,ns as
(€,7)5 = e (Tr (€0 nu))
+B(& o) morh), A

where o, 5 > 0.

Notice that the decoupled metric has a structure similar to
the Fisher information metric in Proposition Al: it consists in a
scaled combination of standard metrics on Gr,, ;, [14], [15], [24]
and (R*1)" [27]. The main difference is that the weights o and
[ remain constant in the decoupled metric, which will yield a
geometry from well-known results. Another particular interest is
that the flexibility regarding this factors allows emphasizing a pa-
rameter (subspace spanned by U or textures 7) in the considered
geometry. This is notably interesting for clustering applications
(see Section V) where we want to control the importance of each
feature.

First, one can check that the horizontal space at 0 in ./Wp, En
for the Riemannian metric in Definition 1 is the same as the one
given in (13) corresponding to the Fisher information metric of
Proposition 1. It is thus also denoted Hj in the following.

Second, we can deduce several geometric tools from classical
results about Gry, ; in [14], [15], [24] and (R*T)™ in [27].
The squared Riemannian distance between 6; = 7(f;) and
0y = m(f2) in M, 1, is given by

di/lp‘k,n (01,02) = Oéd%rp’k (U1,Usz) + 5d?R++)n (71, 7'2)(718)
where dérw and d?RH),L are the squared Riemannian distances

of Gr,, 1, and (R*)™, respectively. They are defined as

dgr, (U1, Us) = [O]]3,

19
d(]R++) (11,72) = ||log(71) 3 (19)

— log(m)|2,

where @ is obtained from the SVD U U, = O, cos(®)0% .
An additional tool linked to the Riemannian distance is
the Riemannian logarithm mapping. Given a reference point
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6, = 7(A1) and a second point 3 = 7(65) both in M. n» the
Riemannian logarithm mapping is an operator that provides a
vector of Ty, M, . » that points towards 0> and whose squared
norm with respect to the metric in (17) is dM (917 ) (as de-
fined in (18)). Here, the representation in H of the Riemannian
logarithm mapping on M, j, ., is

logg, (B2) = (logg? (U2), log® " (72))

logg""* (Us) = XOY 1,
log(R (1) =71 O log(rP ™t @ 7), (20)
where XOYY is defined through the SVD (I p—
U UNU,(UFU,) ' = X tan(®)Y"  Conversely, the

inverse of this application is the Riemannian exponential
mapping on M, k. », whose representation in M ,, for
0 € My inand & = (§,&,) € Hj is given by

o (Eu),

UY cos(X) + X sin(X),

eXPS—RJrJr)

(&),

expp(€) = (eXp
eXP?er’k (Eu) =

exp® (&) =T exp(rV 0 &),

where £; = XXY ! is the SVD such that X € CP** and
3, Y e Ck*F,

These operators provide mappings between the manifold and
its tangent space, which will notably be instrumental in in Sec-
tion IV-B to define an estimation error vector, and in Section V
in order to define Riemannian means.

2n

IV. PARAMETER ESTIMATION
A. MLE With Riemannian Optimization

In this section, we cast the MLE as an optimization problem
on M, . n, 1.e. we seek to solve:

0* = argmin L(0),
GEMp,k,T,,

(22)

where L : M,, ., — R is the negative log-likelihood defined
in (5). To solve this estimation problem, a block coordinate
descent (BCD) has been proposed in [12]. Here, we present
an alternative algorithm leveraging the information geometry
presented in Section III-B.

A first alternative is to use a Riemannian gradient descent
(RGD) [14]. An iteration of this algorithm consists in comput-
ing the gradient of L and then retracting minus the gradient
multiplied by a step size. Given the iterate #(*) represented by

5", the RGD algorithm yields

9(t+1) = Ré(t) (—Vt grad E(é(t))) , (23)
where v, is a step size, grad f(@(t)) is a representative of the
Riemannian gradient associated to the Fisher information metric
of Proposition 3, and Rém is the retraction defined in (16).
Hence, it also corresponds to the so-called natural gradient as
defined in [28], which regained interest due to its link with
second order optimization methods [29].
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Here, we propose a more flexible approach following the
recent works [30], [31]: we derive a Riemannian stochastic
gradient descent (R-SGD) on My, ;. ,,. The R-SGD is a Rie-
mannian optimization algorithm that computes the gradient of
the function to minimize only on a subset A of all measured
signals {z;}" ;. Hence, contrary to the BCD or the RGD, this
algorithm can be used on large scale datasets and the cost of an
iteration can be modulated according to the computing capacity.
Since the number of samples A can be chosen arbitrarily set, this
algorithm also encompasses the “plain” R-SGD (A = {z,}) and
the classical RGD [14] (A = {x,}_,). Additionally, the R-SGD
will be shown to have a lower complexity (per iteration) than the
BCD.

In order to derive the R-SGD, the negative log-likelihood L
defined on M, 1, ,, is rewritten

0) = ZLi(G)

where L; is the negative log-likelihood defined on the sam-
ple x;. Hence, the same notation applies to the negative log-
likelihood (5) defined on M, . ,,: L(8) = Y"1, L;(0). Inshort,
given the actual iterate #), an iteration of R-SGD proceeds
in three steps: (i) a set A of samples is randomly drawn from
{xi}7_;, (ii) then the gradient of >, L;(0®) is computed,
(iii) finally a new iterate is given by retracting minus the gradient
times a step size. Since a retraction on M, 1. ,, is provided in
Section III-B, the only remaining element to provide is the
Riemannian gradient of L;(#). This gradient is given in the
following proposition:

Proposition 2 (Riemannian gradient): Given§ = m(U, 1) €
My k..n tepresented by 0 = (U,7) € M i, the representa-
tive in Hy x T, (RTT)™ of the Riemannian gradient of L; at 0
is

(24)

grad L;(0) = (Gu, G-)

where
Ti

Gy=—"—"—
v nes (14 7;)

(I, -UUMz;z!'U,

and the j™ element of G, is

147 — %wﬁUUHwi for j =1
(GT)j - .
0 otherwise.

Proof: See appendix A2. ]

Following from this gradient, the resulting R-SGD on M, ;. ,,
is detailed in the box Algorithm 1. Concerning the computation
of the step size, several options exist. When the gradient is
computed on all data, i.e A = {x;}}_,, a line search (e.g. [14,
4.2]) is recommended. When the gradient is computed on a
subset of all data, a step size proportional to 1/t, where ¢ is
the number of iterations, can be used as in [28].

By rearranging the operations of Gy in Proposition 2, the
computational complexity of the gradient of »_ . L;(0) is
O(mpk + n), where m the number of samples in A. In practice,
¢, can be approximated using only the textures associated with
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Algorithm 1: Riemannian Stochastic Gradient Descent.

Input : Initial iterate 7" e My en-
Output: Sequence of iterates {é(t)}.
t=1
while no convergence do
Randomly draw a subset A C {x;}!"_; and set
- — (t
£W = > zengrad Li(ﬁ( ))
Compute a step size 14 and set
8" = Ry (—i€®)
t=t+1
end

the samplesin A, i.e. ¢, = % Zw cA % Hence, the complex-
ity of the gradient becomes O(mpk). Then, the complexity of the
retraction (16) is O(pk? + m), as we only retract the non-zero
elements of the gradient G- from Proposition 2. Hence, the total
complexity of each iteration of Algorithm 1 is O(mpk + pk?),
which is much lower than the O(np? + p?) of the BCD in [12]
(which involves the SVD of the scaled SCM at each step).

B. Intrinsic Cramér-Rao Bounds

Obtaining performance bounds for the model in (3) is a com-
plex issue, notably because the signal subspace is represented
by a point in Gr,, ;. A first approach was proposed in [7] for
the model x; ~ CN'(0,7,GG" +I), where G € CP** is a
lower-triangular matrix with positive diagonal elements. Such
parameterization is carefully chosen in order to obtain a minimal
and essentially unconstrained parametrization of the low-rank
signal covariance matrix. This allows obtaining the standard
Cramér-Rao inequality for the parameter g = vec(G). In a
second step, the signal subspace is represented by the orthog-
onal projection matrix IT = G(G* G)'G* and the CRB for
7 = vec(IT) is obtained as

on

on’
™ e

CRB(g)——

B
CR 9g

= E [T -11}] > T {CRB(m)} @)

thus enabling to assess approximately the minimum distance
between the estimated and the true signal subspace. Another
option could have been to start with the constrained parame-
terization G = UD'/? and to directly handle the orthonormal-
ity constraints U U = I, with the the theory of constrained
CRLBs [32]-[35] to obtain CRB(vec(U)), then deriving the
same result as in (25) from 7 = vec(UUH ). This method is
expected to yield the same result as in [7] from a different path
of derivations.

While the obtained inequality in (25) allows for an analysis
with numerical experiments, it still lacks some interpretable
closed-form. In the following, we will directly treat the signal
subspace as a point in Gry, ' and rely on the intrinsic CRLB

Note that we consider the case of equal eigenvalues, but this restriction has
been carefully motivated in the model introduction section. The extension to
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theory from [18], [37]. The interest is twofold: first it will yield
a simple and interpretable closed form for the bound on the
subspace estimation. Second, this bound will be obtained for
natural distance on Gry, j; in (19), which is expected to better
reflect breakdown points at low sample support (cf. [18] for an
example regarding covariance matrix estimation).

Intrinsic (i.e., manifold oriented) versions of the Cramér-Rao
inequality have been established [18] and extended to quotient
manifolds in [37]. The main difference compared to the classical
CRLBs is that the parameter 6 is treated as being in a Riemma-
nian manifold endowed by an arbitrary chosen “error” metric.
The estimation error is thus measured using the Riemannian
distance d that emanated from this error metric. The obtained
inequality is of the form

C = F ! + curvature terms, (26)

where C'is the covariance matrix of the error vector (defined as
the Riemannian logarithm mapping log, (é) , whichisinduced by
the error metric), and F' ~1is the inverse of the Fisher information
matrix (which depends on both the chosen metric and the Fisher
information metric). Neglecting the curvature terms and taking
the trace of (26) yields the inequality E[d?(0, §)] > Tr(F~*) for
an unbiased estimator 6, which will be here our primary interest.

In our context, we consider M, 1 , endowed with the de-
coupled metric in (17) (Definition 1) in order to bound the error
measure defined by df\/tp.k,n asin (18). For the sake of exposition,
the obtained results are directly reported in the two following
propositions, while the technical details are let in the Appendix
A3.

Proposition 3 (Fisher information matrix): The Fisher infor-
mation matrix F'g on M, ;. , admits the structure

F
Fé‘: v 0 )
0 F,

with the blocks Fy =2a 'ne, Ik, and F, =
B~k diag(t? ® (1 4 7)972), and where diag(-) returns the
diagonal matrix formed with the elements of its argument.

Proof: See Appendix A3. |

Proposition 4 (iCRLB): Let {x;}!'_, be a sample set follow-
ing the model in (3). Let 6 be an estimate of § € M, ., for
the model. The estimation error defined by di/lp,k,n asin (18)is
bounded as

E[d3, , . (0,0)] > a CRBy + BCRB,. 27)
where
CRBy — P~k k

T

1<~ (14 7)?
d CRB, = - ) ——"“.
an k; =

Furthermore, two iCRLB, on Gr, , and (R 1) respectively,
are given by

E[dg,  (x(U),x(U))] = CRBy, (28)
E[d{g ++)n(7,7)] > CRB,. (29)

the general case could be considered using recent derivations from [36] but this
complex issue goes far beyond the scope of the paper.
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Proof: See Appendix A3. |

Notice that the problem of estimating a subspace should not
depend on its basis U, as two estimates U and UQ yield
the same subspace estimate (but would yield different MSEs
for the basis U). The obtained bound on d3, . satisfies this
property. Furthermore, Proposition 4 shows that the subspace
estimation problem for model (3) does not depend on the
underlying subspace itself, but rather only on its dimension
and the SNR, which is theoretically appealing. Conversely,
the euclidean CRLBs in [7], bounding the MSE on vu?
(orthogonal projector) as in (25) does not exhibit such direct
interpretability. Finally, in the specific case of data following
a Gaussian low-rank (spiked) model for which 7; = SNR so
that x ~ CN(0, SNR x vu? + I,), we retrieve the iCRLB
of [18, Eq.145], i.e.,

(p— k) k (1 + SNR)

Elds, , ((U),7(U))] 2 ~—— s (30)

V. RIEMANNIAN CLUSTERING

In this section, we apply the statistical model developed in
Section II with its Riemannian geometry M, j ,,, presented
in Section III-C, to clustering problems. More specifically, we
assume that we have M batches X; (e.g. sets of local pixels of
an image, EEG epochs of measurements, efc). Each X ; € CP*"
is a column-wise concatenation of n observations x; € CP de-
fined in Section II. Furthermore, each batch X ; belongs to an
unknown class y € [1, K].

The use of statistical descriptors is a classical procedure in
machine learning as they are often more discriminative than
raw data (see e.g. [19], [20]). Hence, we begin by estimating a
descriptor 6; € M, ;. ,, of the batch X; following Section I'V-
A. Then, the aim is to partition the descriptors {6;}, in
S ={51,852,...,SK}. Thus, we get a partition of the original
batches { X, }4,.

Each parameter 6; is represented by a couple, ie. 0; =
(U, ;). Our contribution is to cluster both components (sub-
space and power) in a unified manner, leveraging the geometry
of M, 1..n featured in Section III-C. This section is focused
on the application of a K-means++ [21] on M, . ,, with the
tools developed earlier. However, the proposed methodology
is flexible: (i) descriptors 6; can be replaced by other statisti-
cal estimates with their associated Riemannian geometries, (ii)
many Euclidean based clustering algorithms can be transformed
to Riemannian ones (replacing distances and means by their
Riemannian counterparts).

A. Distance and Mean Computations

Most clustering algorithms, including K-means++ [21], rely
on distance and mean computations. Since 6; lies on a Rie-
mannian manifold we first need to define distance and mean
computations other than simple Euclidean ones.

A natural choice is the use of the distance dy,, , , defined
n (18). In the context of clustering, the distance on Gr), ;, and
the one on (R™)™ do not necessarily have the same amplitude
or the same ability to discriminate. Thus, the parameters «, 3 of
the metric of Definition 1 are to be chosen carefully. We propose
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a 2-step strategy to select «, 3: (i) correction of the scale effect
and (ii) choice of a trade-off between the distances on Gr,, ,, and
(R*T)™. To correct the scale effect we propose to normalize the
squared distances by their mean values on the samples {6;}
Then, a trade-off can be made between the two distances. More
precisely, Vv € [0, 1], we define

11—y
ﬁ Zq,ZE[[tl,M]] d%rp),c(Uqa Ul)’
ﬁ = 71 7

ez Zq,le[[l,M]} d(2R++)7L (Tg,7)

o =

€2V

It remains to define a mean computation algorithm on a set of
parameters ;. In [38], the mean of a set of points on a Rieman-
nian manifold is defined as the minimizer of the variance of this
set. Let m = #5;, the variance V of S; at 0 = 7(0) € M, 1,
is defined as,

9y — 1 2 ,
=— > diy, . (0,6:).

9i€Sj

(32)

The mean ¢ = 7(¢) € My, i, of the set of points S; is
obtained from the minimization of the variance,
S P
¢ = argmin -V (6). (33)
QEMpyk‘n
Denoting ¢ = (U, 7), one can check that the mean 7 corre-
sponding to the distance d(g++)n» is simply the geometric mean

©1/m

(34)

where f[ is the elementwise product.

Similarly, the mean corresponding to distance dg;, , is well-
known [24]. Unfortunately, no closed form is known to compute
it. It is obtained through the following iterative procedure: given
U, the iterate U+ is obtained with

Gl‘p l\,
§ lo gU(” s

965

(t+1) _ Grp,
U = exp,()

(35
where 1, is the step size which can be computed thanks to a line
search [14]. Since we get one mean per class, in the rest of the
paper, the mean of \S; is noted c;.

B. K-Means++ on M j; »,

With the distance and mean computation algorithms ex-
plained above, we use a K-means++ on Mp,;cm to partition
{6;}M | in S (and thus partition { X ; }}£

Instead of choosing class centers c; umformly atrandom from
{0;}M ., K-means++ initializes them by recursively choosing

a new center 6; with probability % [21]. Here, D(0;)
denotes the distance dq,, .,
those already chosen.

Once these class centers are initialized, K-means++ on
M, 1 iteratively applies two steps [21]:

from 6; to the closest center among
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1) Assignment step: each 0; is assigned to the cluster S;

whose center c; is the closest using the distance d v, ,, .

2) Update step: each new class center c; is computed using
(34) and (39).

Once terminated, K-means++ on M,, ;. , outputs the partition

S. Intuitively, K-means++ finds clusters S; whose points 0; €

S; are close to each other using the distance d

pk,m"

C. Theoretical Properties

To analyze the performance of K-means++ on M, i ,,, we
begin by defining the within-cluster sum of squares (WCSS),

K
6(S) =) D dis, .. (e 00).

j=1 91'65]‘

(36)

A “good” clustering algorithm finds a partition whose asso-
ciated ¢ is close to the minimum ¢opr of the WCSS (36). In the
Euclidean case, [21] establishes that the Euclidean WCSS of a
partition produced by K-means++ is upper bounded with respect
to @opp (minimum of the Euclidian WCSS). This property is
central to K-means++ since itis proven that a plain K-means [39]
cannot admit such a bound. Moreover, this bound is true from the
initialization. As stated in [40], this result in the Euclidean case
holds for any distance (thus for d 4, , ) and does notrely on the
mean computation. Hence, the WCSS (36) of the K-means++
initialization on M,, 1. ,, satisfies

E[¢] < 8(In K + 2)¢opr

where the expectation is taken with respect to the seeding
procedure.

Moreover, “Assignment step” and “Update step” from Al-
gorithm 2 decrease WCSS (36). Indeed, the “Assignment step”
directly decreases the WCSS (36) by assigning points {6;}} | to
the closest centers. Furthermore, we defined, in (33), the mean
of S; as the minimizer of the variance. It follows that V.S; € S,

STdd, 090> 3 d3, (00FD,0),
QiESj eiGSj

(37

(38)

where #() and #+1) are the means taken before and after
the “Update step” respectively. Hence, the “Update step” de-
creases the WCSS (36). This implies that the final clustering
returned by K-means++ on M, i, ,, satisfies (37).

However, this clustering is not necessarily a global minimum
of WCSS (36). Hence, a standard practice is to run the algorithm
several times with different initializations and then to keep the
clustering with the lowest inertia (36). K-means++ on M, . ,,
with the strategy of several initializations is presented in Algo-
rithm 2.

VI. NUMERICAL EXPERIMENTS
A. Simulations

This section illustrates the performance of the Algorithm 1 as
well as the Cramér-Rao bounds developed in section IV.

The covariance matrix of the simulated data follows the
model ¥; =1, +7; UU". The basis U is a random ma-
trix in St, . The textures 7; are randomly drawn from a
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Algorithm 2: K-means++ on M, ;. .

: A set {0;}M, C M, ., to partition, a
number of clusters K and a number of
initializations [.

Output: Best partition S*.

¢* +— +00

for 1 70 [ do

# Initialization

Take one center ¢y, chosen uniformly at random
from {0;}},.

while #{c¢;} < K do

Take a new center c;, chog)sing 0, € {0:}M,
with probability ZeD(gi)

Input

>0, DOm)?
end
# K-means
while no convergence do
Assignment step: Vi € [1, M] assign 6; to the
cluster S; with the nearest ¢;, j € [1, K].
Update step: Calculate new centers c; of
clusters S;, Vj € [1, K], using (34) and (35).
end
Compute ¢(S) with (36).
if $(S) < ¢* then
S*« S
¢* < B(5)

end

end

Log-normal(—g, 5?) multiplied by the desired SNR. Hence,
we get E[7;] = SNR. The shape parameter s controls the het-
erogeneity of the textures: the higher the s, the greater the
heterogeneity. We generate sets {x; }_;, with n € [10, 1000],
from the zero mean complex Gaussian multivariate distribution
with covariance 3;. For each value of n, N sets {x;}; are
simulated and estimators U, 7 are computed in each case.

Here are the considered estimators in the simulations:

1) SCM: the k first principal eigenvectors of the SCM of
{a;}7_, are concatenated to get USM,

2) BCD: the MLE estimate is done using BCD algorithm on
{@;}7_, [12]. The estimators are denoted U and 7BP.

3) RGD: Algorithm 1 is performed using all samples at
each iteration, i.e. A = {x;}? ;. Pymanopt library [41] (builds
upon the Manopt library [42]) achieves this optimization. The
estimators are denoted URSP and 7ROP.

To measure the subspace estimation performance of the con-
sidered estimators, we compute the mean squared error (MSE)
between the estimators U € {USM B URPY and the real
parameter U. We compute the MSE as the mean squared dis-
tance on Gry, 1, (19) between estimated parameters U andreal pa-
rameter U . Texture estimation performance is also assessed. The
MSE is computed between the estimators 7 € {75P 7RGD1
and real parameter 7 as the mean squared distance on (R™1)"
(19).

The subspace estimation performance is studied for two dif-
ferent s along two SNR in Fig. 2. Firstly, we observe that
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MSE over N = 100 simulated sets {z; } (p = 100 and k = 20) with respect to the number of samples n. for the three considered estimators. The textures

are generated with s2 = 4 (left part), s2 = 2 (right part), SNR = 1 (upper part), SNR = 10 (lower part).
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Fig. 3.
generated with $2 = 4 (left) and s2 = 2 (right).

our proposed estimation algorithm performs identically to the
block coordinate algorithm [12] in every scenario. Also, both
estimators are statistically efficient, i.e. reach the lower bound
(28) when n is sufficiently large. Finally, in the case of a low
SNR (i.e., SNR = 1), the block coordinate descent and our
Riemannian gradient descent outperform the projected SCM
regardless of texture heterogeneity.

Fig. 3 presents the texture estimation error as a function of
SNR with two different s2. Firstly, our proposed estimation
algorithm performs identically to the block coordinate algo-
rithm [12]. Interestingly, the rate of convergence of the esti-
mation error in the case of low heterogeneity, i.e. s> =2, is
much faster than in the case of high heterogeneity, i.e. s = 4.
Moreover, both estimators reach the lower bound (29) for a high
enough SNR.

A final simulation is conducted on high dimensional data. In
Section IV, we recalled that the complexity of the BCD grows
linearly with the number of data n and quadratically with the
dimension p of the data. Hence, the BCD is no longer practicable
when both n and p get large. However, in Section IV, we showed
that the R-SGD proposed in Algorithm 1 has a constant com-
plexity for the number of data and linear for the dimension of the
data. Fig. 4 illustrates this situation withn € [10%,10%],p = 10*
and k£ = 10 (dimensions for which the iteration of BCD cannot

s2=2
g —<«— BCD
] —A—RGD
4 --- CRB,/n
7\\\\ T T T T T T T T T T T T, T T T T
102 103 10% 10° 106
SNR

MSE over N = 100 simulated sets {z; } (n = 10%, p = 100 and k = 20) with respect to the SNR for the BCD and RGD estimators. The textures are

Q107!

(=(U), =

51072
as]

103

10*
n

Fig.4. MSE over N = 100 simulated sets {z;} (p = 10% and k = 10) with
respect to the number of samples n for the R-SGD estimator. 150 samples
are used for each computation of the gradient. The textures are generated with
52 = 2and SNR = 103.

be computed on the tested setup). This shows the efficiency of
the proposed R-SGD.

B. Clustering: Application to Image Segmentation

To illustrate the interest of the Riemannian geometry M, . ,,
and of the parameters of the statistical model (3) used as de-
scriptors, we apply the Algorithm 2 to a hyperspectral image
segmentation problem. We cluster a 145 x 145 pixels hyper-
spectral image called Indian Pines [22]. This image consists
of p = 200 spectral reflectance bands in the wavelength range
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Ground truth 16
40 60 80 100 120 140

Fig. 5. Ground truth of image Indian Pines [22]. The background (no class
available) is represented by class 0.

TABLE I
INDIAN PINES [22] CLASSES

# Class Number of samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 718
4 Corn 229
5 Grass-pasture 438
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 943
11 Soybean-mintill 2371
12 Soybean-clean 577
13 Wheat 205
14 Woods 1265
15  Buildings-Grass-Trees-Drives 290
16 Stone-Steel-Towers 93
Total 9859

Cumulative variance in %

Fig. 6. Cumulative variance, i.e. Zf IR / Zp As, with respect to k €

[1,30]. {»;}¥_, are the eigenvalues in descending order of the SCM computed
with all plxels of Indian Pines [22]. Only the first 30 eigenvalues out of p = 200
are plotted. We notice that the first 5 principle eigenvectors contain more than
95% of the cumulative variance.

0.4 — 2.5 um. The Fig. 5 shows the ground truth and divides the
image in 16 classes (see Table II for details).

After centering the image by subtracting the global mean,
a sliding window of size w x w is applied to the image. One
descriptor 6; is estimated using the n = w? observations in each
window denoted X ; € RP*". Thus, we get a set of descriptors
{6;} to cluster using a K-means++ [21].

We compare the descriptors of the considered statistical model
(HS+WGN) with different descriptors and geometries. Due to
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TABLE III
PERFORMANCE OF THE DIFFERENT DESCRIPTORS ON INDIAN PINES [22] WITH
w=TANDEk =5

PCA Descriptor OA =+ std mloU =+ std
center pixel 32.66 + 0.84 18.30 £+ 0.82
Yes mean pixel 34.02+£0.48 20.17 £ 2.00
SCM 45.08 £ 1.58 29.95 + 1.87
subspace SCM 42.95£0.71 27.06 £0.76
No robust subspace, v = 0 43.93 £0.93 28.11 +£0.63
robust subspace, vy = 0.1  47.89 4+ 2.67 28.00 + 1.49
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Fig. 7. Overall accuracy and mIoU of our method “robust subspace” with
respect to parameter v on Indian Pines [22] with w = 7 and k = 5. Mean
performance are reported with their standard deviations (with error bars for
“robust subspace” and in dashed blue lines for “SCM”).
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Fig.8.  WCSS (36) with respect to the number of iterations of K-means++ [21]
for “robust subspace” v = 0.1 corresponding to Fig. 9(d). The curves correspond
to the 10 initializations.

the data’s high dimensionality, some methods require a PCA
on the whole image as a preprocessing. Then, we keep only
the k first components. We begin by presenting these different
methods:

1) “center pixel”: we extract the center vector of the window.
K-means++ cluster these pixels using the Euclidean metric (i.e.,

Authorized licensed use limited to: Centrale Supelec. Downloaded on December 17,2021 at 13:12:29 UTC from IEEE Xplore. Restrictions apply.



COLLAS et al.: PROBABILISTIC PCA FROM HETEROSCEDASTIC SIGNALS: GEOMETRIC FRAMEWORK AND APPLICATION TO CLUSTERING

80 100 120 140

60 80 100 120 140

(c) “robust subspace v = 0”: OA = 43.3%, mloU = 27.3%
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(d) “robust subspace v = 0.1”: OA = 47.2%, mloU = 29.3%

Indian Pines [22] segmentation results achieved using 4 methods: “center pixel,” “SCM,” “robust subspace” v = 0 and “robust subspace” v = 0.1 (w =7

and k£ = 5 for all methods). These segmentations are those with the lowest WCSS computed with their respective distances.

classical inner product). It amounts to cluster directly the image
using a classical K-means++.

2) “mean pixel”: we average the pixels inside the window.
Then K-means++ cluster these means using the Euclidean met-
ric.

3) “SCM”: we compute the SCM using pixels inside the
window. K-means++ cluster these matrices using the Rieman-
nian geometry of symmetric positive definite matrices Sz‘f +
(see [43]-[45)).

Next, we present the different methods that take into account
this high dimensionality. Therefore, we do not use any dimen-
sional reduction preprocessing.

1) “subspace SCM”: the k first eigenvectors of the SCM are
retained. Then, they are clustered using a K-means++ on Grp, j,.

2) “robust subspace v = 0”: our method. Subspaces and
textures are estimated following statistical model (3). Only the
subspaces are clustered using a K-means++ on Grp 1. a? is
pre-estimated using the p — k lowest eigenvalues of the SCM.

3) “robust subspace v > 0”: our method. Subspaces and tex-
tures are estimated following statistical model (3). The textures
and subspaces are clustered using a K-means++ on M, j
as explained in Section V and detailed in Algorithm 2. o is
pre-estimated using the p — k lowest eigenvalues of the SCM.

Because Indian Pines [22] has 16 classes, we set the number
of clusters K to 16. Furthermore, we set k£ = 5. Indeed, from
Fig. 6, we observe that the first 5 principal eigenvectors of the
SCM calculated on Indian Pines [22] contain more than 95%
of the total variance. Since we use an unsupervised algorithm,

the output classes are not necessarily the same as the ground
truth. Hence, a Kuhn-Munkres algorithm is applied to the seg-
mentation to recover ground truth’s classes. Furthermore, we
do 10 different initializations (parameter [ in Algorithm 2) and
keep the clustering with the lowest inertia (36). To measure the
variability of the results, each K-means++ is run 10 times. The
averaged Overall Accuracy (OA), as well as the averaged mean
Intersection over Union (mloU), are reported with their standard
deviations (std) in Table III.

First of all, the methods based on non-Euclidean geometries
all surpass the other methods (“center pixel” and “mean pixel”)
by at least 8.9% in terms of averaged Overall Accuracy. This
proves the interest in using Riemannian geometries other than
the simple Euclidean one. Secondly, “robust subspace, v = 0”
slightly exceeds “subspace SCM” which shows the interest of
robust estimation of subspaces. Thirdly, “robust subspace” with
~v = 0.1 outperform “robust subspace v = 0" by nearly 4%.
Finally, our method “robust subspace v = 0.1” outperforms
the strong baseline “SCM” by 2.8% in terms of Overall Ac-
curacy. However, “SCM” performs better in terms of mloU,
by nearly 2%, compared to “robust subspace, v = 0.1”. This
means “SCM” better classifies classes with small number of
samples.

As mentioned in Section V, a trade-off must be made between
the subspaces’ distance and textures’ distance. A hyperparame-
tery € [0, 1] realizes this trade-off. Fig. 7 shows that our method
“robust subspace” outperforms the “SCM” when we emphasis
the Gr,, ;, distance. Fig. 7 illustrates that our method works for
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an interval of + and therefore does not need a critical choice to
maximize Overall Accuracy. However, to maximize mloU, the
smaller vy the better.

Fig. 9 presents the segmentations of 4 methods: “center
pixel,” “SCM,” “robust subspace v = 0 and “robust subspace
v = 0.1”. The segmentations are those with the lowest inertia
(36) for each method.

We note a significant improvement occurs on class 14 (lower
right part) between baseline “SCM” in Fig. 9(b) and our
method “robust subspace v = 0.1” in Fig. 9(d). Also, the tex-
tures help to better cluster classes 8 and 14, see Fig. 9(c)
versus 9(d).

Finally, our method “robust subspace v = 0.1” converges
quickly, i.e. in less than 20 iterations (see Fig. 8). Interestingly,
the WCSS (36) decreases a lot in the first iterations and hence
the K-means++ can be stopped after few iterations to faster
computation.

VII. CONCLUSION

This paper proposed to study the information geometry of
heteroscedastic signals embedded in WGN. This geometric
approach offered a unified framework in order to i) derive new
optimization algorithm based on Riemannian stochastic gradient
descent; 4¢) obtain iCRLBs (error bounds driven by a Rieman-
nian distance) with interesting interpretations; 74¢) propose a new
Riemannian clustering algorithm based on the model features,
which was applied it to a hyperspectral image to illustrate the
interest of the approach.

APPENDIX A PROOFS
A. Proof of Proposition 1

By definition of the Fisher information metric [18],

(€ my " =E[DLO)EDLO)[A]] = ~E[D*L(®)[E, 7]]

L defined in (5) can be written as

where LY(32) = log |[S| + xSz is the negative Gaussian
log-likelihood on 7 +.

Thus, following the reasoning of [36, Proposition 6] and [27,
Proposition 3.1], one can show

(&g = D_(DUOE DU, (39

where (£, m5)5 9 = Tr(2 " 1¢5 2" 1nyg) is the Fisher infor-

mation metric of the Gaussian distribution on 7—[:{ T;seee.g. [18].
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The definition (4) of 1;(f) and Dv;(9)[€] = m(UEE +
EuU™) + (£,):UU" yields
(DP:(B)[E), DY:(B) )5
_ ) H H FIM,g
+ (&) n<UUH, Ung; + nUUH>5‘F§;‘§
+ 7 (n,)i(UEG + UM UUM) TS
N2 H H H H\FIM,g
Then we compute each term separately:
k
H H\FIM,g __
vt vty = ae 41)
(UU™Ung +ng UTTT =0 (42)
(Ueh+ & U UUMTNS =0 (43)
<U£5 +&uU" Unij +ngUM)TN0S
=177 Re (Tr (E0ny)) (44)

The Fisher information metric stated in Proposition 1 is
obtained by combining eqs39 to 44.

B. Proof of Proposition 2

Since Gry,  is a quotient manifold of St », grad L;(6) is
represented by grad L;(0) € Hy x T-(R*T)". By definition,
V€ € TyMpk,n, DLi(0)[€] = (grad L;(0), £)E™ [14].

Notice that [¢;(0)] = (1 +7)* and (¥:(0)) =1, —
- yu”? (Woodbury formula). It follows that

1+7
- = .= Ti
DLi(0)[] = =277 %e (Tr (w2 U&r))
k(l+7) -zl UU"

(1 +Ti)2 (57’)1

7_ Stpﬁk
=2nc, { ——— Ay
e < ne-(1+7;) i €U>U
+ (@, & )F)"
where a € R™ is a vector such that

1+7— 1xfUU z; for j=i
a; =
/ 0 otherwise.

To obtain the Riemannian gradient grad L(#) by identifica-
tion, it remains to project — yTi z U onto Hy with

pgrpyk (éy) = (I, —UU") & [14], which is enough to con-
clude.
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C. Proof of Proposition 3 and 4

In this section we derive the elements of the generic iCRLB
inequality (26) for the estimation problem of § € M,, ;. ,, (and
data model in (3)) when the chosen error metric is (17). Fol-
lowing from [18] the estimation error between 6 and 0 is
characterized by log,(0), i.e., the Riemannian logarithm map-
ping induced by the error metric (which is defined in (20)).
Recall that this object corresponds to a vector of Ty M, j;
that points towards 6 and whose norm with respect to the error
metric is df\/tp,k,n (9,@) as defined in (18). Hence we directly
have Tr(C) = Tr(E[logy(6) logy(6)1]) = E[d%pwm (0,0)] by
definition. Yet, we still we need to select a proper system of
coordinates of the tangent space Tp.M,, 1. , so that the entries
of F~! can be actually obtained: M, , being a quotient
manifold, there are two solutions in order to represent this object.
The first one is to simply consider coordinates of TyM,, x ,,
without restrictions. The resulting Fisher information matrix will
then be singular, but its pseudo-inverse still yields the desired
inequality [37]. The second option, which will be chosen here, is
to consider only coordinates in the horizontal space Hy, which
is given in our case in (13).

Two ingredients are thus needed to establish the Fisher infor-
mation matrix as in (26):

1) The Fisher information metric (-,

in Proposition 1.

2) A basis of the horizontal space H in (13) that is orthonor-
mal with respect to the error metric (i.e., the decoupled
metricin (17)), which s given in the following proposition.

Proposition 5 (Orthonormal basis): Given 0 e /\/lp,;.c n, an
orthonormal basis of the horizontal space Hj defined in (13)
with respect to the Riemannian metric of Deﬁnition 1is

AEM “which was given

{e‘z} = By UB,,
0 1<q<2(p—k)k+n
with
By = U {(aiéULKij,()),(OéiéiUJ_Kij,())},
1<i<p—k
1<j<k
BT = U {(03 ﬁié’rz’ei) }a
1<i<n

where U | € St,, , 1 suchthat U¥ U | = 0; K;; € RP-F)<k,
its i th element is 1, zeros elsewhere; and e; € R™: itsi™ element
is 1, zero elsewhere.

Proof: As {eg} contains the right amount of elements, it
suffices to show that, Vg, ! € [1,2(p — k)k + n] suchthatq # [,

we have (e?,e%>Mp " =0 and <ea,eg>g/t”"“‘” = 1. This can
easily be checked by calculation. ]

Using this system of coordinates, the ¢/*" element of the
Fisher information matrix F'y is then represented by

(Fa)qr = (¢, e)E™.

(45)

Remarkably, F'g will turn to be diagonal which enables us
to obtain closed forms iCRLB on M, j, ,, Grp s, and (RT1)"
respectively. To show that F'y is block diagonal, it suffices to

notice that there are no crossed terms between tangent vectors
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of U and 7 in the Fisher information metric of Proposition 3.
Computing the elements of F'yy yields

(" 2UK;,0), (0 2 UKy, 0))EM

- 207 ne, ifij =1Im

Yo otherwise
<(067%Z'UKijv O)a (Oéi%i UKIm’ 0)>gIM

- 20 ne, ifij=Im

"o otherwise
<(067%UKij70)a( 2’LUKlm7 )>FIM 0

Hence, Fyy =2a 'ne, I, (p—k) k-
Computing the elements of F'; yields

(0,877 7ie4), (0, 8 2 7ye5)) 5™
-1 TiTj T
— 31l T, .
S Ea TR M
2
T i
P Ry i
0 otherwise
Hence, F, = B~ 'k diag(7%% ® (1 + 7)®~2), which concludes

the part concerning the proof of Proposition 3.
Finally, we note that

Furthermore, we get,

_ —kk B (14+7)?
Tr (F; 1 :L f§ ASeRLENLY
r( 9) ne, +kl_:1 T2

It follows that the error of an unbiased estimator 6 of the true
parameter ¢ in M, ;. , admits the iCRLB

E[d%mﬂ(é, 0)] > Tr (F,") (46)

if we neglect the curvature terms when applying Theorem 2
of [18].
Since F'j is block-diagonal we also get two separated iCRLB
for the parameters on Gry  and (R™1)" respectively, i.e.:
. —k)k
B[R, , (v(0), 7(U))] 2 o Te(Fg) = L1
P n

T

(47)

. 1 & 1+n
E[dfg++yn (7,7)] > B Tr(F1) = EZ . @8)

This concludes the proof of Proposition 4.
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