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Abstract—Adaptive radar detection and estimation schemes
are often based on the independence of the secondary data used
for building estimators and detectors. This paper relaxes this
constraint and deals with the non-trivial problem of deriving
detection and estimation schemes for joint spatial and temporal
correlated radar measurements. Latest results from Random
Matrix theory, used for large dimensional regime, allows to build
a Toeplitz estimate of the spatial covariance matrix while the
temporal covariance matrix is then estimated in a conventional
way (Sample Covariance Matrix, M-estimates). These two joint
estimates of the spatial and temporal covariance matrices leads
to build Adaptive Radar Detectors, like Adaptive Normalized
Matched Filter (ANMF). We show that taking care of the
spatial covariance matrix may lead to significant performance
improvements compared to classical procedures.

I. INTRODUCTION

In many applications, data can be viewed as a joint spatial
and temporal process. In radar and imagery applications, taking
into account this constraint can be of high interest. For high
resolution radar, the sea clutter is clearly jointly spatially and
temporally correlated. In mutichannel (polarimetric, interfero-
metric or multi-temporal) SAR imaging, the multivariate vector
characterizing each spatial pixel of the image is correlated over
the channels but can also be strongly correlated with those of
neighborhood pixels. In the radar community, one generally
supposes that the vectors of information collected over a spatial
support are identically and independently distributed. This
strong assumption allows to build easily Maximum Likelihood
Estimators of parameters like for example, covariance matrix
required for adaptive detection leading to overestimated per-
formance of such detectors. The aim of this proposal is to
relax this hypothesis through the use of recent Random Matrix
Theory results. This could help in many radar applications.

Covariance estimation is a fundamental problem in mul-
tivariate statistics. Many techniques for hypothesis testing,
inference, denoising and prediction in speech, radar, wireless
communication and finance applications (just to quote a few)
rely on accurate estimation of the true covariance matrix or
the scatter matrix.

To estimate the scatter matrix (or a sub-set of its elements)
of any observed vector under test y (primary vector on

dimension N ), generally it is supposed to dispose of K >
N secondary vectors, independent and identically distributed
(IID), that share with the primary vector the same statistical
characteristics [1], [2]. In some applications, as in high spatial
resolution radars, the hypothesis of independence (or even of
uncorrelation) of the secondary vectors is seldom satisfied due
to the nature of the phenomenon at hand. Particularly, for
target detection purposes, due to the lack of knowledge of
the spectral characteristic of the clutter and the variability of
it on long period of time and large surfaces, the covariance
matrix of the clutter must be estimated and plugged into
adaptive detectors in both cases of Gaussian and non-Gaussian
distributed disturbance. Recent works have also considered
spatial correlation [3], [4].

In this case the secondary vectors used for matrix esti-
mation contain the samples of the echoes backscattered by
the range cells surrounding the cell under test (CUT). If the
dimension of the range cells is of the order of meters or even
less, particularly in the case of sea clutter, some correlation
among echoes coming from adjacent range cells has been
observed, as shown in figure 1 [5] where the estimated space
correlation coefficient of sea clutter data, recorded by IPIX
radar [6], is illustrated for different range resolutions. The
periodicity, particularly evident for a resolution of 3 meters
is due to the periodicity of the sea surface and of the sea
wave behavior. Higher the radar range resolution, shorter
the waves that can be resolved by the radar itself (in the
figure each dot corresponds to a different range cell). The
correlation does not last for kilometers but it is enough to
affect the covariance matrix estimation and the performance
of the adaptive detectors.

To fill this gap, this paper presents an efficient way of
estimating first the correlation matrix from the samples in
order to whiten this space dependency. More precisely, based
on recent results from Random Matrix Theory (RMT), a
consistent estimate of the correlation matrix is introduced,
which allows to remove this correlation. Then, a classical
detection test, namely the Adaptive Normalized Matched Filter
(ANMF), is analyzed in order to underline the improvement
brought by the proposed approach.



Fig. 1. Sea clutter spatial correlation, IPIX radar [5]

The paper is organized as follows: Section II introduces the
problem formulation while the main contribution is contained
in Section III. Then, Section IV presents detection performance
obtained Monte-Carlo simulations, that enlighten the interest
of the proposed approach. Finally, Section V draws some
conclusions and perspectives.

Notations : vectors and matrix are in boldface, matrix in
capitals and vectors in small letters, H the Hermitian operator
and T the transpose.

II. PROBLEM FORMULATION

Detecting a complex signal corrupted by an additive Gaus-
sian noise c ∼ CN (0,M) in a N -dimensional complex
observation vector y can be stated as the following binary
hypothesis test:{

H0 : y = c yi = ci i = 1, . . . ,K
H1 : y = αp + c yi = ci i = 1, . . . ,K

, (1)

where p is a perfectly known complex steering vector, α is
the unknown signal amplitude and where the ci ∼ CN (0,M)
are K signal-free non independent measurements, traditionally
called the secondary data, used to estimate the background co-
variance matrix M. To model the spatial dependency between
the secondary data, from the Gaussian assumption on ci, we
may write C = [c1, . . . , cK ] under the following form.

Assumption 1 (Time dependence) For C = [c1, . . . , cK ],

C = M1/2 XT1/2, (2)

where M ∈ CN×N and T ∈ CK×K are both nonnegative
definite, X is standard Gaussian, and T satisfies the normal-
ization 1

K tr T = 1.

We shall need the following technical assumptions.

Assumption 2 (Norm boundedness of M) We have

lim sup
N→∞

‖M‖ <∞

where the assumed norm is the spectral norm.

Assumption 3 (Toeplitz Structure for T) The matrix T is
Toeplitz, i.e., for all i, j, Ti,j = t|i−j| for t0 = 1 and tk ∈ C,
and positive definite. Besides,

∑∞
k=0 |tk| <∞.

Upon Assumption 3, it can be shown that
lim supK→∞ ‖T‖ <∞.

III. CONTRIBUTIONS

The following technical results unfold directly from a
careful check of the results of [7].

Proposition 1 (Consistent Estimation for T) As N,K →
∞ such that N/K → c ∈ (0,∞), and for every β < 1,

Nβ

∥∥∥∥T [ 1

N
CHC

]
−
(

1

N
tr M

)
T

∥∥∥∥→ 0

almost surely, where the norm is the matrix operator norm and
T [·] is the Toeplitzification operator defined by (T [X])ij =
1
K

∑K
k=1 Xk,k+|i−j|.

Proof: It suffices to update [7, Lemmas 3–6] by adding
the contribution of the matrix M. Notably, the upper bound
lim supK→∞ ‖M‖ on the norm of M will introduce a sup-
plementary term, which shall translate in [7, Theorem 2]
into multiplying the denominator of the exponential term by
lim supK→∞ ‖M‖.

Thus, despite the joint growth rate N,K → ∞ which
is usually detrimental to consistently estimating T in non-
parametric settings (as proved by random matrix theory),
Proposition 1 ensures that the Toeplitz structure of T is strong
enough constraint to recover consistency. The matrix M here
appears not to alter the result, mostly because X, being white
Gaussian, is left-unitarily invariant.

Denote now M̂ the following time-whitened sample co-
variance matrix of c1, . . . , cN :

M̂ ,
1

K
C

(
T
[

1

N
CHC

])−1

CH . (3)

For technical reasons, we shall demand the following
additional assumption.

Assumption 4 (Boundedness of T away from zero) For
λ1(T) ≤ . . . ≤ λK(T),

lim inf
K

λ1(T) > 0.

Then, as a corollary of Proposition 1, we find that, as
N,K →∞ with N/K → c ∈ (0,∞),

Nβ

∥∥∥∥M̂− M̌
1
N tr M

∥∥∥∥→ 0

almost surely for each β < 1, where M̌ , 1
NM

1
2XXHM

1
2 .

We thus asymptotically recover a normalized version of the
time-uncorrelated sample covariance matrix. Since any β < 1
is allowed, this implies that most functionals of M̂ having
fluctuations at a rate lower than N−β , β < 1, have the



same behavior as the traditional time-uncorrelated (inacces-
sible) sample covariance estimator 1

NM
1
2XXHM

1
2 , up to a

constant.

As an immediate application of the above, define the adap-

tive normalized matched filter (ANMF) [8] detector TN
H0

≶
H1

γ

to be based on the following statistics:

TN ,
|yHM̂−1p|√

yHM̂−1y

√
pHM̂−1p

. (4)

Since TN is clearly invariant by scalar multiplications of M̂,
exploiting standard results from random matrix theory, it then
comes that, as N,K →∞ with N/K → c ∈ (0, 1),

Nβ
(
TN − ŤN

)
→ 0

almost surely, where ŤN is the (inaccessible) test

ŤN ,
|yHM̌−1p|√

yHM̌−1y
√
pHM̌−1p

. (5)

In particular, for Γ ∈ R, it is known from [9], that, as
K,N grow large, the ANMF provides non trivial results when
setting thresholds γ = Γ√

N
, i.e., the false alarm rate

P

(
TN >

Γ√
N

)
converges, under the H0 hypothesis for y, towards a limit in
(0,∞). Similarly, assuming α = A√

N
for finite A in (1), the

probability of correct detection leads to non trivial results when
γ = Γ√

N
. From our previous reasoning, and the effective speed

of Nβ , β < 1, of our estimator, it then comes the following
result.

Corollary 1 (ANMF Performance) Both under H0 and H1,
as N,K →∞ with N/K → c ∈ (0, 1),

P

(
TN >

Γ√
N

)
− P

(
ŤN >

Γ√
N

)
→ 0.

Proof: This follows from the fact that
√
N(TN−ŤN )→ 0

almost surely.

Thus, we have shown that the proposed ANMF detector
TN is consistent with the ideal, but unobservable, time-
uncorrelated detector ŤN . It is also interesting to point out
that ŤN is CFAR with respect to the true covariance matrix
M. This implies that TN is asymptotically CFAR.

IV. NUMERICAL RESULTS

This section is devoted to the Monte-Carlo simulations
in order to compare the proposed approach, i.e. a space
correlation whitening, with the classical approach. For that
purpose, we consider the model given by equation (2). The
settings are the following: the covariance matrix M is a
full Toeplitz matrix given by its elements Mij = ρ

|i−j|
M

for i, j = 1, . . . , N and the (space) correlation matrix T
is also a Toeplitz matrix with 3 non-null elements (5 non-
null diagonals), i.e. Tij = ρ

|i−j|
T for i, j = 1, . . . ,K. The

parameters are given by N = 10, K = 20, ρM = 0.5
and ρT = 0.9, so that the covariance matrix is the identity
matrix. Then, we have plotted the Probability of False Alarm
(PFA) versus the detection threshold and also the detection
performance, namely the Probability of Detection (PD) versus
the Signal-to-Noise Ratio (SNR).
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Fig. 2. PFA-Threshold relationship under Gaussian noise, N = 10, K = 20.

To evaluate the gain of the method, we have compared
three scenarios:

• the case where T is assumed to be known and can
be removed. Thus, the covariance estimate is given
by M̌, and the corresponding test statistic is ŤN (eq.
(5)),

• the proposed estimate, given by equation (3), and the
corresponding test statistic TN (eq. (4))

• the classical approach that does not take into account
the space correlation, that is the covariance estimator
is given by

M̃ =
1

K
CCH

and its corresponding test statistic T̃N

In order to evaluate the robustness of the proposed ap-
proach and although the theoretical results are not given in
this work, on has also evaluated the detection performance
when using the Tyler’s estimate [10], [11] for estimating the
covariance matrix M, defined as the solution of the following



fixed-point equation:

M̂FP =
N

K

K∑
k=1

ck c
H
k

cHk M̂−1
FP ck

,

where ck represent the kth column vector of observation
matrix C.

Figures 2(a) and 2(b) display the PFA versus the detection
threshold respectively for a SCM-based approach and for a
Tyler-based approach. The first remark is that, even for small
N and K (here N = 10 and K = 20), the green curve that
represents the proposed approach is very close to the dark
one that assumes perfect knowledge of T. This validates the
theoretical result given in Corollary 1. Moreover, notice that
there is an improvement due to the space whitening effect.
Indeed, to guarantee the same false alarm rate, the detection
threshold of the conventional case (supposing wrongly i.i.d.
secondary data) is a bit higher.
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Fig. 3. Detection performance under Gaussian noise, N = 10, K = 20.

Then, figures 3(a) and 3(b) display the PD versus the SNR
of the target, for a PFA of 10−2. The corresponding detection
threshold is obtained thanks to figures 2(a) and 2(b). Again,
although no theoretical result is given in this paper (we proved
the consistency under H0), one can see the good agreement
between the limiting solution and the empirical one. Then,
one can evaluate the gain, that is similar under both SCM and
Tyler-based approches: for a PD of 0.9, there is a gain in SNR
of almost 3 dB.

Finally, notice that under both hypotheses H0 and H1,
performance are sometimes better with the proposed approach

compared to the T-known case. Although surprising at the on-
set, this is not a contradictory result, as the claimed optimality
of a perfect T knowledge does not imply an optimality of the
corresponding plug-in estimator in the ANMF detector. As a
matter of fact, if K >> N , our proposed approach would
necessarily become suboptimal compared to the the perfect T
knowledge, as then M would be almost perfectly estimated.
The fact that both green and black do not exactly match can be
also explained by the small N , K effect, which would vanish
as both grow large.

V. CONCLUSION

This paper has focused on the joint estimation of joint
spatial and temporal covariance matrices arising for adaptive
radar detection schemes. This estimation was efficiently per-
formed using latest results coming from RMT with a Toeplitz
covariance structure assumption for the spatial covariance
matrix and M -estimators for the temporal covariance matrix.
First results show that the ANMF built with these estimates has
significant higher performances, in term of regulation of false
alarm and probability of detection versus SNR, than those of
the ANMF built with classical estimates supposing erroneously
i.i.d. spatially secondary data.
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