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Abstract : The clutter encountered in low grazing an-
gle situations is generally a non gaussian impulsive noise
resulting in a mismatching of the classical radar detec-
tor adjusted to the detection threshold of the gaussian
hypothesis. To estimate the true detection performances
of the radar, one has to take into account not only the
power of the noise (as made in the classical ”Constant
False Alarm Rate ” (CFAR) detector) but also its distribu-
tion. The method of radar detection performances analy-
sis described in this paper consists, first, in modelisation,
thanks to Padé approximation, of the true Probability Den-
sity Function (PDF) of the noise envelope (clutter, ther-
mal noise and clutter, Radar Cross Section (RCS) fluctua-
tions, : : : ) from experimental data and exploits the special
mathematical structure of these estimated PDF in order to,
in a second step, evaluate the capability of radar detection
of a target (fluctuating or not) which would be embed-
ded, in phase and amplitude, in this noise. This method is
also used in order to derive the expressions of the Optima
Radar Detectors in estimating the so-called characteristic
function, characterizing the non-gaussianity of the multi-
dimensionnal clutter in ” SIRP ” representation (Spheri-
cally Invariant Random Process). It is also possible to use
the method to evaluate the performances of those detec-
tors.

1 Introduction

Clutter measurements made from experiments by ON-
ERA and other organizations like MIT [5] have shown
a strong difference between reality and the standard
statistical models used, when the target is moving at
very low elevations (with an incidence of less than a
few degrees) or with increasing radar range resolution
(reducing the number of elementary clutter scatterers).
In these situations, the overall clutter statistics can no
longer be related to a gaussian’s one, but rather to laws
characterized by a higher number of degrees of freedom.

To estimate the radar detection performances of a target
embedded in grazing angle non gaussian clutter environ-

ment, the classical way consists in modeling the proba-
bility density function (PDF) of the noise by an a priori
known law (K-distribution, Weibull, Log-normale, SIRP
processes, : : : ). Under this hypothesis made on the noise
nature, the PDF of target signal (which can be defined or
not by its a priori known RCS fluctuations law) has to be
mathematically determined for evaluating the Radar Oper-
ational Curves (ROC) for differents Signal-to-Noise Ratio
(SNR) and Probability of False Alarm (Pfa). This kind
of procedure described on figure (1) depends nevertheless
on the statistical a priori model of the clutter and does
not always lead to a simple or existing mathematical ex-
pression (this is for example the case of the mathematical
expression of the PDF of a constant signal in Weibull or
K-distribution noise).
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Figure 1: Classical procedure of radar detection perfor-
mances analysis

The method described in this paper and based on Padé
Approximation theory ([2, 3]) allows to estimate the true
detection test statistics and so to evaluate the perfor-
mances of this same test against the present clutter. By
this way, either we evaluate the true performances of the
test matched to the clutter (for example Optimum Gaus-
sian Detector (OGD) against gaussian clutter) or we show
the mismatching of a particular test when the clutter is no
more a gaussian one (ex : OGD against K-distributed clut-
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ter). We first use the method to evaluate the performances
of the envelope detector (similar structure as the OGD) for
one pulse of received signal. The envelope of the received
signal is calculated (without forming the Likelihood Ratio
Test (LRT)) and the expressions of Pfa and Pd (Probabil-
ity of detection) are mathematically derived.
The other principal use of the method is to estimate the
characteristic function of the SIRV (Vector) which rep-
resents the fluctuation law of the conditionnally gaussian
clutter variance. The mathematical expression of this es-
timated PDF allows to integrate over this PDF in order
to derive the general expressions of the joint clutter PDF
instead of computing numerical integration ([2, 3]). It re-
duces the computation.

2 General Relations of the Detection
Theory

2.1 Likelihood Ratio Test (LRT)

We consider here the basic problem of detecting the pres-
ence or absence of a complex signal s in a set of N mea-
surements of m complex vectors y = yI + j yQ corrupted
by a sum of independent additive complex noises c corre-
sponding to the clutter echoes and white gaussian thermal
noise. It is assumed that the vectors yI and yQ, the respec-
tively the in-phase (I) and quadrature (Q) components, are
independent and identically distributed (iid) random vec-
tors. The problem can be described mathematically in
terms of a hypothesis test between the following pair of
statistical hypothesis, where c denotes all the unwanted
noises :

H0 : y = c (1)

H1 : y = s + c (2)

When the target signal s is present it corresponds to a
modified version of the perfectly known transmitted signal
p, that is to say that s can be rewritten as s = T (A; �) p.
We denote by A the target amplitude and we suppose de-
termined all the others parameters (�) which characterize
the target (Doppler frequency, time delay, ...).

The observed vector y is used to form the likelihood
ratio �(y) which is compared with a threshold � set to a
desired Pfa value :

�(y) =
py(y=H1)

py(y=H0)

H1

>

<

H0

� (3)

The likelihood ratio so formed is data depending ; the
resulting detectors structures are also data depending and
their associated performances follow from the statistic of
the data. The false alarm probabilityPfa is the probability
of choosing H1 when the target is absent, i.e. :

Pfa = IP(�(y) >
H0

�); (4)

and the detection probability is the probability of choosing
H1 when the target is present, i.e. :

Pd = IP(�(y)
H1

> �): (5)

The Neymann-Pearson criterion consists in fixing Pfa

while maximizing Pd.

2.2 Gaussian clutter case

When the clutter c is supposed to be complex gaussian
distributed with zero mean, variance 2�2 and covariance
matrix 2�2M (CN (0; 2�2M)) we have :

py(y=H0) =
1

(� 2�2)mjMj exp
�
�yy M�1y

2�2

�
(6)

py(y=H1) = py(y� s=H0) (7)

and the likelihood ratio can be rewritten as :

�(y� s)y M�1(y� s) + yy M�1y
H1

>

<

H0

2�2�; (8)

where � = log(�). Most of the time, the target signal s
is unknown and an estimate in the Maximum Likelihood
sense (ML) of the non fluctuating target amplitude A is
derived (s = Ap) :

ÂML = argmax
A

�(y) =
py M�1 y

py M�1 p
(9)

This estimate stays valid in the rest of this paper because
of the SIRV representation which keeps a gaussian form
under the integral and maximizing the resulting LRT over
A is always maximizing (8).
The resulting so-called Optimum Gaussian Detector
(OGD) comes from the Generalized Likelihood Ratio Test
(GLRT) and is :

jpy M�1 yj2
H1

>

<

H0

2�2� pyM�1p (10)

The OGD detector just compares the matched filter out-
put to the threshold. Using this quadratique test is equiva-
lent to use an envelope detector structure with an adjusted
threshold.
Given that y is gaussian distributed, the laws under H0

and H1 of this detection strategies are respectively expo-
nential and Rice-Nagakami distributed and we can derive
the expressions of Pfa and Pd :

Pfa = e
�� (11)

Pd = Q
 s

A
2

�
2 pyM�1p

;

s
�

�
2 pyM�1p

!
;(12)

where

Q(a; b) =

Z +1

b

x exp

�
�x

2 + a
2

2

�
I0(ax)dx (13)
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is the Marcum Q-function. If the amplitude of the target
is fluctuating among p(A;A0) the expression of Pd has
to be integrated over p(A;A0). For example we can con-
sider the Swerling-K fluctuations for the target amplitude
A (with IE(A) = A

2
0) given by :

p(A;A0) =
2

�(K)

�
K

A
2
0

�K
A
2K�1 exp

�
�KA

2

A
2
0

�
(14)

where K is the parameter of the Swerling fluctuation.
Therefore, integrating with respect to p(A;A0) yields to
the expression of Pd for a Swerling-K fluctuating target
([1]) :

Pd = 1� (1 + Z)
�K

�
Z T

0

x exp(�x
2

2
)M

�
K; 1;

Z x
2

1 + Z

�
dx

T =

s
�

�
2pyM�1p

Z =
A
2
0

K�
2pyM�1p

(15)

where M(a; b;x) is the confluent hypergeometric func-
tion (an alternative notation is 1F1(a; b;x)) with parame-
ters a, b, and argument x. The calculation of M(K; 1;x)

(K is an integer) is obtained by a recurrence relation given
8n � 1 by ([1]) :

M(1; 1;x) = e
x

M(2; 1;x) = (1 + x) ex

M(n+ 2; 1;x) =
1

n+ 1
[(2n+ 1 + x)M(n+ 1; 1;x)

�(n+ 1)M(n; 1; x)] (16)

For a special K value (example K = 1 gives the
Swerling-I law) the computation of the Pd expression is
not too heavy because of the definite integral and the re-
currence relation (16).

2.3 Non-Gaussian clutter case

In the case of non-gaussian clutter, the detection strategies
can be derived if we consider a particular clutter nature,
i.e. if an a priori hypothesis is made on the clutter statis-
tic. On the other hand the expressions of Pfa and Pd are
rather impossible to derive analytically.
We propose a method to solve this latter point in esti-
mating the PDF of the test, thanks to Padé approxima-
tion ([2, 3]), and we first study a particular detector that
is equivalent to the gaussian one, the envelope detector,
that we call RSOGD for Root-Squared OGD. In this way,
we evaluate the one-pulse performances of the OGD when
the disturbances are non-gaussian. Before we describe the
method of Padé approximation.

3 The Padé approximation method

Given a random variate Z with PDF p(z) the Moment
Generating Function (MGF) of this variate is defined by :

�(u) =

Z +1

0

p(z) e�uz dz =
X
n�0

�n (�u)n
n!

=
X
n�0

cn u
n
;

(17)

where �n denotes the n-order moment of Z.
If we suppose all the moments �n perfectly known up

to orderL+M+1, the main idea is to truncate the infinite
series at the order L +M + 1 and to approximate it by a
rational function P [L=M ](u) (L �M ) defined by :

P
[L=M ](u) =

LX
n=0

an u
n

MX
n=0

bn u
n

; (18)

where the coefficients fang et fbng are determined so that
the following equality be verified :

LX
n=0

an u
n

MX
n=0

bn u
n

=

L+MX
n=0

cn u
n +O(uL+M+1): (19)

The notation O(uL+M+1) simply takes into account
terms of order higher than u

L+M . To determine the two
sets of coefficients fang and fbng, we have to match the
coefficients :

MX
n=0

bn u
n
L+MX
n=0

cn u
n =

LX
n=0

an u
n +O(uL+M+1):

(20)

The moments matching conditions fix in a first step the
set of coefficients fbng by solving a simple set ofM linear
equations for the M unknown denominator coefficients :

MX
n=0

bn cL�n+j = 0; 1 � j �M: (21)

In a second step the set fang is determined by a simple
convolution of the fbng and the fcng coefficients :

aj = cj +

min(M;j)X
i=1

bi cj�i; 0 � j � L: (22)

The set of coefficients fang and fbng determined with
(21) and (22), defines, thanks to the Padé Approximation,
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the One Point parametric modeling of the MGF given its
power series expansion (17) about u = 0.
If we suppose that the rational fraction approximation has
M distinct poles with negative real part to assume its con-
vergence for u ! 1, the relation (18) can be rewritten
as :

P
[L=M ](u) =

MX
k=1

�k

u+ �k
Re(�k) > 0: (23)

From this description, we are able to determine a ran-
dom vector’s PDF and CDF using the Inverse Laplace
Transform of the corresponding MGF performed by
residue inversion formula leading to a sum of weighted
decaying exponentials :

~p(z) =

MX
k=1

�k e
��k z (24)

~
F (z) = 1�

MX
k=1

�k

�k
e
��k z (25)

The coefficients f�kgk=1:M and f�kgk=1:M are com-
plex, all in pairs conjugate if M is even and in pairs
conjugate except an odd number of them if M is odd.

The first application given to this method is to evalu-
ate the PDFs of the envelope of one pulse of the received
signal. From one pulse the statistics of the test comes di-
rectly from the envelope of the data. It is just necessary to
estimate its PDF. From the whole received vector and to
compute the likelihood ratio, it is necessary to know or to
estimate the joint PDF of the vector what is not possible to
do with a Padé approximation. In this latter case we will
interest to estimate the PDF of the detection tests which
are one-dimensionnal positive random variables.

4 One pulse RSOGD performances

4.1 RSOGD or envelope detector

For one pulse, the envelope detector principle is to eval-
uate the envelope of the received signal y(t). We denote
by pH0

(r) and pH1
(r) the probability density functions

(PDF) of the envelope of the received signal y(t) respec-
tively under H0 and H1 hypothesis. The Pfa and Pd val-
ues are so defined by :

Pfa = IP(jy(t)j >
H0

�) =

Z +1

�

pH0
(r) dr (26)

Pd = IP(jy(t)j H1

> �) =

Z +1

�

pH1
(r) dr (27)

The expression of pH1
(r) can be directly deducted from

pH0
(r) if consider their respective radial coherent char-

acteristic functions. The detail of the calculation can be

found in ([10, 8]) and the resulting expression is :

pH1
(r;A0) =

Z +1

0

pH1
(r;A) p(A;A0) dA

=

Z +1

0

Z +1

0

r� J0(�r) J0(�y) pH0
(y)

�
�Z +1

0

J0(�A)p(A;A0)dA

�
d�dy;(28)

where p(A;A0) is the fluctuations law of the target
(p(A;A0) = Æ(A � A0) in the case of non-fluctuating
target, A0 being the mean level of the fluctuations). This
expression is very interesting and the whole problem is re-
lated in the determination or estimation of the PDF of the
only noise.

4.2 Performances evaluation for one pulse

The latter remark holds in the problem of evaluating the
performances of the detector. From (26) and (27) we can
see that the expressions of Pfa and Pd are given by the
statistics of the test under H0 and H1. From the envelope
of the received data we can estimate these statistics thanks
to Padé approximation. We consider then that :

pH0
(r) =

MX
k=1

�k e
��k r

: (29)

With simple calculation Pfa expression (26) becomes :

Pfa =

MX
k=1

�k

�k
e
��k �

; (30)

and the detection threshold � is obtained with a desired
Pfa value by the determination of this equation. Using (5)
and (28) a general Pd expression is derived for fluctuating
or not target (the same notation is kept for p(A;A0)) :

Pd = 1�
Z +1

0

�J1(��)

MX
k=1

�kp
�
2 + �

2
k

�
Z +1

0

J0(�A)p(A;A0)dAd�: (31)

In the same way it is possible to estimate p(A;A0) by
Padé approximation (P coefficients f
ig and fÆig) :

~p(A;A0) =

PX
i=1


i

A0

e

�
Æi
A0

A
; (32)

and the Pd expression is, after few calculation :

Pd = 1�
Z +1

0

�J1(��)

MX
k=1

�kp
�
2 + �

2
k

�
PX
i=1


ip
�
2
A
2
0 + Æ

2
i

d�: (33)

4



In that way we are able to determine the performances of
the RSOGD for one received signal pulse whatever the
nature the present clutter (often non-gaussian one). In the
next section we evaluate the performances of the OGD
detector for the m-train of pulses thanks to the Padé ap-
proximation.

4.3 m pulses OGD performances estimated
with Padé

We have seen that the Pfa and Pd expressions come from
the statistics of the test (26,27). In the case of the OGD
detector, these expressions are known if the noise is gaus-
sian or if we know its PDF. With Padé approximation, we
are able to evaluate the OGD performances whatever the
statistic of the noise is. The OGD detector (10) is for the
m pulses :

jpy M�1 yj2
H1

>

<

H0

2�2� pyM�1p = �

The left term is a random variate Vi (data depending) with
PDF p(Vi). i = 0 for H0 hypothesis and i = 1 for H1

hypothesis. So :

~p(Vi) =

MX
k=1

�k;i e
��k;i Vi

; (34)

and

Pfa =

Z +1

�

~p(V0)dV0

=

MX
k=1

�k;0

�k;0
exp(��k;0 �) (35)

Pd =

Z +1

�

~p(V1)dV1

=

MX
k=1

�k;1

�k;1
exp(��k;1 �) (36)

This method allows to treat directly with the m-train of
the received data pulses which are used in the detector
structure.

To solve the problem of modelization of the non-
gaussianity of the clutter, the clutter process can be mod-
eled as a gaussian process with a variance which is itself a
random variate. This model results in the so-called Spher-
ically Invariant Random Process (SIRP) and is explained,
for example, in ([13, 11]). Many people exploited this rep-
resentation to apply it in radar detection. In ([7]) are de-
rived the optimum radar receivers to detect fluctuating and
non-fluctuating targets against a mixture of K-distributed
and gaussian clutter with perfectly known statistics.
In the next section we describe briefly the SIRP theory and
the results found in ([7, 4]). Then, with always the idea
of having non a priori assumption on the clutter statis-
tic, we present similar results after estimating the PDF of

the gaussian process variance with a Padé approximation.
This may be applied after a Maximum A Posteriori esti-
mation of the variance of the conditionnally gaussian pro-
cess (the process is conditionnally to the variance a gaus-
sian one). The N estimates are then considered as a N -
sample of a positive random variate ; a Padé approxima-
tion is used to derive the estimated PDF of the variances
of the N observations of the clutter and so characterize the
non-gaussianity of the clutter without a priori. Once the
estimate optimum detector (EOD) is derived it is possible
to evaluate its performances using a Padé approximation.

5 Contributions of Padé approxima-
tion to the Optimum Radar Detec-
tor

5.1 SIRP - Description

When the clutter is non-gaussian we use the SIRP repre-
sentation that consider the clutter process as the product of
a m complex gaussian vector x = xI + jxQ and a positive
random variate � :

c = x
p
� : (37)

The in-phase (xI ) and quadrature (xQ) components are in-
dependent and identically distributed random vectors with
zero-mean, unit variance and covariance matrix M. The
vector x is then zero-mean with variance 2 and covariance
matrix 2M. The PDF of the variable � is the so-called
characteristic function of the SIRP and the so formed vec-
tor c is, conditionnally to � , a complex gaussian random
process with zero-mean, variance 2� and covariance ma-
trix 2�M :

p(c=�) =
1

�
m j2�Mj exp

��cy(2�M)�1c
�

=
1

(2��)m jMj exp
�
�cyM�1c

2�

�
(38)

The PDF of the vector c is derived after integration over
p(�) :

p(c) =
Z +1

0

1

(2��)mjMj exp
�
�cyM�1c

2�

�
p(�)d�

(39)

5.2 SIRP - Optimum Radar Detector

Applied to the detection criterion, the latter expression is
in fact py(y=H0) and py(y=H1) = py(y � s=H0). The
likelihood ratio becomes ([7]) :Z +1

0

�
exp

�
�q1(y)

2�

�
� exp

�
�� q0(y)

2�

��
p(�)

�
m

d�

H1

>

<

H0

0

(40)

where q0(y) = yyM�1y, q1(y) = q0(y � s) and � =

ln(�). As before, the amplitudeA of the target (s = Ap) is
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unknown but estimated in the Maximum Likelihood sense
(cf. (9)). In this case the detection strategy is given by
(40) where now :

q1(y) = yyM�1y� jpyM�1yj2
pyM�1p

(41)

5.3 SIRP - Example : Optimum K Detec-
tor : the OKD

Given an expression for p(�) the Optimum Detector is ob-
tained for the so assumed clutter statistic and after compu-
tation of the generalized integration over � . In the case of
K-distributed clutter (size m) with parameters � and b (�
is the form parameter whose value determine the spikiness
of the distribution, q(x) = xy M�1

X x) :

p(x) =
2 b�+m

�
m jMX j�(�) 2�+m q(x)

��m
2 K��m(b

p
q(x));

(42)

the PDF of � is a Gamma(�,� = 2=b2) PDF whose ex-
pression is :

p(�) =
�
��1

�(�)��
exp

�
� �

�

�
: (43)

Integrating (40) with respect to this PDF gives the ex-
pression of the so-called Optimum K-distributed Detector
(OKD) 8m � 2 :

�
q1(y)
q0(y)

�� �m

2
:

K��m

�
b

p
q1(y)

�
K��m

�
b

p
q0(y)

�H1

>

<

H0

� (44)

If m = 1, q1(y) = 0 and the equation (40) becomes:

(q0(y))
��1
2

K��1

�
b

p
q0(y)

�H1

<

>

H0

(2�)
��1
2 �(�)

2 � �
(45)

5.4 Padé Estimated Optimum Detector :
the PEOD

Recalling that the process is gaussian if considered it con-
ditionnally to � , it is possible to estimate the variance � for
each observation vector (N observations). This can be re-
alized either in the ML sense or, to give some more infor-
mation about the estimates (positive variate, variance of a
gaussian vector), in the MAP sense that consists in adding
an a priori information and to reduce the estimates region
to the more realistic one. In this case, the a priori infor-
mation is a conjugate (informative) prior, i.e., the prior
combined with the likelihood yield to a posterior density
having the same form as the prior density. This method
comes from the Bayes’rule :

py(�=y) / py(y=�) g(�) (46)

py(y=�) is the likelihood of the data (the conditionnal
gaussian density) and g(�) is the prior or the a priori in-
formation [12, 9]. We choose g(�) as being an Inverse

Gamma density with parameters a and d and the estimates
are derived as follow :

g(�) =
�
�a�1

d
a �(a)

exp

�
� 1

d �

�
�̂MAP = argmax

�
py(�=y) = argmax

�
py(y=�) g(�)

=
d yy M�1 y + 2

2 d (m+ a+ 1)
(47)

These N asymptotically unbiaised estimates represent
a N sample of the positive random variance � . The repre-
sentative PDF ~p(�̂ ) can be estimated with a Padé approxi-
mation :

~p(�̂ ) =

MX
k=1

�k e
��k �̂

; (48)

and the calculation of (39) if replaced in the detection case
is tractable ([6]) to give :

py(y=H0) =
1

(2�)mjMj
MX
k=1

�k

�
Z +1

0

�
�m exp

�
�yyM�1y

2�
� �k�

�
d�

=
2(1�m)=2

�
mjMj

MX
k=1

�k

�
q0(y)
�k

�(1�m)=2

� K1�m

�p
2 q0(y)�k

�
(49)

The likelihood ratio compared with the threshold � (3)
becomes :

py(y=H0)

py(y� s=H0)

H1

>

<

H0

� (50)

and finally we have 8m � 2 :

�
q1(y)
q0(y)

�1�m

2
:

MX
k=1

�k(�k)
m�1
2 K1�m

�q
B

1
k(y)

�
MX
k=1

�k(�k)
m�1
2 K1�m

�q
B

0
k(y)

�
H1

>

<

H0

�

(51)

where

q0(y) = yy M�1 y

q1(y) = q0(y� s)

s perfectly known

q1(y) = yyM�1y� jpyM�1yj2
pyM�1p

s unknown

B
1
k(y) = 2�kq1(y)

B
0
k(y) = 2�kq0(y)
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�

λ
�

PEOD

�� �
�

Figure 2: Block diagram for computation of the PEOD.

This expression (51) gives a Padé Estimated Optimum
Detector (PEOD) when the target is embedded in a
clutter modelized as a SIRV. The advantage of Padé
approximation is to deal with the data without a priori on
the clutter statistics.

It is now possible to evaluate the PEOD performances
thanks to Padé approximation in the case where the quan-
tity on the left of the expression (51) is positive. This
condition is verified because of the following reasons :

� q1(y) and q0(y) are two quadratic positives forms,

� Padé coefficients are all in pairs conjugate (except
few of them which are reals, among the parity of M ),

� K(�z) = K(z),

� each discrete sum in the quotient is real,

� the two discrete sums have the same sign.

On figure (2) is represented a block diagram which
summarizes the approach of PEOD. The PEOD structure
depends only on Padé coefficients calculated from a series
of N reference clutter cells. Then, with the received data
(the cells under test), we just have to compute the PEOD
given by (51) using these coefficients and to decide if a
target is present or not.

In the next section the results of simulations of the dif-
ferents approaches are shown. We can see the compar-
ison between the performances of the OGD and PEOD.
We also present results of the one pulse RSOGD on ex-
perimental forest clutter that we compare with the OGD.
We can see that if we suppose to be in a gaussian situation
of clutter the Pfa value increases.

6 Simulations

In all the simulations we consider an uncorrelated clutter,
i.e. the correlation matrix M is diagonal and supposed to
be determined.
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Figure 3: Performances comparison between the OGD,
OKD and PEOD for K-distributed clutter (� = 0:5, Pfa =

10�3, m = 10).

We compare the performances of the OGD with those
of the OKD (Optimum K Detector) and the PEOD. To
represent non-gaussian clutter we choose a K-distributed
clutter with differents values of the shape parameter
� = 0:5; 1; 2; 20. When � �! +1 the K PDF tends to
a gaussian one. More the value of � increases and closer
are the curves plotted for the OKD and PEOD (we can see
the evolution with respect to � value on the series of fig-
ures (3, 4, 5, 6)).

All the curves represent the detection probability Pd

versus the Signal-to-Noise-Ratio given for one pulse.
Given that m = 10 pulses are considered, the total SNR
for the entire pulse is in fact of 10 dB more than for one
pulse.
For example, on figures, SNR= 0 dB for one pulse corre-
sponds to SNR= 10 dB for the 10 coherently integrated
pulses.
The plots of Pd versus the one pulse SNR are shown on
figures (3, 4, 5, 6) (M = 6 for the Padé approximation).
On the last one the PEOD curves (where � = 20) blends
with the OKD curves. We also denote by :

� ”KG G” : K-distributed clutter - OGD - detection
threshold derived if suppose Gaussian clutter for a
fixed Pfa (mismatched value),

� ”KG” : K-distributed clutter - OGD - detection
threshold derived by Monte Carlo method with the
OGD output of the K clutter for a fixed Pfa (true
value),

� ”KK” : K-distributed clutter - OKD - detection
threshold derived by Monte Carlo method with the
OKD output of the K clutter for a fixed Pfa (true
value),

� ”K Pade” : K-distributed clutter - PEOD - detection
threshold derived by Monte Carlo method with the
PEOD output of the K clutter for a fixed Pfa (true
value),
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Figure 4: Performances comparison between the OGD,
OKD and PEOD for K-distributed clutter (� = 1, Pfa =

10�3, m = 10).

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KG G  
KG    
KK    
K Pade

Figure 5: Performances comparison between the OGD,
OKD and PEOD for K-distributed clutter (� = 2, Pfa =

10�3, m = 10)
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Figure 6: Performances comparison between the OGD,
OKD and PEOD for K-distributed clutter (� = 20, Pfa =

10�3, m = 10)
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Figure 7: Comparison for the PEOD with K-distributed
clutter (� = 2, Pfa = 10�3, m = 10) between the PDF
of � just estimated by Padé and the PDF estimated by Padé
after MAP Estimation

In the case of ” KG G ” we calculate the ” true Pfa

KG ” which would be needed to obtain such threshold
value (lower than the true one because of the Gaussian
hypothesis). We confirm the increasing of false alarm (by
a factor ten) if gaussian hypothesis is made on the clutter
statistic.

On figure (7) we study the SNR loss when the PDF
of the variance of the conditionnally gaussian clutter is
estimated with Padé approximation after MAP estimation
with (47).

The histograms of the true � samples and of the
MAP asymptotically unbiaised estimated samples �̂map

are shown on figure (8) for a K-distributed clutter (� = 2).
We note that the tiny loss does not really perturb the de-
tection capability.

On figure (9) we have plotted the performances of the
PEOD after MAP estimation of � (the histogram of the
estimates is on figure (10)) if consider a Weibull clutter
whose characteristic function (SIRV representation) is un-
known as well as the analytical expressions of Pd and Pfa.
We also apply the method on experimental forest clutter.

The data are clutter data only, and to derive the SNR/Pd

curves we consider that a virtual non fluctuating unknown
target is embedded in.

We show the mismatch of the gaussian hypothesis by a
high increase of false alarm in this case. The detector is
the RSOGD and the curves are shown on figures (11, 12).

7 Conclusions and outlooks

The present paper has addressed the contribution of Padé
approximation method in the problem of coherent radar
detection of an unknown target amplitude statistics.
The detection strategy has been derived by calculating
the likelihood ratio test assuming that the non gaussian
clutter is a SIRV. The characteristic function PDF of the
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Figure 8: Histograms of the true samples of � and of the
MAP estimated samples �̂map in relation with figure (7).
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Figure 9: PEOD with Weibull distributed clutter (a = 0:2,
b = 2 ; Pfa = 10�3, m = 10). The PDF of � is unknown
for Weibull PDF : it is estimated by Padé after a MAP
estimation of the N � values if consider a SIRV represen-
tation.
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Figure 10: Histogram of the 5000� MAP estimated for the
Weibull clutter used in figure (9)
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Figure 11: Approximation of the envelope of forest clutter
PDF from experimental data
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SIRV has been estimated thanks to Padé approximation
and it allows to analytically derive the expression of the
Optimum Detector for any clutter statistic.
Another important point is that modelizing the non
gaussian clutter with a SIRP representation says that,
observation-by-observation, the clutter is gaussian con-
ditionnally to its variance which determines the nature
of the clutter. It is possible to estimate the variance
observation-by-observation and then to use a Padé ap-
proximation for the PDF of this estimated sample.
So, the expression of the Optimum Detector (called
PEOD for Pade Estimated OD) stands for any clutter
statistics. This approach has been investigated for uncor-
related noise and a further work would be to study the
influence of the correlation on the detection performances
for both known and unknown covariance matrix in
exploiting the invariance property of the SIRV under
linear transformation.
The approach that consists in evaluating the detectors per-
formances with Padé approximation is being investigated
and will be presented in a further work. The procedure is
very easy to implement because of the use of the same
expressions for Pfa and Pd. We have shown that the
ouputs of the PEOD are positive random variate that is
required for Padé method. More, the computational cost
is insignificant if compared with numerical integration.

The Padé approximation method is so a very useful and
efficient tool to deal with the problem and furthers works
on the subject will complete the results.
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