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Abstract : The clutter encountered in low grazing an-
gle situations is generally a non gaussian impulsive noise
resulting in a mismatching of the classical radar detec-
tor adjusted to the detection threshold of the gaussian
hypothesis. To estimate the true detection performances
of the radar, one has to take into account not only the
power of the noise (as made in the classical ”Constant
False Alarm Rate " (CFAR) detector) but also its distribu-
tion. The method of radar detection performances analy-
sis described in this paper consists, first, in modelisation,
thanksto Padé approximation, of thetrue Probability Den-
sity Function (PDF) of the noise envelope (clutter, ther-
mal noise and clutter, Radar Cross Section (RCS) fluctua-
tions, ... ) from experimental dataand exploitsthe special
mathematical structure of these estimated PDF in order to,
in a second step, evaluate the capability of radar detection
of a target (fluctuating or not) which would be embed-
ded, in phase and amplitude, in this noise. This method is
also used in order to derive the expressions of the Optima
Radar Detectors in estimating the so-called characteristic
function, characterizing the non-gaussianity of the multi-
dimensionnal clutter in " SIRP " representation (Spheri-
cally Invariant Random Process). It is also possibleto use
the method to evaluate the performances of those detec-
tors.

1 Introduction

Clutter measurements made from experiments by ON-
ERA and other organizations like MIT [5] have shown
a strong difference between reality and the standard
statistical models used, when the target is moving at
very low elevations (with an incidence of less than a
few degrees) or with increasing radar range resolution
(reducing the number of elementary clutter scatterers).
In these situations, the overal clutter statistics can no
longer be related to a gaussian’s one, but rather to laws
characterized by a higher number of degrees of freedom.

To estimate the radar detection performancesof atarget
embedded in grazing angle non gaussian clutter environ-

ment, the classical way consists in modeling the proba-
bility density function (PDF) of the noise by an a priori
known law (K-distribution, Weibull, Log-normale, SIRP
processes, . .. ). Under this hypothesis made on the noise
nature, the PDF of target signal (which can be defined or
not by its a priori known RCS fluctuations law) has to be
mathematically determined for evaluating the Radar Oper-
ational Curves (ROC) for differents Signal-to-Noise Ratio
(SNR) and Probability of False Alarm (Pfa). This kind
of procedure described on figure (1) depends nevertheless
on the statistical a priori model of the clutter and does
not always lead to a simple or existing mathematical ex-
pression (thisis for example the case of the mathematical
expression of the PDF of a constant signal in Weibull or
K-distribution noise).
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Figure 1: Classica procedure of radar detection perfor-
mances analysis

The method described in this paper and based on Padé
Approximation theory ([2, 3]) allows to estimate the true
detection test statistics and so to evaluate the perfor-
mances of this same test against the present clutter. By
this way, either we evaluate the true performances of the
test matched to the clutter (for example Optimum Gaus-
sian Detector (OGD) against gaussian clutter) or we show
the mismatching of a particular test when the clutter is no
moreagaussian one (ex : OGD against K-distributed clut-



ter). We first use the method to evaluate the performances
of the envel ope detector (similar structure asthe OGD) for
one pulse of received signal. The envelope of the received
signal is calculated (without forming the Likelihood Ratio
Test (LRT)) and the expressions of Pfa and Pd (Probabil-
ity of detection) are mathematically derived.

The other principal use of the method is to estimate the
characteristic function of the SIRV (Vector) which rep-
resents the fluctuation law of the conditionnally gaussian
clutter variance. The mathematical expression of this es-
timated PDF allows to integrate over this PDF in order
to derive the general expressions of the joint clutter PDF
instead of computing numerical integration ([2, 3]). It re-
duces the computation.

2 General Relationsof the Detection
Theory

2.1 Likelihood Ratio Test (LRT)

We consider here the basic problem of detecting the pres-
ence or absence of a complex signal sin aset of N mea-
surements of m complex vectorsy = y; + jyq corrupted
by a sum of independent additive complex noises c corre-
sponding to the clutter echoes and white gaussian thermal
noise. It is assumed that the vectorsy; andy,, the respec-
tively thein-phase (I) and quadrature (Q) components, are
independent and identically distributed (iid) random vec-
tors. The problem can be described mathematically in
terms of a hypothesis test between the following pair of
statistical hypothesis, where ¢ denotes al the unwanted
Noises :

Ho:y = ¢ (1)
H :y = s+c 2

When the target signal s is present it corresponds to a
modified version of the perfectly known transmitted signal
p, that is to say that s can be rewritten ass = T'(4, 6) p.
We denote by A the target amplitude and we suppose de-
termined all the others parameters (8) which characterize
the target (Doppler frequency, time delay, ...).

The observed vector vy is used to form the likelihood
ratio A(y) which is compared with a threshold n set to a
desired Py, value:

Hy
20 ©)
H

The likelihood ratio so formed is data depending ; the
resulting detectors structures are also data depending and
their associated performances follow from the statistic of
the data. Thefalse alarm probability Py, isthe probability
of choosing H; when the target is absent, i.e. :

Pro = IP(A(y) z ) 4

and the detection probability isthe probability of choosing
H; when thetarget is present, i.e. :

Py =PAY) 2 ). )

The Neymann-Pearson criterion consists in fixing Py,
while maximizing P;.

2.2 Gaussian clutter case

When the clutter ¢ is supposed to be complex gaussian
distributed with zero mean, variance 202 and covariance
matrix 202M (CN(0,202M)) we have:

tag—1
py(y/Ho) m €xp <—yM7y) (6)

py(y/Hy) = py(y —s/Ho) @)

and the likelihood ratio can be rewritten as :

Hy
—(y-9'M ' (y—9) +y M—lylg 20%),  (8)
0

where A = log(n). Most of the time, the target signa s
is unknown and an estimate in the Maximum Likelihood
sense (ML) of the non fluctuating target amplitude A is
derived (s = Ap) :

_pfmly

“omp O

Aprr, = argmax A(y)
A

This estimate stays valid in the rest of this paper because
of the SIRV representation which keeps a gaussian form
under the integral and maximizing the resulting LRT over
A isalways maximizing (8).
The resulting so-called Optimum Gaussian Detector
(OGD) comesfrom the Generalized Likelihood Ratio Test
(GLRT) andis:

H;y
M ~y* 2 20°Ap™™M 'p (10)
Hyp
The OGD detector just comparesthe matched filter out-
put to the threshold. Using this quadratiquetest is equiva-
lent to use an envel ope detector structure with an adjusted
threshold.
Given that y is gaussian distributed, the laws under H
and H, of this detection strategies are respectively expo-
nential and Rice-Nagakami distributed and we can derive
the expressions of Py, and Py :

Py = e (12)
A2 A
P; = 12
d Q <\/0_2 pTMlpa\/UQ DTM1D> 7( )
where

+o0 2 2
Q(a,b) :/b T exp (_az —;—a > Iy(az)dz (13)



is the Marcum Q-function. If the amplitude of the target
is fluctuating among p(A4; A,) the expression of P, has
to be integrated over p(A4; Ay). For example we can con-
sider the Swerling-K fluctuations for the target amplitude
A (with IE(A) = A2) given by :

2 (K\" K A2
A —_ = [ = A2K71 o
0= () o (- )
(14)
where K is the parameter of the Swerling fluctuation.
Therefore, integrating with respect to p(A; Ag) yields to
the expression of P; for a Swerling-K fluctuating target

([1):
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(15)

where M (a, b; z) is the confluent hypergeometric func-
tion (an aternative notation is | £ (a, b; x)) with parame-
ters a, b, and argument ;. The calculation of M (K, 1; )
(K isaninteger) isobtained by arecurrencerelation given
vn > 1by ([1]):

M(1,1;2) = €°
M2,5;z) = (14z)e”
1
Mn+2,1;z) = n—H[(2n+1+x)M(n+1,1,x)
—(n+1) M(n,1,z)] (16)
For a speciad K value (example K = 1 gives the

Swerling-1 law) the computation of the P; expression is
not too heavy because of the definite integral and the re-
currencerelation (16).

2.3 Non-Gaussian clutter case

In the case of hon-gaussian clutter, the detection strategies
can be derived if we consider a particular clutter nature,
i.e. if an a priori hypothesisis made on the clutter statis-
tic. On the other hand the expressions of Py, and Py are
rather impossible to derive analyticaly.

We propose a method to solve this latter point in esti-
mating the PDF of the test, thanks to Padé approxima-
tion ([2, 3]), and we first study a particular detector that
is equivalent to the gaussian one, the envelope detector,
that we call RSOGD for Root-Squared OGD. In this way,
we eval uate the one-pul se performances of the OGD when
the disturbances are non-gaussian. Before we describe the
method of Padé approximation.

3 The Padé approximation method

Given a random variate Z with PDF p(z) the Moment
Generating Function (MGF) of thisvariate is defined by :

400 —u n
b(u) = /0 p(z)e **dz = Z % = ch u”,

n>0 n>0

)

where p,, denotes the n-order moment of Z.

If we suppose al the moments ., perfectly known up
toorder L+ M +1, themainideaisto truncate theinfinite
series at the order L + M + 1 and to approximateit by a
rational function PX/Ml(v) (L < M) defined by :

u) = S—; (18)

wherethe coefficients {a,, } et {b,, } are determined so that
the following equality be verified :

L
Z anpu" LM
’1]\:407 = Z Cnu™ + O(ul ML), (19)
Z b, u™ n=0
n=0

The notation O(u’+M+!) simply takes into account
terms of order higher than «~“+™ . To determine the two
sets of coefficients {a,, } and {b,,}, we have to match the
coefficients:

M L+M L
E b, u" E cpu” = E apu” + (’)(uL+M+1).
n=0 n=0 n=0

(20)

The moments matching conditionsfix in afirst step the
set of coefficients {b,, } by solvingasimple set of M linear
equationsfor the M unknown denominator coefficients :

M
> bnerong; =0, 1<j<M. (21)
n=0

In asecond step the set {a,,} is determined by asimple
convolution of the {b,,} and the {c,, } coefficients:

min(M,j)
a;j =c¢j + Z b; Cj—i, 0<j< L. (22)
i=1

The set of coefficients {a,,} and {b,,} determined with
(21) and (22), defines, thanks to the Padé Approximation,



the One Point parametric modeling of the MGF given its
power series expansion (17) about u = 0.

If we suppose that the rational fraction approximation has
M distinct poles with negative real part to assumeits con-
vergence for u — oo, the relation (18) can be rewritten
as:

M
A
PEM ) = k R . 2
klU-l-Olk e(ay) > 0 (23)

From this description, we are able to determine a ran-
dom vector's PDF and CDF using the Inverse Laplace
Transform of the corresponding MGF performed by
residue inversion formula leading to a sum of weighted
decaying exponentials:

M
= Ape (24)
k=1
. LY
Fz)=1-%" a_’z e (25)
k=1

The coefficients {A\;}r—1.s and {a}r—1.1 @e com-
plex, al in pairs conjugate if M is even and in pairs
conjugate except an odd number of them if M is odd.

The first application given to this method is to evalu-
ate the PDFs of the envelope of one pulse of the received
signal. From one pulse the statistics of the test comes di-
rectly from the envelope of the data. It isjust necessary to
estimate its PDF. From the whole received vector and to
compute the likelihood ratio, it is necessary to know or to
estimate the joint PDF of the vector what is not possible to
do with a Padé approximation. In this latter case we will
interest to estimate the PDF of the detection tests which
are one-dimensionnal positive random variables.

4 Onepulse RSOGD performances

4.1 RSOGD or envelope detector

For one pulse, the envelope detector principle is to eval-
uate the envelope of the received signal y(t). We denote
by pu,(r) and pg, (r) the probability density functions
(PDF) of the envelope of the received signal y(t) respec-
tively under H, and H; hypothesis. The P, and P; val-
ues are so defined by :

+o0

P = Pyl 2 0= [ pm(r)dr (@8)
“+o00

P o= Py S 6) = /0 pa, (r)dr (27)

Theexpression of p g, (r) can bedirectly deducted from
pH, (r) if consider their respective radial coherent char-
acteristic functions. The detail of the calculation can be

foundin ([10, 8]) and the resulting expressionis:

+0oo
pry(r; Ag) = / pry (5 A) p(A; Ag) dA
0

/0+<><> /Om rpJo(pr) Jo(py) pr, (y)

+o00
[ /0 Jo(pA)p(A; Ag)dA| dpdy(28)

X

where p(A; Ag) is the fluctuations law of the target
(p(A4; Ap) = §(A — Ap) in the case of non-fluctuating
target, Ay being the mean level of the fluctuations). This
expression isvery interesting and the whole problemisre-
lated in the determination or estimation of the PDF of the
only noise.

4.2 Performances evaluation for one pulse

The latter remark holds in the problem of evaluating the
performances of the detector. From (26) and (27) we can
see that the expressions of Py, and P; are given by the
statistics of the test under Hy and H;. From the envelope
of thereceived datawe can estimate these statistics thanks
to Padé approximation. We consider then that :

PH, (7 Z Ap e (29)

With simple calculation Py, expression (26) becomes:

>‘ -«
Pro=3_ ~re, (30)
k=1

and the detection threshold 6 is obtained with a desired
Py, value by the determination of this equation. Using (5)
and (28) ageneral P, expressionis derived for fluctuating
or not target (the same notation is kept for p(A4; Ao)) :

P, =

—+o0
1—/ 0.J1(pb)
0 ' Z PP +ak
+o0
< [ hpAwai . @D
0

In the same way it is possible to estimate p(A4; Ag) by
Padé approximation (P coefficients {;} and {d;}) :

A A) =S Jiem (32)
and the P; expression s, after few calculation :

—+o0
P, = 1—/ 0.J1(pb)
A i | Z T —
P .
x g (33)

= VPPAL+6;



In that way we are able to determine the performances of
the RSOGD for one received signal pulse whatever the
nature the present clutter (often non-gaussian one). In the
next section we evaluate the performances of the OGD
detector for the m-train of pulses thanks to the Padé ap-
proximation.

4.3 m pulses OGD performances estimated
with Padé

We have seen that the Py, and P; expressions come from
the statistics of the test (26,27). In the case of the OGD
detector, these expressions are known if the noise is gaus-
sian or if we know its PDF. With Padé approximation, we
are able to evaluate the OGD performances whatever the
statistic of the noise is. The OGD detector (10) is for the
m pulses:

H,
IpfM1y]? 2 20°ApIM Tp = ¢

Ho

Theleft term isarandom variate V; (data depending) with
PDF p(V;). @ = 0 for Hy hypothesisand i = 1 for H;
hypothesis. So :

M
p(Vi) = Z Apie kiVi (34)
k=1
and

+ 00
Pra = / Vo)V
[

M
= 3 52 exp(—ano 9) (35)

Py = p(V1)dvi

[
WP
= Z Ak1 exp(—ayg1 @) (36)

(678
=7 k.1

—_

This method alows to treat directly with the m-train of
the received data pulses which are used in the detector
structure.

To solve the problem of modelization of the non-
gaussianity of the clutter, the clutter process can be mod-
eled as agaussian process with avariancewhichisitself a
random variate. This model resultsin the so-called Spher-
ically Invariant Random Process (SIRP) and is explained,
for example, in ([13, 11]). Many peopleexploited thisrep-
resentation to apply it in radar detection. In ([7]) are de-
rived the optimum radar receiversto detect fluctuating and
non-fluctuating targets against a mixture of K-distributed
and gaussian clutter with perfectly known statistics.

In the next section we describe briefly the SIRP theory and
the results found in ([7, 4]). Then, with always the idea
of having non a priori assumption on the clutter statis-
tic, we present similar results after estimating the PDF of

the gaussian process variance with a Padé approximation.
This may be applied after a Maximum A Posteriori esti-
mation of the variance of the conditionnally gaussian pro-
cess (the process is conditionnally to the variance a gaus-
sian one). The N estimates are then considered as a V-
sample of a positive random variate ; a Padé approxima-
tion is used to derive the estimated PDF of the variances
of the V observationsof the clutter and so characterizethe
non-gaussianity of the clutter without a priori. Once the
estimate optimum detector (EOD) is derived it is possible
to evaluate its performances using a Padé approximation.

5 Contributionsof Padéapproxima-
tion to the Optimum Radar Detec-
tor

51 SIRP - Description

When the clutter is non-gaussian we use the SIRP repre-
sentation that consider the clutter process as the product of
am complex gaussian vector X = Xy + jX¢ and apositive
random variate 7 :

C=X+/T. (37)

Thein-phase (x) and quadrature (X ) componentsarein-
dependent and identically distributed random vectors with
zero-mean, unit variance and covariance matrix M. The
vector X is then zero-mean with variance 2 and covariance
matrix 2M. The PDF of the variable 7 is the so-called
characteristic function of the SIRP and the so formed vec-
tor cis, conditionnally to 7, a complex gaussian random
process with zero-mean, variance 27 and covariance ma-
trix 27M

p(c/7)

t -1
—_— —c'(2TM c
7™ |2TM | eXp( (2rM) )

1 ctM ¢
= G (75 ) @
The PDF of the vector cisderived after integration over
p(T):

ctM~tc

v = | +°° G (—2—) p(r)dr

(39)
5.2 SIRP - Optimum Radar Detector

Applied to the detection criterion, the latter expression is

in fact py(y/Ho) and py(y/H:) = py(y — s/ Hop). The
likelihood ratio becomes ([7]) :

/0+°° exp (—(112—(:/)) - p()\—qo_(y)ﬂ @drgo

2T Tm H,
where go(y) = YM~ly, qi(y) = go(y — ) and A =
In(n). Asbefore, theamplitude A of thetarget (s= Ap) is




unknown but estimated in the Maximum Likelihood sense
(cf. (9)). In this case the detection strategy is given by
(40) where now :

—1,, [pfM ~ly[?

=yt
al) =yMTy = S, (41)

53 SIRP - Example :
r : theOKD

Given an expression for p(7) the Optimum Detector is ob-
tained for the so assumed clutter statistic and after compu-
tation of the generalized integration over 7. In the case of
K-distributed clutter (size m) with parametersv and b (v
isthe form parameter whose val ue determinethe spikiness
of the distribution, ¢(x) = xt M'x) :

Optimum K Detec-

2 bu+m
7 M x|T(v) 2v+m

~m(bVaq(x)),

(42)

p(X) = q(x) ="

the PDF of 7 is a Gamma(v,3 = 2/b*) PDF whose ex-

pressionis:
vl T
=t e () @

Integrating (40) with respect to this PDF gives the ex-
pression of the so-called Optimum K-distributed Detector
(OKD)Vm > 2:

1

W\ T Koo (VED)) i
(Zo(W) Ky (b« /qo(y)) }%077 9

If m =1, ¢:(y) = 0 and the equation (40) becomes:

Ko (/o) 5 B2 g

(00(y) T

54 Padé Estimated Optimum Detector
the PEOD

Recalling that the processis gaussian if considered it con-
ditionnalyto 7, it is possibleto estimate the variance T for
each observation vector (N observations). This can bere-
alized either in the ML sense or, to give some more infor-
mation about the estimates (positive variate, variance of a
gaussian vector), in the MAP sense that consistsin adding
an a priori information and to reduce the estimates region
to the more realistic one. In this case, the a priori infor-
mation is a conjugate (informative) prior, i.e., the prior
combined with the likelihood yield to a posterior density
having the same form as the prior density. This method
comes from the Bayes'rule:

py(7/y) < py(y/7) 9(7) (46)

py(y/) is the likelihood of the data (the conditionnal
gaussian density) and g(7) is the prior or the a priori in-
formation [12, 9]. We choose g(7) as being an Inverse

Gammadensity with parameters a and d and the estimates
are derived asfollow :

ey G

I = T P\ Tar

Tmap = argmaxpy(7/y) = argmaxpy(y/T)g(T)
_dyftMTly 42
 2d(m+4a+1) (“7)

These N asymptotically unbiaised estimates represent
a N sample of the positive random variance r. The repre-
sentative PDF p(7) can be estimated with a Padé approxi-
mation :

M ~
p(F) =D Ape ™7, (48)

and the calculation of (39) if replaced in the detection case
istractable ([6]) to give:

1 M
- - /\A
(2m)m M| ; g

[ (o
T Mexp | — — o7 ) dT
0 2T

2(1 m)/2 >(1—m)/2

- mwz <
Kiom (V200(y) ax) (49)

The likelihood ratio compared with the threshold 7 (3)
becomes:

py(y/Ho)

X

X

py(y/Ho) 1
py(y —s/Ho) 5,

and finally we haveVm > 2 :

Geor) * &

(50)

Z Ak (g Ki_m B(y)
k=1
H;y
N
Hy
(51)
where
wly) = y'Mly
aly) = qly—-9
s perfectly known
TMfl |2
_ yimty o PIMOYE
a1 (y) YIMY = S M
s unknown
Bily) = 2aa(y)
B)y) = 2aiql(y)
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Figure 2: Block diagram for computation of the PEOD.

This expression (51) gives a Padé Estimated Optimum
Detector (PEOD) when the target is embedded in a
clutter modelized as a SIRV. The advantage of Padé
approximation is to deal with the data without a priori on
the clutter statistics.

It is now possible to evaluate the PEOD performances
thanks to Padé approximation in the case where the quan-
tity on the left of the expression (51) is positive. This
condition is verified because of the following reasons:

e ¢1(y) and o (y) are two quadratic positives forms,

e Padé coefficients are all in pairs conjugate (except
few of them which arereals, among the parity of M),

o K(2)=K(z),
e each discrete sum in the quotient is real,
o thetwo discrete sums have the same sign.

On figure (2) is represented a block diagram which
summarizes the approach of PEOD. The PEOD structure
depends only on Padé coefficients cal culated from a series
of N reference clutter cells. Then, with the received data
(the cells under test), we just have to compute the PEOD
given by (51) using these coefficients and to decide if a
target is present or not.

In the next section the results of simulations of the dif-
ferents approaches are shown. We can see the compar-
ison between the performances of the OGD and PEOD.
We also present results of the one pulse RSOGD on ex-
perimental forest clutter that we compare with the OGD.
We can seethat if we supposeto bein agaussian situation
of clutter the Py, valueincreases.

6 Simulations

In all the ssimulations we consider an uncorrelated clutter,
i.e. the correlation matrix M is diagonal and supposed to
be determined.

Bruit K : v=0.5; N=10 ; F'fa:1073 ; Pfa KG reelle = 2.44.10°2

5 10 15

0
input SNR

Figure 3: Performances comparison between the OGD,
OKD and PEOD for K-distributed clutter (v = 0.5, Py, =
1073, m = 10).

We compare the performances of the OGD with those
of the OKD (Optimum K Detector) and the PEOD. To
represent non-gaussian clutter we choose a K-distributed
clutter with differents values of the shape parameter
v = 0.5, 1, 2, 20. When v — 400 theK PDF tendsto
agaussian one. More the value of v increases and closer
arethe curves plotted for the OKD and PEOD (we can see
the evolution with respect to v value on the series of fig-
ures(3, 4,5, 6)).

All the curves represent the detection probability Py
versus the Signal-to-Noise-Ratio given for one pulse.
Given that m = 10 pulses are considered, the total SNR
for the entire pulse isin fact of 10 dB more than for one
pulse.

For example, on figures, SNR= 0 dB for one pulse corre-
sponds to SNR= 10 dB for the 10 coherently integrated
pulses.

The plots of P; versus the one pulse SNR are shown on
figures (3, 4, 5, 6) (M = 6 for the Padé approximation).
On the last one the PEOD curves (where v = 20) blends
with the OKD curves. We also denote by :

e "KG G” : K-distributed clutter - OGD - detection
threshold derived if suppose Gaussian clutter for a
fixed Py, (mismatched value),

e "KG" : K-distributed clutter - OGD - detection
threshold derived by Monte Carlo method with the
OGD output of the K clutter for a fixed Py, (true
value),

e "KK” : K-distributed clutter - OKD - detection
threshold derived by Monte Carlo method with the
OKD output of the K clutter for a fixed Py, (true
value),

e "K Pade’ : K-distributed clutter - PEOD - detection
threshold derived by Monte Carlo method with the
PEOD output of the K clutter for a fixed P, (true
value),
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Figure 4: Performances comparison between the OGD,
OKD and PEOD for K-distributed clutter (v = 1, Py, =
10~3, m = 10).
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Figure 5: Performances comparison between the OGD,
OKD and PEOD for K-distributed clutter (v = 2, Py, =
1073, m = 10)
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Figure 6: Performances comparison between the OGD,
OKD and PEOD for K-distributed clutter (v = 20, Py, =
1073, m = 10)
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Figure 7: Comparison for the PEOD with K-distributed
clutter (v = 2, Py, = 107%, m = 10) between the PDF
of 7 just estimated by Padé and the PDF estimated by Padé
after MAP Estimation

In the case of * KG G ” we calculate the ” true Py,
KG " which would be needed to obtain such threshold
value (lower than the true one because of the Gaussian
hypothesis). We confirm the increasing of false alarm (by
afactor ten) if gaussian hypothesis is made on the clutter
statigtic.

On figure (7) we study the SNR loss when the PDF
of the variance of the conditionnally gaussian clutter is
estimated with Padé approximation after MAP estimation
with (47).

The histograms of the true r samples and of the
MAP asymptotically unbiaised estimated samples 7.,
areshown onfigure(8) for aK-distributed clutter (v = 2).
We note that the tiny loss does not really perturb the de-
tection capability.

On figure (9) we have plotted the performances of the
PEOD after MAP estimation of 7 (the histogram of the
estimates is on figure (10)) if consider a Weibull clutter
whose characteristic function (SIRV representation) isun-
known aswell asthe analytical expressionsof Py and Py,

We also apply the method on experimental forest clutter.
The data are clutter data only, and to derive the SNR/P,
curveswe consider that a virtual non fluctuating unknown
target is embedded in.

We show the mismatch of the gaussian hypothesisby a
high increase of false alarm in this case. The detector is
the RSOGD and the curves are shown on figures (11, 12).

7 Conclusions and outlooks

The present paper has addressed the contribution of Padé
approximation method in the problem of coherent radar
detection of an unknown target amplitude statistics.

The detection strategy has been derived by calculating
the likelihood ratio test assuming that the non gaussian
clutter is a SIRV. The characteristic function PDF of the
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Figure 8: Histograms of the true samples of 7 and of the
MAP estimated samples 7,,,,, in relation with figure (7).

Weibull clutter as SIRV - ___estimation ; N = 10 ; P, =10
map ta

/

0.9 / i
/

0
One pulse SNR

Figure 9: PEOD with Weibull distributed clutter (a = 0.2,
b=2; Ps, =103 m = 10). The PDF of 7 is unknown
for Weibull PDF : it is estimated by Padé after a MAP
estimation of the N 7 values if consider a SIRV represen-
tation.
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Figure 10: Histogram of the 5000 MAP estimated for the
Weibull clutter used in figure (9)
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Figure 11: Approximation of the envelope of forest clutter
PDF from experimental data
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Figure 12: Comparison between radar detection perfor-
mances of non fluctuating target virtually embedded in the
forest clutter (figure (11)) and this same target in the same
clutter supposed gaussian. Pfa = 1072 givesathreshold
of 3.23 for the forest clutter and 2.63 if gaussian clutter ;
this latter value would correspondto a Py, = 1.626.10>
for the forest clutter



SIRV has been estimated thanks to Padé approximation
and it allows to analytically derive the expression of the
Optimum Detector for any clutter statistic.

Another important point is that modelizing the non
gaussian clutter with a SIRP representation says that,
observation-by-observation, the clutter is gaussian con-
ditionnally to its variance which determines the nature
of the clutter. It is possible to estimate the variance
observation-by-observation and then to use a Padé ap-
proximation for the PDF of this estimated sample.

So, the expression of the Optimum Detector (called
PEOD for Pade Estimated OD) stands for any clutter
statistics. This approach has been investigated for uncor-
related noise and a further work would be to study the
influence of the correlation on the detection performances
for both known and unknown covariance matrix in
exploiting the invariance property of the SIRV under
linear transformation.

The approach that consists in eval uating the detectors per-
formances with Padé approximation is being investigated
and will be presented in a further work. The procedureis
very easy to implement because of the use of the same
expressions for Py, and P;. \We have shown that the
ouputs of the PEOD are positive random variate that is
required for Padé method. More, the computational cost
isinsignificant if compared with numerical integration.

The Padé approximation method is so a very useful and
efficient tool to deal with the problem and furthers works
on the subject will complete the results.
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