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Abstract—This article studies the statistical model of the non-
centered mixture of scaled Gaussian distributions (NC-MSG). Us-
ing the Fisher-Rao information geometry associated with this dis-
tribution, we derive a Riemannian gradient descent algorithm. This
algorithm is leveraged for two minimization problems. The first is
the minimization of a regularized negative log-likelihood (NLL).
The latter makes the trade-off between a white Gaussian distribu-
tion and the NC-MSG. Conditions on the regularization are given
so that the existence of a minimum to this problem is guaranteed
without assumptions on the samples. Then, the Kullback-Leibler
(KL) divergence between two NC-MSG is derived. This divergence
enables us to define a second minimization problem. The latter is
the computation of centers of mass of several NC-MSGs. Numerical
experiments show the good performance and the speed of the Rie-
mannian gradient descent on the two problems. Finally, a Nearest
centroïd classifier is implemented leveraging the KL divergence and
its associated center of mass. Applied on the large-scale dataset
Breizhcrops, this classifier shows good accuracies and robustness
to rigid transformations of the test set.

Index Terms—Non-centered mixture of scaled Gaussian
distributions, Robust location and scatter estimation, Riemannian
optimization, Fisher Information Metric, Classification, Kullback-
Leibler divergence, Center of mass.

I. INTRODUCTION

THE first and second-order statistical moments of the sam-
ple set {xi}ni=1 ∈ (Rp)n are ubiquitous features in signal

processing and machine learning algorithms. Classically, these
parameters are estimated using the empirical mean and the
sample covariance matrix (SCM), which correspond to the max-
imum likelihood estimators (MLE) of the multivariate Gaussian
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model. However, these estimates tend to perform poorly in the
context of heavy-tailed distributions, or when the sample set
contains outliers. In such setups, one can obtain a better fit to
empirical distributions by considering more general statistical
models, such as the elliptical distributions [1]. Within this broad
family of distributions, M -estimators of the location and scat-
ter [2] appear as generalized MLEs and have been leveraged for
their robustness properties in many fields (cf. [3] for an extensive
review).

An important subfamily of elliptical distributions is the
compound Gaussian distributions, which models samples as
x

d
= µ+

√
τui, where µ ∈ Rp is the center (also referred to

as location) of the distribution, ui ∼ N (0,Σ) is the speckle
(centered Gaussian distribution with covariance matrix Σ), and
τ ∈ R+

∗ is an independent random scaling factor called the
texture. The flexibility regarding the choice of the probability
density function for τ results in various models forx. Compound
Gaussian distributions encompass the t-distribution (including
the Cauchy distribution), and the K-distribution. In practice,
the underlying distribution is generally unknown, which is why
the textures have often been modeled as unknown and deter-
ministic in the centered case, i.e., xi ∼ N (0, τiΣ). Such model
will be referred to as mixture of scaled Gaussian distributions
(MSG) [4]. The MLE of the scatter matrix Σ of this model coin-
cides with Tyler’sM -estimator of the scatter [5], which attracted
considerable activity due to its robustness and distribution-free
properties over the elliptical distributions family [6], [7], [8],
[9]. However, its transposition to the non-centered case from
the model xi ∼ N (µ, τiΣ) received less interest. This might be
because the usual fixed-point iterations to evaluate its maximum
likelihood may diverge in practice, which motivated the present
work.

In this article, we tackle optimization problems related to pa-
rameter estimation and classification for a non-centered mixture
of scaled Gaussian distributions (NC-MSG). The contribution
is threefold:

First, we derive a new Riemannian gradient descent algorithm
based on the Fisher-Rao information geometry of the considered
statistical model. Indeed the parameter space (location, scatter,
textures) is a product manifold that can be endowed with a
Riemannian metric to leverage the Riemannian optimization
framework [10], [11]. The Fisher-Rao information geometry
corresponds to the one induced by the Fisher information metric.
It is of particular interest since it is inherently well suited to the
natural geometry of the data [12]. In this scope, we derive the
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Riemannian gradient (also referred to as the natural gradient)
and a second-order retraction of this geometry. These tools are
enough to cast a gradient descent applicable to any function of
the parameters. We focus on two prominent examples that are
regularized maximum likelihood estimation and center of mass
computation. Simulations evidence that the proposed approach
allows for fast computation of critical points, as it can converge
with up to one order of magnitude less of iterations compared
to other Riemannian descent approaches.

The second line of contributions concerns the problem of
maximum likelihood estimation, for which we propose a new
class of regularization penalties. A main issue with NC-MSGs is
that the existence of the maximum likelihood is not guaranteed.
This is due to attraction points where the likelihood function
diverges. This also explains why standard fixed-point algorithms
to evaluate the solution may diverge in practice. Related issues
are well known in the context of M -estimators because their
existence is subject to strict conditions that are not always met
in practice [2], [3], [5], for example when there is insufficient
sample support (n < p). In such setups, it is common to rely
on regularization penalties to ensure the existence of a solu-
tion, and the stability of corresponding iterative algorithms.
In the centered case of elliptical distributions, several works
considered shrinkage of M -estimators to a target scatter ma-
trix [13], [14], [15], and regularizing both the mean and the
scatter for the non-centered t-distribution was studied in [16].
Other regularizations formulated on the spectrum of the scatter
matrix were proposed in [4], [17], [18] for the centered case.
For NC-MSGs, we propose here a family of penalties that can
be interpreted as a divergence between the initial model and
a white Gaussian one (i.e., that shrinks both the textures and
eigenvalues of the scatter matrix to a pre-defined κ ∈ R+

∗ ). We
derive the general conditions for these penalties to ensure the
existence of a solution for the regularized MLE. Interestingly,
we show that this existence is only conditioned to the design
of the penalty, and does not depend on the size of the sample
support. We also study the invariance properties of the resulting
estimators.

Finally, we apply the proposed algorithm to perform Rieman-
nian classification. We consider the framework where statistical
features of sample batches are used to discriminate between
classes [19], [20], [21], [22]. The Riemannian approach then
consists in generalizing usual classification algorithms (e.g., the
Nearest centroïd classifier) by replacing the Euclidean distance
and arithmetic mean by divergence and its corresponding center
of mass [23], [24], [25]. In this setup, the information geometry
can help design meaningful distances between the features, and
improve the output performance [19], [22]. Unfortunately, the
geodesic distance associated with the Fisher information metric
of the NC-MSG remains unobtainable in closed-form (it is still
unknown for the non-centered multivariate Gaussian model [26],
[27], [28]). Instead, we propose to rely on the Kullback-Leibler
(KL) divergence and its associated center of mass (computed us-
ing the proposed Riemannian optimization algorithm). We apply
such Riemannian classification framework to the Breizhcrops
dataset [29]. Our experiments evidence that regularizing the es-
timation greatly improves the accuracy. Thanks to the invariance

properties of the proposed estimators, we also show that this
process exhibits good robustness to rigid transformations of the
samples during the inference.

The rest of the article is organized as follows. Section II
presents NC-MSGs and casts their parameter space as a man-
ifold. Section III presents elements of Riemannian geometry,
and studies the Fisher-Rao information geometry for this model.
Section IV derives a Riemannian gradient descent algorithm fol-
lowing this geometry. Section V discusses parameter estimation
in the considered model, presents a new class of regularized es-
timators, and studies some of their properties (existence, invari-
ances). Section VI derives the KL divergence of the model and its
associated center of mass. Section VII concludes with validation
simulations and an application to Riemannian classification of
the Breizhcrops dataset. For conciseness, some technical proofs
are in appendices that are provided as Supplementary materials.

II. NON-CENTERED MIXTURE OF SCALED GAUSSIAN

DISTRIBUTIONS AND ITS PARAMETER SPACE Mp,n

A. Data Model

Let a set of n data points {xi}ni=1 belonging to Rp and
distributed according to the following statistical model

xi
d
= µ+

√
τi Σ

1
2 ui, (1)

whereui follows a white circular Gaussian distribution i.e.ui ∼
N (0, Ip). The variables µ ∈ Rp and Σ ∈ S++

p (set of p× p
symmetric positive definite matrices) are respectively named
the location and scatter parameters. Then, the unknown texture
parameters {τi}ni=1 are stacked into the vector τ ∈ (R+

∗ )
n (set

of strictly positive vectors). If these textures admit a probability
density function (p.d.f.), then the random variables (r.v.) xi

follow a Compound Gaussian distribution [3], [30]. However, in
general, this p.d.f. is unknown. In order not to rely on additional
pdf assumptions on the textures, these are often assumed to be
unkown and deterministic [7], [31]. In this case, the r.v.xi follow
a NC-MSG, i.e.

xi ∼ N (µ, τiΣ). (2)

Thus xi admits a p.d.f. f defined from the Gaussian one fG

f (xi| (µ,Σ, τi)) = fG (xi| (µ, τiΣ)) , (3)

with ∀x ∈ Rp

fG (x|(µ,Σ)) =

(2π)−
p
2 |Σ|−

1
2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
. (4)

The negative log-likelihood (NLL) of the sample set {xi}ni=1

is then defined on the set of parameters θ = (µ,Σ, τ ) ∈ Rp ×
S++
p × (R+

∗ )
n as (neglecting terms not depending on θ)

L (θ|{xi}ni=1) =

1

2

n∑

i=1

[
log |τiΣ|+ (xi − µ)TΣ−1(xi − µ)

τi

]
. (5)
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One can observe an ambiguity between the textures τ and the
scatter matrix Σ. Indeed, ∀α > 0, we have

L
((
µ,αΣ,α−1τ

)
|{xi}ni=1

)
=

L ((µ,Σ, τ ) |{xi}ni=1) . (6)

Thus, to identify the textures and scatter matrix parameters, a
constraint on τ or Σ can be added. Here the choice is made
to constrain the textures by fixing their product to be equal to
one, i.e.

∏n
i=1 τi = 1. We point out that most of the results of

the article could be obtained by constraining the scatter matrix
instead of the textures, with a unit determinant constraint, i.e.
|Σ| = 1 [32], [33]. Then, the parameter space of interest is

Mp,n = Rp × S++
p × S(R+

∗ )
n, (7)

where S(R+
∗ )

n is the set of textures with the unit product,

S(R+
∗ )

n =

{
τ ∈ (R+

∗ )
n :

n∏

i=1

τi = 1

}
. (8)

The choice of adding a constraint is motivated by two results
additional to the identifiability: (i) it reduces the dimension of
the parameter space by removing the indeterminacy (6), (ii) the
associated FIM (see Proposition 1) admits a simpler expression,
which will be instrumental in the rest of the article as it turns
Mp,n into a Riemannian manifold. Its simple formula could not
have been obtained without adding this constraint (either on τ
or its counterpart on Σ).

B. Related Works

When {xi}ni=1 is sampled from an underlying heavy-tailed
Compound Gaussian distribution, the empirical mean and SCM
do not provide robust and accurate estimates of µ and Σ. In this
setup, M -estimators [2], raised increasing interest in the past
decades (see e.g. [3]). These estimators are expressed through
the two joint fixed-point equations

µ =

(
n∑

i=1

u1(ti)

)−1 n∑

i=1

u1(ti)x ! Hµ(µ,Σ),

Σ =
1

n

n∑

i=1

u2(ti)(x− µ)(x− µ)T ! HΣ(µ,Σ), (9)

where ti ! (x− µ)TΣ−1(x− µ), u1 and u2 are functions that
respect Maronna’s conditions1 [2]. Under certain conditions [2],
these estimators can be computed with fixed-point iterations

µk+1 = Hµ(µk,Σk),

Σk+1 = HΣ(µk+1,Σk), (10)

that converge towards a unique solution satisfying (9). Interest-
ingly, some M -estimators also appear as MLE when u1(t) =
u2(t) is linked to the p.d.f. of an elliptical distribution [3].

1Notice that [2] rather uses a formulation of (9) involving “u1(ti)” and

“u2(t2i )”, with ti =
√

(x−µ)TΣ−1(x−µ). Without loss of generality, this
article uses the present notation to simplify some discussions.

Expressing these estimators as the solution of an optimization
problem drove a more recent line of work leveraging opti-
mization theory allowing, e.g., for generalizations to structured
scatter matrix matrices [34], [35], [36] or regularized location
and scatter matrix estimation [16].

In the context of scatter matrix estimation, Tyler’s M -
estimator [5] is especially interesting thanks to its robustness
and “distribution-free” properties over the elliptical distributions
family. Tyler’s M -estimator is obtained for µ = 0 and u2(t) =
p/t, and also coincide with the MLE of the centered MSG [6],
[7]. However, this estimator cannot trivially be transposed to the
case of joint mean-scatter matrix estimation. Indeed, the MLE
solution associated with NC-MSG is obtained with u1(t) =
u2(t) = p/t, which does not satisfy Maronna’s conditions [2],
and for which the fixed-point iterations (10) generally diverge.
Thus, Tyler’sM -estimator of the scatter matrix is usually applied
on demeaned data, where the mean is estimated in a prior step2.
It was yet experienced that the MLE of NC-MSG could be
evaluated in practice with Riemannian optimization rather than
potentially unstable fixed-point iterations in [37] (still, without
any theoretical guarantees). The following of this article builds
upon this finding in several directions: optimization in Sections
III-B and IV, regularized estimation with theoretical guarantees
in Section V, and classification in Sections VI and VII.

III. RIEMANNIAN GEOMETRY OF Mp,n

The objective of this section is to present the information
geometry of the NC-MSG (2); i.e. the Riemannian geometry
of Mp,n with the FIM as a Riemannian metric. This Rieman-
nian geometry is leveraged to optimize several cost functions
h : Mp,n → R. Notably, two cost functions will be studied: a
regularized NLL in Section V, and a cost function to compute
centers of mass of sets of points {θi} ⊂ Mp,n in Section VI.
Before turning Mp,n into a Riemannian manifold, a brief in-
troduction to Riemannian geometry is made. For a complete
introduction to the topic, see [10], [11].

A. Riemannian Geometry

Let E be a linear space of dimension d. Informally, a smooth
embedded manifold M ⊂ E of dimension l ≤ d is a nonempty
set that locally resembles a l-dimensional linear space. Indeed,
M is a smooth embedded manifold of E if and only if it is locally
diffeomorphic3 with open sets of a l-dimensional linear subspace
in Rd. Then, smooth curves c are smooth functions from open
intervals I of R to M; i.e. c : I → M. Collecting velocities of
the curves passing through x ∈ M, we get the tangent space at
x:

TxM = {c′(0) | c : I → M is smooth and c(0) = x} . (11)

2We point out that a closely related estimator proposed in [5] uses u1(t) =√
p/t and u2(t) = p/t, which yields converging fixed-point iterations in

practice despite being a limit case of Maronna’s conditions. This estimate,
however, is not obtained as the solution of an underlying optimization problem,
i.e., has no MLE interpretation.

3A diffeomorphism is a bijective map f : U → V where U,V are open sets
and such that both f and f−1 are smooth (or infinitely differentiable).
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This tangent space corresponds to a linearization of M at x. The
tangent bundle of M is then the disjoint union of all the tangent
spaces of M, i.e., TM = {(x, ξ) : x ∈ M and ξ ∈ TxM}.

So far, we have defined the notion of the smooth embedded
manifold of a linear space. To turn M into a Riemannian man-
ifold, its tangent spaces TxM are equipped with a Riemannian
metric which is an inner product4 〈., .〉Mx : TxM× TxM → R
that varies smoothly with respect to x.5

Then, to move on M, a geodesic is a smooth curve on M
with zero acceleration along its path. In a Euclidean space E
the acceleration is classically defined as the second derivative.
Thus, a geodesic c : I → E is such that γ̈(t) = 0 ∀t ∈ I . If
γ(0) = x and γ̇(0) = ξ, then, by integrating, we recover the
classical straight line γ(t) = x+ t ξ. This notion of acceleration
is generalized to manifolds using the Levi-Civita connection
denoted by ∇. This notion requires first defining smooth vector
fields, which are smooth mappings that associate a vector in
TM for each point of the manifold M, i.e.:

ξ : M → TM
x /→ ξ(x).

(12)

Notice that given this definition, ξ(x) ∈ TxM ∀x ∈ M, so we
also use the symbol ξ (respectively η) to denote a tangent vector
when there is no ambiguity. Now, the Levi-Civita connection
itself is defined as an operator that generalizes the directional
derivative of vectors fields to Riemannian manifolds, and asso-
ciates to every couple of smooth vector fields (ξ, η) on M a
new vector field ∇ξη on M. Given a Riemannian manifold M,
the Levi-Civita connection is unique and defined by the Koszul
formula. It should be noted that the Levi-Civita connection
depends on the chosen Riemannian metric. Using this object,
a geodesic γ : I → M with initial conditions γ(0) = x and
γ̇(0) = ξ is defined as a smooth curve having zero acceleration
as defined by the Levi-Civita connection

∇γ̇(t)γ̇(t) = 0γ(t), ∀t ∈ I (13)

where γ̇(t) = d
dtγ(t) and 0γ(t) is the zero element of

Tγ(t)M. Let γ be a geodesic defined on [0, 1] with ini-
tial conditions γ(0) = x and γ̇(0) = ξ. Then, the Rie-
mannian exponential mapping expMx : TxM → M at x ∈
M is defined as expMx (ξ) = γ(1). For x, y ∈ M, its in-
verse function, the Riemannian logarithm mapping, is de-
fined as logMx (y) = arg minξ∈TxM‖ξ‖2x subject to expMx (ξ) =

y with ‖ξ‖2x = 〈ξ, ξ〉Mx . Finally, the Riemannian distance
between two points x, y ∈ M is computed as dM(x, y) =
‖ logMx (y)‖x.

B. Description of the Riemannian Manifold Mp,n

This subsection gives the Riemannian structure, induced by
the FIM, of the parameter set Mp,n. To specify the latter, we
begin by defining the ambient space

Ep,n = Rp × Rp×p × Rn. (14)

4An inner product is a bilinear, symmetric, positive definite function on a
R-vector space.

5For all smooth vector fields ξ, η on M the function x /→ 〈ξ, η〉Mx is smooth.

Therefore, the tangent space of Mp,n at θ is a subspace of the
ambient space Ep,n

TθMp,n =
{
ξ = (ξµ, ξΣ, ξτ ) ∈ Rp × Sp × Rn :

ξTτ τ
1−1 = 0

}
, (15)

where Sp is the set of symmetric matrices and .1−1 is the
elementwise inverse operator. To turn Mp,n into a Riemannian
manifold, we must equipMp,n with a Riemannian metric. Many
possibilities are available to us, however, a preferable one is the
FIM [38] derived in Proposition 1. Indeed, it is calculated using
the NLL (5) and thus is associated with the statistical model (1).

Proposition 1 (Fisher Information Metric): Let θ ∈ Mp,n

and ξ, η ∈ TθMp,n, the Fisher Information Metric at θ asso-
ciated with the NLL (5) is

〈ξ, η〉Mp,n

θ =
n∑

i=1

(
1

τi

)
ξTµΣ

−1ηµ +
n

2
Tr
(
Σ−1ξΣΣ

−1ηΣ

)

+
p

2
(ξτ 1 τ1−1)T (ητ 1 τ1−1),

where 1 is the elementwise product operator.
Proof: See Supplementary material A. "
Then, the orthogonal projection according to the FIM from

Ep,n onto TθMp,n is given in Proposition 2.
Proposition 2 (Orthogonal projection): The orthogonal pro-

jection associated with the FIM of Proposition 1 from Ep,n onto
TθMp,n is

P
Mp,n

θ (ξ) =

(
ξµ, sym(ξΣ), ξτ − ξTτ τ

1−1

n
τ

)
,

where sym(ξ) = 1
2 (ξ + ξT ).

Proof: See Supplementary material B. "
The orthogonal projection proves helpful to derive elements

in tangent spaces such as the Riemannian gradient or the Levi-
Civita connection. The latter is given for the manifold Mp,n in
Proposition 3.

Proposition 3 (Levi-Civita connection): Let θ ∈ Mp,n and ξ,
η be smooth vector fields of Mp,n, the Levi-Civita connection
of Mp,n evaluated at θ is

∇ξη = P
Mp,n

θ

(
∇ξη

)
,

where

∇ξη = Dη[ξ] +

(
− 1

2

[(
ξTτ τ

1−2

∑n
i=1

1
τi

Ip + ξΣΣ
−1

)
ηµ

+

(
ηT
τ τ

1−2

∑n
i=1

1
τi

Ip + ηΣΣ
−1

)
ξµ

]
,

1

n

n∑

i=1

(
1

τi

)
ηµξ

T
µ − ξΣΣ

−1ηΣ,

1

p
ξTµΣ

−1ηµ1n − ξτ 1 ητ 1 τ1−1

)
.

Proof: See Supplementary material C. "
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Algorithm 1: Riemannian Gradient Descent on Mp,n.

Algorithm 2: Riemannian Backtracking on Mp,n.

As detailed in Subsection III-A the Levi-Civita connection
defines geodesics on a Riemannian manifold. Indeed, for I an
open interval of R, a geodesic γ : I → Mp,n with initial posi-
tion γ(0) = θ ∈ Mp,n and initial velocity γ̇(0) = ξ ∈ TθMp,n

must respect

∇γ̇(t)γ̇(t) = 0γ(t), ∀t ∈ I. (16)

However, an analytical solution of (16) remains unknown. A
retraction (approximation of the geodesic) can still be obtained
(see Proposition 5) which allows us to optimize functions on
Mp,n. Moreover, the geodesic between two points θ1 and θ2
is unknown. This implies that the geodesic distance is also
unknown. This is not surprising since the geodesic and the
Riemannian distance between two Gaussian distributions with
different locations are unknown [26], [27], [28], [39], [40]. To
alleviate this problem, a divergence associated with the NC-
MSG (2) is proposed in Section VI.

IV. RIEMANNIAN OPTIMIZATION ON Mp,n

The objective of this subsection is to propose tools to perform
optimization on the Riemannian manifold Mp,n. Indeed, we
aim to minimize smooth functions h : Mp,n → R,

minimize
θ∈Mp,n

h(θ). (17)

An example of such a function is the NLL (5). As mentioned
in Section III, two additional cost functions are studied in
Sections V and VI. To realize (17), we consider a Riemannian
steepest gradient descent on Mp,n. Only the tools required for
this algorithm are derived here. For a detailed introduction to
optimization on Riemannian manifolds, see [10], [11]. Two opti-
mization tools are needed: (i) the Riemannian gradient ofh, (ii) a
retraction that maps tangent vectors from TθMp,n ∀θ ∈ Mp,n

onto Mp,n. Once these are defined, the Riemannian steepest
gradient descent retracts iteratively minus the gradient ofh times
a step size onto the manifold.

We begin with the Riemannian gradient of h at θ. For every
θ ∈ Mp,n, it is defined through the Riemannian metric as the
unique tangent vector in TθMp,n such that, ∀ξ ∈ TθMp,n,

Dh(θ)[ξ] = 〈gradMp,n
h(θ), ξ〉Mp,n

θ , (18)

where Dh(θ)[ξ] is the directional derivative of h at θ in the
direction ξ. In the case where for every θ ∈ Mp,n, there exists
an open U of Ep,n, with θ ∈ U , and a differentiable function
h̄ : U → R such that h̄ restricted to Mp,n is equal to h, this Rie-
mannian gradient can be computed from the Euclidean gradient
of h at θ. In particular, this assumption is met by the different
cost functions considered in the rest of the manuscript and the
transformation of the Euclidean gradient into the Riemannian
one is given in Proposition 4. The latter is very convenient
since this Euclidean gradient can be computed using automatic
differentiation libraries such as Autograd [41] or JAX [42].

Proposition 4 (Riemannian gradient): Let θ ∈ Mp,n and h
be a real-valued function defined on Mp,n. The Riemannian
gradient of h at θ is

gradMp,n
h(θ) =

P
Mp,n

θ

((
n∑

i=1

1

τi

)−1

ΣGµ,
2

n
ΣGΣΣ,

2

p
τ12 1Gτ

)
,

where gradh(θ) = (Gµ,GΣ,Gτ ) is the Euclidean gradient of
h in Rp × Rp×p × Rn.

Proof: See Supplementary material D. "
Then, it remains to define a retraction for every θ on

Mp,n. A retraction R
Mp,n

θ maps every ξ ∈ TθMp,n to a
point RMp,n

θ (ξ) ∈ Mp,n and is such that RMp,n

θ (ξ) = θ + ξ +
o(‖ξ‖). Several retractions could be obtained from this defini-
tion. Furthermore, it should be noted that a map respecting this
definition is not necessarily related to the Riemannian metric of
Mp,n. Thus, we choose to enforce an additional property: the
desired retraction must have a zero initial acceleration, i.e.

∇ṙ(t)ṙ(t)
∣∣∣
t=0

= 0, (19)

where ṙ(t) = d
dtR

Mp,n

θ (tξ) and ∇ is the Levi-Civita connection
from Proposition 3. Such a retraction is called a second-order
retraction. Furthermore, the property of zero initial acceleration
is linked to the definition of the geodesic. Indeed, a geodesic
has a zero acceleration ∀t along its path (see (13)) whereas
here this condition is only needed at t = 0. By respecting this
property, the retraction is associated with the Riemannian metric
of Proposition 1 since the Levi-Civita connection is derived
from this Riemannian metric. Such a retraction is presented in
Proposition 5.

Proposition 5 (Second order retraction): Let θ ∈ Mp,n and
ξ ∈ TθMp,n. There exists tmax > 0 (specified in the Supple-
mentary material) such that ∀t ∈ [0, tmax[, a second order re-
traction on Mp,n at θ is

R
Mp,n

θ (tξ) =

(
µ+ tξµ +

t2

2

[
ξTτ τ

1−2

∑n
i=1

1
τi

Ip + ξΣΣ
−1

]
ξµ,



2480 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Σ+ tξΣ +
t2

2

(
ξΣΣ

−1ξΣ − 1

n

n∑

i=1

(
1

τi

)
ξµξ

T
µ

)
,

N

(
τ + tξτ +

t2

2

(
ξ12
τ 1 τ1−1 − 1

p
ξTµΣ

−1ξµ1n

)))
,

where ∀x = (xi)1≤i≤n ∈ (R+
∗ )

n, N(x) = (
∏n

i=1 xi)−
1
nx.

Proof: See Supplementary material E. "
With this retraction and the Riemannian gradient from Propo-

sition 4, we have all the tools required to derive a Riemannian
steepest descent. The latter is presented in Algorithm 1. It
should be noted that, in practice, the step size is chosen using
a backtracking algorithm [11, Ch. 4]. Given an initial step-size
α ∈ ]0, tmax[ with tmax defined in Proposition 5, the algorithm
reduces α by a factor c ∈ ]0, 1[ until the Armijo–Goldstein
condition is satisfied. Given ε ∈ R+

∗ (generally fixed at 10−4)
and the tentative next iterate

θ(α) = R
Mp,n

θ(k)

(
−α gradMp,n

h(θ(k))
)
, (20)

the Armijo–Goldstein condition writes

h(θ(k))− h(θ(α)) ≥ εα
∥∥∥gradMp,n

h(θ(k))
∥∥∥
2

θ(k)
. (21)

This procedure is presented in Algorithm 2.

V. PARAMETER ESTIMATION OF THE NON-CENTERED

MIXTURE OF SCALED GAUSSIAN DISTRIBUTIONS

In the previous subsection, tools to perform optimization on
Mp,n have been developed. In this subsection, the objective
is to leverage these tools to estimate the parameters of an
NC-MSG (2). In the following, we assume having n ≥ 1 data
points {xi}ni=1 ⊂ Rp. The estimation of the parameters of the
statistical model (2) is performed by maximizing the associated
likelihood on Mp,n:

minimize
θ∈Mp,n

L (θ|{xi}ni=1) , (22)

where L is the NLL (5). However, the existence of a solution to
this problem is not guaranteed. To build intuition, we present a
short example of a problematical case where µ gets attracted by
one data point xj . Let k be the current iteration of a given opti-
mizer of (22). For k → +∞, if µ(k) → xj faster than τ (k)j → 0

and ∀i 4= j, τ (k)i → +∞, then the quadratic form in L (5) tends
to zero, which is its minimum,

n∑

i=1

(xi − µ(k))T
(
Σ(k)

)−1
(xi − µ(k))

τ (k)i

−−−−→
k→+∞

0. (23)

Then, if an eigenvalue λ(k) of Σ(k) tends 0 slower than the re-
spective limits ofµ(k), τ (k)i and τ (k)j and since

∑n
i=1 log |τiΣ| =

n log |Σ|, we obtain

L(θ(k)|{xi}ni=1) −−−−→
k→+∞

−∞. (24)

Hence, depending on the data points {xi}ni=1, a solution of the
problem (22) does not necessarily exist.

To overcome this issue, we propose a regularization approach
to the NLL. Firstly, we prove that this allows the existence of a
solution depending on some assumptions on the regularization
term in V-A. Some interpretations on the chosen regularization
are next given in V-B, and finally, we study the robustness of the
solution to rigid transformations in V-C.

A. Existence of Solution With a Regularized Version of the NLL

We present a regularized version of the NLL (5):

LRκ (θ|{xi}ni=1) = L (θ|{xi}ni=1) + βRκ(θ), (25)

where β ∈ R+
∗ and Rκ : Mp,n → R is a regularization. Thus,

the minimization problem (22) becomes

minimize
θ∈Mp,n

LRκ (θ|{xi}ni=1) . (26)

Though (26) is a generic formulation, we will focus on several
proposals that ensure the existence of a solution. The proposed
approach is to rewrite Rκ as a sum of regularizations rκ on the
eigenvalues of τiΣ. This rewriting is formalized in Assump-
tion 1.

Assumption 1: The regularization Rκ is a positive function
that is a sum of regularizations on the eigenvalues of τiΣ

Rκ(θ) =
n∑

i=1

p∑

j=1

rκ(τiλj),

where λj ∈ R+
∗ are the eigenvalues of Σ and rκ : R+

∗ → R is a
continuous function.

In the following, we assume that Rκ respects Assumption 1.
To prevent the eigenvalues of τiΣ from taking values that are
too large or too small, a second Assumption is added. Indeed,
Assumption 2 states that the regularization of the log function by
the penalty function rκ goes to infinite when its argument goes
to 0+ or +∞. This assumption is made so that if an eigenvalue
of τiΣ tends to 0+ or +∞ then LRκ → +∞.

Assumption 2: The following function admits the limit ∀β ∈
R+

∗

lim
x→∂R+

∗

log(x) + βrκ(x) = +∞, (27)

with ∂R+
∗ is a border of R+

∗ , i.e. 0+ or +∞.
Assumptions 1 and 2 are sufficient to solve the problem of

existence stated earlier. Indeed, whenRκ respects these assump-
tions, Proposition 6 states that the problem (26) has a solution,
i.e. LRκ admits a minimum in Mp,n. Finally, Assumptions 1
and 2 are quite easy to meet in practice. Indeed, several regular-
izations respecting these assumptions are proposed in Table I.

Proposition 6 (Existence): Under Assumptions 1 and 2, and
∀β ∈ R+

∗ , the regularized NLL

θ /→ LRκ (θ|{xi}ni=1) = L (θ|{xi}ni=1) + βRκ(θ),

with L being the NLL (5), admits a minimum in Mp,n.
Proof: LRκ is a continuous function on Mp,n. Hence, to

prove the existence of a solution to the minimization prob-
lem (26), it is enough to show that for sequences θ(k) → ∂θ,
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TABLE I
EXAMPLES OF REGULARIZATIONS Rκ RESPECTING THE ASSUMPTIONS 1, 2 AND 3

the boundary of Mp,n, we have that

lim
k→+∞

LRκ(θ
(k)|{xi}ni=1) = +∞. (28)

First, we handle the cases where ‖µ(k)‖2 4−→ +∞. Since
θ(k) → ∂θ, this means that, at least, one λ(k)j → ∂R+

∗ and/or

one τ (k)i → ∂R+
∗ , with ∂R+

∗ being the boundary of R+
∗ , i.e.

∂R+
∗ = {0,+∞}. Using the positivity of the quadratic form in

the NLL (5), we get the following inequality

L(θ(k)|{xi}ni=1) ≥
n∑

i=1

log
∣∣∣τ (k)i Σ(k)

∣∣∣ . (29)

Hence, we get the resulting inequality on the regularized cost
function

LRκ(θ
(k)|{xi}ni=1) ≥

n∑

i=1

p∑

j=1

[
log(τ (k)i λ(k)j ) + βrκ(τ

(k)
i λ(k)j )

]
. (30)

Then, we give a sufficient condition to prove (28) when
Σ(k) → ∂S++

p and/or τ (k) → ∂S(R+
∗ )

n, the boundaries of
∂S++

p and ∂S(R+
∗ )

n respectively. To give this sufficient condi-
tion, we first recall Assumption 1, ∀β ∈ R+

∗

lim
x→∂R+

∗

log(x) + βr(x) = +∞.

Thus, to prove (28), a sufficient condition, when Σ(k) → ∂S++
p

and/or τ (k) → ∂S(R+
∗ )

n is that there exists at least one term
τ (k)i λ(k)j such that

τ (k)i λ(k)j → ∂R+
∗ . (31)

Since Σ(k) → ∂S++
p and/or τ (k) → ∂S(R+

∗ )
n, there exists at

least one λ(k)j → ∂R+
∗ and/or one τ (k)i → ∂R+

∗ .
The condition (31) is of course met in the four following cases

λ(k)j → 0+ and/or τ (k)i → 0+,

λ(k)j → +∞ and/or τ (k)i → +∞,

λ(k)j → 0+ and τ (k)i → +∞ such that τ (k)i λ(k)j → ∂R+
∗ ,

λ(k)j → +∞ and τ (k)i → 0+ such that τ (k)i λ(k)j → ∂R+
∗ .

Finally, we treat the case where ∀l ∈ {1, . . . , n}, λ(k)l →
∂R+

∗ and τ (k)i → ∂R+
∗ such that τ (k)i λ(k)l 4−→ ∂R+

∗ . Since
∏n

m=1 τ
(k)
m = 1, there exists at least one τq , with q 4= i, such

that

τ (k)q λ(k)j → ∂R+
∗ . (32)

Hence, the condition (28) is met.
Before going further, we define the two following functions:

gS++
p

(Σ(k)) =
∥∥∥log(Σ(k))

∥∥∥
2

F
=

p∑

j=1

log(λ(k)j )2,

and

g(R+
∗ )n(τ

(k)) =
∥∥∥log(τ (k))

∥∥∥
2

2
=

n∑

i=1

log(τ (k)i )2.

It should be noted that sup(gS++
p

(Σ(k))+∞
k=0) = +∞ if and only

if there exists j such that (λ(k)j )+∞
k=0 has ∂R+

∗ as accumulation
point. Similarly, sup(g(R+

∗ )n(τ
(k))+∞

k=0) = +∞ if and only if

there exists i such that (τ (k)i )+∞
k=0 has∂R+

∗ as accumulation point.
Second, we consider the cases where ‖µ(k)‖2 → +∞,

sup(gS++
p

(Σ(k))+∞
k=0) < +∞ and sup(g(R+

∗ )n(τ
(k))+∞

k=0) <
+∞. In this case, there exists λmin,λmax > 0 and τmin, τmax > 0
such that for all k, λminIp 5 Σ(k) 5 λmaxIp and τmin1n ≤
τ (k) ≤ τmax1n. Indeed, otherwise there would exist j, i such that
∂R+

∗ is an accumulation point of (λ(k)j )+∞
k=0 and/or (τ (k)i )+∞

k=0.
Using these inequalities and the positivity of the regularization
Rκ, we get that

LRκ(θ
(k)|{xi}ni=1) ≥

n∑

i=1

∥∥xi − µ(k)
∥∥2

λmaxτmax
+ const,

where the constant is independent from µ(k). Thus, we have

lim
k→+∞

LRκ(θ
(k)|{xi}ni=1) = +∞.

Third, it remains to check the cases where ‖µ(k)‖ → +∞,
sup(gS++

p
(Σ(k))+∞

k=0) = +∞ and/or sup(g(R+
∗ )n(τ

(k))+∞
k=0) =

+∞. Thus, as said previously, there exists at least one j and/or
one i such that (λ(k)j )+∞

k=0 and/or (τ (k)i )+∞
k=0 has/have ∂R+

∗ as
accumulation point. For each each of those j, i, we extract sub-
sequences from (θ(k))+∞

k=0 whose limits in λj and/or τi are these
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problematic accumulation points. Then, we construct a partition
of N with the indices corresponding to the elements of these
sub-sequences and the indices of the remaining elements of the
initial sequence (θ(k))+∞

k=0. Let I be such partition of N. If I
has a finite number of elements and if for every (k')

+∞
'=0 ∈ I we

have

lim
'→+∞

LRκ(θ
(k")|{xi}ni=1) = +∞, (33)

then we get (28).
To do so, in the space R+ = [0,+∞] equipped with the

metric d(x, y) = | arctan(x)− arctan(y)|, given a (λ(k)j )+∞
k=0

that has L ∈ ∂R+
∗ as accumulation point, one can extract a

sub-sequence of indices (k')
+∞
'=0 such that λ(k")

j → L and for

(km)+∞
m=0 = N\(k')+∞

'=0, (λ(km)
j )+∞

m=0 does not have L as accu-
mulation point. The same process is repeated iteratively from
the remaining indices (km)+∞

m=0 for all j such that (λ(km)
j )+∞

m=0

still has an L ∈ ∂R+
∗ as accumulation point. It finishes when the

sequence associated with the remaining elements of the original
sequence (λ(k)j )+∞

k=0 has no accumulation points in ∂R+
∗ . Lets

denotes (kq)+∞
q=0 the remaining indices. Then, the same process

is also performed on (τ
(kq)
i )+∞

q=0 if sup(g(R+
∗ )n(τ

(kq))+∞
q=0) =

+∞. All the obtained sequences of indices (k')
+∞
'=0 along

with the remaining elements of the original indices form a
partition of N. Due to its construction, this partition has at
most card(∂R+

∗ )
p+n + 1 = 2p+n + 1 elements. Furthermore,

we point out that, since ‖µ(k)‖ → +∞, we have that for ev-
ery sub-sequence (µ(k"))+∞

'=0, ‖µ(k")‖ → +∞. Thus, for every
(k')

+∞
'=0 ∈ I, we have! either ‖µ(k")‖ → +∞, sup(gS++

p
(Σ(k"))+∞

'=0) < +∞ and

sup(g(R+
∗ )n(τ

(k"))+∞
'=0) < +∞,! or ‖µ(k")‖ → +∞ and there exists i and/or j such that

λ(k")
j → ∂R+

∗ and/or τ (k")
i → ∂R+

∗ .
The former case has already been treated earlier. For the latter
case, one can reuse the arguments between (29) and (32) to
prove (33). Indeed, (29) discards the quadratic form in µ(k")

and hence the equations between (29) and (32) hold. Thus, the
condition (28) is met. "

B. Interpretations of the Regularization Term

So far, the regularization penalty has been chosen to guarantee
the existence of a solution to the problem (26) without having
specific insights on its impact on the estimate. Therefore, this
section thus discusses the interpretations of various classes of
penalties and their related shrinkage effect.

A Bayesian interpretation of the considered penalties Rκ

requires first discussing the case where it is decoupled in terms
of {τi}ni=1 and {λj}pj=1, i.e., when it can be expressed as

Rκ(θ) = p
n∑

i=1

rτκ(τi) + n
p∑

j=1

rλκ(λj). (34)

In such cases,! rτκ can be linked to a pdf on τ , denoted fτ . Assuming that
rλκ(t) = 0 the optimization problem relates to the maxi-
mum a posteriori estimation of the Compound Gaussian

model x ∼ N (µ, τΣ) with τ ∼ fτ [2], [3]. Such a proce-
dure is not often put into practice because it is generally
possible (and preferable) to study the resulting pdf for the
observations x:

fCG(x) ∝
∫

fG(x|µ, τΣ) fτ (τ) dτ, (35)

whose MLE estimator appears as a special case of M -
estimators of location and scatter, and is tractable with a
fixed point algorithm [2], [3].! The penalty rλκ could also be interpreted as a pdf on the
eigenvalues of Σ. This approach is less often studied from
the Bayesian point of view because it does not have a
clear interpretation of the distribution of the resulting Σ.
Still, such penalties were leveraged to ensure existence of
solutions of regularized M -estimators when n < p, e.g,
in [17], [18], [43].

When additional prior information is available (power con-
straints that bound the eigenvalues, a rough estimate of the
textures pdf, etc.) a Bayesian approach can be practically lever-
aged to select the form of the regularization penalty and the
regularization parameters κ and β.

In the general case of Assumption 1, i.e., whereRκ is possibly
not decoupled, a Bayesian interpretation of Rκ is not as appar-
ent. Still, we can show that when the penalty can be interpreted
as a divergence, it allows for explaining its effect on the estimate.
First, we recall the definition of a divergence:

Definition 1 (Divergence): A divergence on a set E is a
function δ(., .) : E × E → R satisfying, ∀x, y ∈ E:

1) δ(x, y) ≥ 0,
2) δ(x, y) = 0 ⇐⇒ x = y.

We can then state the following assumption, which is notably
verified for all regularization examples given in Table 1:

Assumption 3: The regularization Rκ can be written as

Rκ(θ) = δS++
p

(diag(τ )⊗Σ,κInp) ,

where δS++
p

is a divergence on the set S++
p and κ ∈ R+

∗ .
This assumption allows us to state the following proposition:
Proposition 7 (Minima of Rκ): Under the Assumption 3, the

set of minima in Mp,n of the regularization Rκ is

{θ = (µ,κIp, 1n) : µ ∈ Rp}.

Proof: The objective of this proof is to solve

minimize
θ∈Mp,n

Rκ(θ).

Using Assumption 3, we know that Rκ(θ) ≥ 0 and Rκ(θ) =
0 ⇐⇒ diag(τ )⊗Σ = κInp. Thus, the minimum of Rκ is 0
and is reached at diag(τ )⊗Σ = κInp, ∀µ ∈ Rp. This implies
that the minimum satisfies the following system of equations

τi λj = κ ∀i, j.

Hence, we deduce that τ1 = · · · = τn. Using the constraint∏n
i=1 τi = 1, we get that τ1 = · · · = τn = 1. Thus, λ1 = · · · =

λp = κ. This means that

{(µ,κIp, 1n) : µ ∈ Rp} = arg minθ∈Mp,n
Rκ(θ),

which characterizes Proposition 7. "
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Thus, under Assumption 3, the minimum of (26) tends to
( 1n
∑n

i=1 xi,κIp, 1n) as β → +∞. This corresponds to the
MLE of a Gaussian distribution with a covariance matrix κI .
Thus, the hyperparameter β makes the trade-off between an
NC-MSG (2) and a white Gaussian distribution. Hence, one can
set in practice the hyperparameter κ as κ = 1

pTr(
1
nXXT ) =

1
np

∑n
i=1 ‖xi‖22, meaning that the eigenvalues will be shrunk

towards their empirical mean. The effect of the regularization
then echoes to existing shrinkage of M -estimators that have the
same action [13], [14], [15], [43], [44].

To conclude, Assumption 2 and Proposition 6 provide the
conditions that ensure the existence of a solution of the reg-
ularized MLE for any κ > 0, whether Rκ is decoupled (with
a Bayesian interpretation), interpretable as a divergence (fol-
lowing Assumption 3 and Proposition 7), or not. This class of
regularization penalties thus allows going beyond the Bayesian
estimation framework. In practice, we mostly consider minimiz-
ing the estimation bias induced by the penalty and set β close
to 0. For other tasks such as estimates used in classification, we
resort to cross-validation procedures to select β (see example in
Fig. 7).

C. Robustness to Rigid Transformations

We finish this section with a remark on estimating the param-
eter θ when data undergo a rigid transformation. First of all, we
define the set of orthogonal matrices

Op =
{
Q ∈ Rp×p : QTQ = Ip

}
. (36)

Then, given Q ∈ Op and µ0 ∈ Rp, the rigid transformation ψ
of a set of data {xi}ni=1 is defined as

ψ ({xi}ni=1) =
{
QTxi + µ0

}n
i=1

. (37)

These rigid transformations define isometries on Rp since

‖ψ (xi)− ψ (xj)‖2 = ‖xi − xj‖2 , (38)

∀xi,xj ∈ Rp. These are important in machine learning prob-
lems since they transform data without changing distances.
An important property of the regularized NLL (25) is that
the estimated textures of the model are invariant under rigid
transformations of the data; see Proposition 8. This is interesting
since having parameters invariant to these transformations can
improve performances when transformations happen between
the training and the test sets for a given supervised problem.
Numerical experiments in Section VII leverage this property
and show robust performances when data undergo a rigid trans-
formation during the testing phase.

Proposition 8 (Minima of LRκ and rigid transformations):
Let Rκ be a regularization satisfying Assumption 1, and θ( =
(µ,Σ, τ ) be a minimum of the regularized NLL (26) computed
on data {xi}ni=1, i.e.

θ( ∈ arg min
θ∈Mp,n

LRκ (θ|{xi}ni=1) ,

then, given Q ∈ Op and µ0 ∈ Rp, a minimum of the regu-
larized NLL computed on the transformed data ψ({xi}ni=1) =
{QTxi + µ0}ni=1 is φ(θ() = (QTµ+ µ0,Q

TΣQ, τ ), i.e.

φ(θ() ∈ arg min
θ∈Mp,n

LRκ (θ|ψ ({xi}ni=1)) .

Proof: First of all, givenQ ∈ Op andµ0 ∈ Rp, one can check
that

L (φ(θ)|ψ ({xi}ni=1)) = L (θ| {xi}ni=1) ,

where L is the NLL defined in (5), θ = (µ,Σ, τ ), φ(θ) =
(QTµ+ µ0,Q

TΣQ, τ ) and ψ is defined in equation (37).
Then, Rκ satisfies Assumption 1 and thus only depends on the
eigenvalues of the matrices τiΣ. This implies that Rκ(φ(θ)) =
Rκ(θ) and hence we get that

LRκ (φ(θ)|ψ ({xi}ni=1)) = LRκ (θ| {xi}ni=1) .

This implies that if θ( ∈ arg minθ∈Mp,n
LRκ(θ|{xi}ni=1), then

φ(θ() ∈ arg minθ∈Mp,n
LRκ(θ|ψ({xi}ni=1)), which concludes

the proof. "

VI. KL DIVERGENCE AND RIEMANNIAN CENTER OF MASS

In the previous section, we proposed to optimize the regular-
ized NLL (26) of the NC-MSG (2). Once these parameters are
estimated, they can be used as features for Riemannian classi-
fication/clustering algorithms [19], [20], [21], [22]. To do this
classification/clustering, two tools are presented in this section.
Firstly, since no closed-form formula of the Riemannian distance
on Mp,n is known, a divergence between pairs of parameters
is defined. The proposed one is the KL divergence between two
NC-MSGs (2). It benefits from a simple closed-form formula
presented in Subsection VI-A. Secondly, simple classification
algorithms, such as K-means or the Nearest centroïd classifier,
rely on an algorithm to average parameters. Thus, an algorithm
to compute centers of mass of estimated parameters θ must be
defined. This center of mass is defined using the KL divergence
and is presented in Subsection VI-B. Its computation is realized
with Algorithm 1.

A. KL Divergence

Classification/clustering algorithms, such as K-means or the
Nearest centroïd classifier, rely on a divergence between points.
Thus, it remains to define a divergence on Mp,n. The latter
must be related to the NC-MSG (2). Indeed, the objective is to
classify its parameters θ. In the context of measuring proximities
between distributions admitting probability density functions, a
classical divergence is the KL. The latter measures the similarity
between two probability density functions. Definition 2 gives the
general formula of the KL divergence.

Definition 2 (KL divergence): Given two probability density
functions p and q defined on the sample space X , the KL
divergence is

δKL(p, q) =

∫

X
p(x) log

(
p(x)

q(x)

)
dx.

Applied to NC-MSGs, the KL divergence is derived from the
Gaussian one and is presented in Proposition 9. It benefits from a
simple closed-form formula and therefore is of practical interest.

Proposition 9 (KL divergence): Given the r.v. x =
(x1, . . . ,xn) and two NC-MSGs of probability density
functions pθ1(x) =

∏n
i=1 f(xi|(µ1,Σ1, τ1,i)) and pθ2(x) =



2484 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

∏n
i=1 f(xi|(µ2,Σ2, τ2,i)), the KL divergence is

δKL(θ1, θ2) =
1

2

(
n∑

i=1

τ1,i
τ2,i

Tr
(
Σ−1

2 Σ1

)

+
n∑

i=1

1

τ2,i
∆µTΣ−1

2 ∆µ+ n log

(
|Σ2|
|Σ1|

)
− np

)
,

with ∆µ = µ2 − µ1.
Proof: The r.v. x = (x1, . . . ,xn) can be vectorized into x =

[xT
1 , . . . ,x

T
n ]

T ∈ Rnp which follows a multivariate Gaussian
distribution of location the concatenation of the locations of
x1, . . . ,xn and of block-diagonal covariance matrix whose
elements are the covariance matrices of x1, . . . ,xn. Thus, the
KL divergence between the probability density functions pθ1 and
pθ2 is the KL divergence between two multivariate Gaussian
distributions whose covariance matrices are block diagonal.
Using the KL divergence between Gaussian distributions and
the constraint

∏n
i=1 τ1,i =

∏n
i=1 τ2,i = 1, we get the desired

formula. "
Finally, this KL divergence is non-symmetrical. We rely on

the classical symmetrization to define the proposed divergence
δMp,n : Mp,n ×Mp,n → R,

δMp,n(θ1, θ2) =
1

2
(δKL(θ1, θ2) + δKL(θ2, θ1)) . (39)

B. Center of Mass Computation

To implement simple machine learning algorithms such as
K-means or the Nearest centroïd classifier on Mp,n, it remains
to define an averaging algorithm. To do so, we leverage a
classical definition of centers of mass which are minimizers of
variances [23], [45]. Given a set of parameters {θi}Mi=1, its center
of mass on Mp,n is defined as the solution of

minimize
θ∈Mp,n

1

M

M∑

i=1

δMp,n(θ, θi), (40)

where δMp,n is the symmetrized KL divergence from Equa-
tion (39). To realize (40), Algorithm 1 can be employed.

VII. NUMERICAL EXPERIMENTS

The objective of this section is to show the practical interests
of the tools developed in the previous sections. More precisely,
this section presents numerical experiments and is divided into
two parts.

First, the subsection VII-A studies the performance of Algo-
rithm 1, in terms of speed of convergence on the cost func-
tions (26) and (40) and in terms of estimation error on the
cost function (22). Both studies are done through simulations.
Algorithm 1 is shown to be fast. Indeed, it requires from 5 to 30
times fewer iterations to minimize costs functions (26) and (40)
compared to other sophisticated optimization algorithms. This
demonstrates the interest in the choice of the FIM to develop
Riemannian optimization algorithms. Also, Algorithm 1 applied
to the cost function (22) gives lower estimation errors than other

classical estimators such as the Tyler joint mean-scatter one and
the Gaussian ones.

Second, an application on the crop classification dataset
Breizhcrops [29] is presented in Subsection VII-B. This dataset
consists of 600 000 time series to be classified into 9 classes.
The application implements a Nearest centroïd classsifier on
Mp,n using the divergence (39) and the Riemannian center of
mass (40). Three results ensue. First, the proposed algorithms
can be used on large-scale datasets. Second, the proposed regu-
larization in Section V plays an important role in classification.
Third, considering an NC-MSG (2) is interesting for time series
especially when data undergo a rigid transformation (37).

Python code implementing the different experiments can be
found at https://github.com/antoinecollas/optim_compound.

A. Simulation

In this simulation setting, we set the parameters θ =
(µ,Σ, τ ) ∈ Mp,n as follows. First, each component of µ is
sampled from a univariate Gaussian distribution N (0, 1). Sec-
ond,Σ is generated using its eigendecompositionΣ = UΛUT .
U ∈ Op is drawn from the uniform distribution on Op [46]
using the module “scipy.stats” from the Scipy library [47]. Then,
the elements on the diagonal of the diagonal matrix Λ are
drawn from a χ2

1 distribution. Third, the τi are drawn from a
Γ(ν, 1/ν) distribution with ν a parameter to be chosen. The
smaller the ν, the greater the variance. In order to respect the
constraint

∏n
i=1 τi = 1, the vector τ is normalized. The speed of

convergence of Algorithm 1 is studied on two cost functions: the
regularized NLL (26) and the cost function (40) to compute the
center of mass associated to the KL divergence of Proposition 9.

We begin with the minimization of the regularized NLL (26).
n = 150 data xi ∈ R10 are drawn from a NC-MSG, i.e. xi ∼
N (µ, τiΣ). The parameter θ = (µ,Σ, τ ) of this distribution
is generated as explained in the introduction of this subsection
with ν = 1. Different parameters β in (26) are considered: β ∈
{0, 10−5, 10−3}. The chosen regularization is the L2 penalty
from Table I. When β = 0 the NLL is the plain one, i.e. it is not
regularized. We point out that, in this setup, the optimization
goes well although the existence of a solution to this problem is
not proven. When β > 0 a solution to the minimization problem
exists from Proposition 6. The minimization is performed with
three different algorithms.! The plain conjugate gradient presented in [37]. It is a

Riemannian conjugate gradient descent that uses a sum
of three independent Riemannian metrics associated with
the three parameters µ, Σ, and τ . Thus, the corresponding
Riemannian geometry is easier to derive but is not linked
to the NC-MSG.! The plain steepest descent. It is similar to the plain conju-
gate gradient. Still, it only uses the gradient as a direction
of descent (and not a linear combination with the direction
of descent of the previous step).! The Algorithm 1 that leverages the information geometry
of the NC-MSG presented in Section III-B.

The results of this experiment are presented in Figs. 1 and 3
in terms of iterations and computation time respectively. We
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Fig. 1. Regularized NLL (26) and its gradient norm versus the iterations of three estimation algorithms. The chosen regularization is the L2 penalty (see Table I)
and three different regularization intensities β are considered: 0 in the left column, 10−5 in the middle one, and 10−3 in the right one. Each estimation is performed
on n = 150 samples in R10 sampled from an NC-MSG. The regularized NLL are normalized so that their minimum value is 1.

Fig. 2. Cost function (40) and its gradient norm versus the iterations of three estimation algorithms. The dimensions of the parameter space are p = 10 and
n = 150. Three different numbers of pointsM are considered: 2 in the left column, 10 in the middle one, and 100 in the right one. The cost functions are normalized
so that their minimum value is 1.

observe that Algorithm 1 is much faster than the two others
regardless of the β parameter. Indeed, in the case β ∈ {0, 10−5},
the Algorithm 1 is at least 100 times faster than the plain steepest
descent and 10 times faster than the plain conjugate gradient. In
the case of β = 10−3, Algorithm 1 is at least 20 times faster
than the plain steepest descent and 3 times faster than the plain
conjugate gradient. Furthermore, we observe these results are
valid either in the number of iterations or in computation time.
Indeed, the three considered algorithms have iterations with
similar computational costs in O(np2 + p3). Thus, a reduction
in the number of iterations results in a reduction in computation
time.

Then, a similar experiment is performed with the cost func-
tion (40) to compute the center of mass. M ∈ {2, 10, 100}
parameters θ are generated as described in the introduction of
Subsection VII-A with ν = 1. The minimization is performed
with the same optimization algorithms as previously: the plain
steepest descent, the plain conjugate gradient, and Algorithm 1.
The results of this experiment are presented in Figs. 2 and 4 in
terms of iterations and computation time, respectively.

We observe that Algorithm 1 is much faster than the two
others regardless of M . Indeed, when M = 2, Algorithm 1
converges in 40 iterations whereas the plain conjugate gradient
requires 300 iterations and the plain steepest descent still has not
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Fig. 3. Regularized NLL (26) and its gradient norm versus the computation time of three estimation algorithms. The chosen regularization is the L2 penalty (see
Table I) and three different regularization intensities β are considered: 0 in the left column, 10−5 in the middle one, and 10−3 in the right one. Each estimation is
performed on n = 150 samples in R10 sampled from an NC-MSG. The regularized NLL are normalized so that their minimum value is 1.

Fig. 4. Cost function (40) and its gradient norm versus the computation time of three estimation algorithms. The dimensions of the parameter space are p = 10
and n = 150. Three different numbers of points M are considered: 2 in the left column, 10 in the middle one, and 100 in the right one. The cost functions are
normalized so that their minimum value is 1.

converged after 1000 iterations. When M ∈ {10, 100}, Algo-
rithm 1 converges in less than 60 iterations which is 4 times
faster than the plain conjugate gradient. It should be noted that
the plain steepest descent has not converged after 1000 itera-
tions in the cases M ∈ {100, 1000}. Once again, these results
are valid either in the number of iterations or in computation
time since the three considered algorithms have iterations with
similar computational costs in O(M(n+ p3)). Hence, reducing
the number of iterations implies a reduction in computation
time.

The estimation error made by Algorithm 1 applied on the
NLL (5) is studied with numerical experiments on simulated

data.n ∈ [[20, 1000]] dataxi are sampled from the NC-MSG (2).
The parameter θ = (µ,Σ, τ ) of this distribution is generated as
presented in the introduction of Subsection VII-A with ν = 0.1
to have heterogeneous textures τi. The considered estimators for
this numerical experiment are the following:! Gaussian estimators: the sample mean µG = 1

n

∑n
i=1 xi

and the SCM ΣG = 1
n

∑n
i=1(xi − µG)(xi − µG)T .! Tyler’s joint location-scatter matrix estimator [5] denoted

µTy and ΣTy.! Tyler’sM -estimator with location known [5]. The sampled
data xi are centered with the true location µ, and then Σ
is estimated. This estimator is denoted ΣTy,µ.
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Fig. 5. MSE over 2000 simulated sets {xi}ni=1 ⊂ R10 versus the num-

ber samples xi for the considered estimators µ̂ ∈ {µG,µTy,µIG} and Σ̂ ∈
{ΣG,ΣTy,µ,ΣTy,ΣIG}. The proposed estimators µIG and ΣIG are computed
as in (22) using Algorithm 1 and the Q function normalizes scatter matrices, i.e.

∀Σ ∈ S++
p , Q(Σ) = |Σ|−

1
p Σ.

! The proposed estimator denoted µIG and ΣIG. Algo-
rithm 1 minimizes the NLL (5). The initialization is the
Gaussian maximum likelihood i.e. θinit = (µG,ΣG,1n),
where µG = 1

n

∑n
i=1 xi, ΣG = 1

n

∑n
i=1(xi − µG)(xi −

µG)T and 1n = (1, . . . , 1)T .
The estimation errors are measured with the Mean Squared

Errors (MSE). These errors are computed as E[‖µ̂− µ‖22]
and E[‖Q(Σ̂)−Q(Σ)‖2F ], with Q(Σ) = |Σ|−

1
pΣ, for the esti-

mated location µ̂ and the estimated scatter Σ̂ respectively, with
2000 Monte-Carlo. The MSE on the location and the scatter
versus the number of samples xi are plotted in Fig. 5. First, we
observe in both figures that the Gaussian estimators have a high
MSE. This shows the interest in considering robust estimators
such as Tyler’s joint location-scatter matrix estimator or the
proposed one when the textures τi are heterogeneous. Then,
the proposed estimators realize a much lower MSE than Tyler’s
joint location-scatter estimator. We can note that when enough
samples are provided, the MSE on the location realized by
the proposed estimator reaches the machine precision and is
therefore negligible. Finally, we compare the performance of
the proposed estimator with Tyler’s M -estimator for the scatter
estimation. Indeed, when the location is known, Tyler’s M -
estimator is the MLE of the NC-MSG (2). We observe that when
enough samples are provided, the proposed estimator matches
the MSE of Tyler’s M -estimator. Overall, this experimental
subsection illustrates the good performance of the proposed
estimator when data are sampled from a NC-MSG (2).

B. Application

In the previous subsection, the different theoretical results
derived in Sections from III to VI showed several interests in
synthetic data. We now focus on applying a Nearest centroïd

Fig. 6. Reflectances of a Sentinel-2 time series of meadows from the
Breizhcrops dataset. Figure courtesy [29].

Fig. 7. “F1 weighted” metric achieved by the proposed Nearest centroïd
classifier on the Breizhcrops dataset versus the parameter of regularization β
in (25). The chosen regularization is the L2 penalty from Table I.

classifier on Mp,n to real data using the estimation framework
developed in Section V, the divergence and the Riemannian
center of mass from Section VI as well as the optimization
framework from Section IV. This classifier is compared with
several other Nearest centroïd classifiers associated with differ-
ent estimators and divergences.

To do so, we consider the dataset Breizhcrops [29]: a large-
scale dataset of more than 600 000 crop time series from the
Sentinel-2 satellite to classify. More specifically, for each crop
n = 45 observations xi ∈ Rp are measured over time. Each xi

contains reflectance measurements of p = 13 spectral bands.
Then, these measurements are concatenated into one batch
Xj = [x1, . . . ,xn] ∈ Rp×n. Hence, we get one matrix Xj per
crop and each one belongs to an unknown class y ∈ [[1,K]].
These K = 9 classes represent crop types such as nuts, barley,
or wheat and are heavily imbalanced, i.e. some classes are much
more represented than others. An example of a time series of
meadows is presented in Fig. 6. We apply a single preprocess-
ing step: all the data are centered using the global mean. For
simplicity, the matrix Xj is noted X in the following.

To classify these crops, we apply a Nearest centroïd classifier
on descriptors. Indeed, the use of statistical descriptors is a
classical procedure in machine learning as they are often more
discriminative than raw data (see e.g. [19], [20]). Hence, this
classification algorithm works in three steps.

1) For each batch X , a descriptor is computed, e.g. the
parameter θ ∈ Mp,n from the minimization of the reg-
ularized NLL (25).
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Fig. 8. “F1 weighted” metric versus the parameter t associated with three transformations applied to the test set of the Breizhcrops dataset. The different Nearest
centroïd classifiers estimate the barycentres on the training data without transformations. Then, the classification is performed on the test set with three different
transformations. For t = 0, the test set is not transformed, and the larger t is, the more the test set is transformed. Six different Nearest centroïd classifiers are
compared: each is a combination of an estimator, a divergence, and its associated center of mass computation. The proposed one is denoted “θ - sym. KL”. The
latter uses the Equations (26), (39) and (40) for the estimation, the divergence and the center of mass computation respectively. The regularization is the L2 penalty
from Table I and β is fixed at 10−11.

2) Then, on the training set, the center of mass of the de-
scriptors of each class is computed. This center of mass is
always computed by minimizing the variance associated
with a divergence between descriptors. For example, the
center of mass on Mp,n is computed as in (40).

3) Finally, on the test set, each descriptor is labeled with
the class of the nearest center of mass with respect to the
chosen divergence.

Six Nearest centroïd classifiers are considered, and they are
grouped according to the divergence they use: the Euclidean
distance, the symmetrized KL divergence between Gaussian
distributions, or the symmetrized KL divergence (39) between
NC-MSGs. For each divergence, several Nearest centroïd clas-
sifiers are derived using several estimators. These estimators
correspond to different assumptions on the data.

Three Nearest centroïd classifiers rely on the Euclidean dis-
tance between matrices. Given two matrices A and B of the
same size, the Euclidean distance is d(A,B) = ‖A−B‖F .
The center of mass of a given set {Ai}Mi=1 is the arithmetic mean
1
M

∑M
i=1 Ai which is the solution of minimizeY 1

M

∑M
i=1 ‖Y −

Ai‖2F . From this geometry, three Nearest centroïd classifiers are
derived using three estimators: the batch itself X , the sample
mean µG and ΣG,µ=0 = 1

n

∑n
i=1 xixT

i . The last two estima-
tors correspond to the assumption that data follow a Gaussian
distribution (either with the same scatter matrix for all batches
or the same location).

Two Nearest centroïd classifiers rely on the symmetrized KL
divergence between Gaussian distributions. Let Mp = Rp ×
S++
p . Given two pairs of parameters υ1 = (µ1, Σ1) ∈ Mp and
υ2 = (µ2, Σ2), this divergence is given by δMp(υ1, υ2) = 1

2

(δKL(υ1, υ2) + δKL(υ2, υ1)) where δKL(υ1, υ2) = 1
2 (Tr(Σ−1

2

Σ1) +∆µT Σ−1
2 ∆µ + log( |Σ2|

|Σ1| )− p). The center of mass of

{υi}Mi=1 is the solution of minimizeυ∈Mp

∑M
i=1 δMp (υ, υi).

Then, two Nearest centroïd classifiers are derived using two
estimators: ΣG,µ=0 and the MLE of the Gaussian distribution
(µG, ΣG).

Finally, the proposed Nearest centroïd classifier on Mp,n

relies on the symmetrized KL divergence (39) between NC-
MSGs. The center of mass is computed as explained in the
subsection VI-B and the estimation is described in Section V
with the L2 penalty for the regularization. For initialization,
we used the arithmetic mean, i.e. given a set of parameters
{θi ! (µi,Σi, τ i)}Mi=1, with θinit = (µmean,Σmean, N(τmean)),
where µmean = 1

M

∑M
i=1 µi, Σmean = 1

M

∑M
i=1 Σi, τmean =

1
M

∑M
i=1 τ i and N is the normalization function: ∀x =

(xi)1≤i≤n ∈ (R+
∗ )

n, N(x) = (
∏n

i=1 xi)−
1
nx.

The data are divided into two sets: a training set and a test
set with 485 649 and 122 614 batches respectively [29]. Among
the six Nearest centroïd classifiers, only the one on Mp,n has
a hyperparameter which the parameter β of the regularized
NLL (25). Several values of β are tested on a training set and a
validation set, and both are subsets of the original training set.
The performance is measured with the “F1 weighted” metric
used in [29] and is plotted in Fig. 7. The value of β with the
highest “F1 weighted” metric is 10−11. Hence, we use this value
in the rest of the article. Then, we propose an experiment to
illustrate Proposition 8 on the invariance of the estimation of
textures under rigid transformations. Indeed, we train the six
Nearest centroïd classifiers on a subset of the original training
set and apply them to the full test set with a rigid transformation.
Thus, the more a Nearest centroïd classifier is robust to these
rigid transformations, the better the “F1 weighted” metric. Given
t ∈ [0, 1], three different rigid transformations are performed:
transformation of the mean xi /→ xi + µ(t) with µ(t) = ta
for a givena ∈ Rp, rotation transformationxi /→ Q(t)Txi with
Q(t) = exp(tξ) for a given skew-symmetric ξ ∈ Rp×p (hence
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Q(t) ∈ Op), and the joint mean and rotation transformation
xi /→ Q(t)Txi + µ(t). It should be noted that at t = 0, the data
are left unchanged. The results are presented in Fig. 8.

The conclusions of these experiments are fourfold. First,
the proposed Nearest centroïd classifier applies to large-scale
datasets such as the Breizhcrops dataset. Second, the regulariza-
tion proposed in Section V is important to get good classification
performance. Indeed, we observe from Fig. 7 that if β is too
small, then the “F1 weighted” metric becomes very low. Also, if
β is too large, then the “F1 weighted” metric also becomes very
low. Third, using KL divergences and their associated centers
of mass to classify estimators gives much better performance
than the classical Euclidean distance. Indeed, even when data do
not undergo rigid transformations, Nearest centroïd classifiers
based on KL divergences outperform Euclidean Nearest centroïd
classifiers in Fig. 8. Fourth, considering NC-MSGs, as well as its
KL divergence, instead of the Gaussian distribution, is interest-
ing to classify time series especially when rigid transformations
are applied to the data. Indeed, in Fig. 8, we observe a large
performance improvement when data are considered distributed
from a NC-MSG and undergo rigid transformations.

VIII. CONCLUSION

In this article, we proposed a Riemannian gradient descent
algorithm based on the Fisher-Rao information geometry of
the NC-MSG. This algorithm is leveraged for two problems:
parameter estimation and computation of centers of mass. The
estimation problem of the NC-MSG is not straightforward.
Indeed, a major issue is that the existence of a solution to the NLL
minimization problem is not guaranteed. To overcome this issue,
we proposed a class of regularized NLLs that make the trade-
off between a white Gaussian distribution and the NC-MSG.
These functions are guaranteed to have a minimum, and this
result holds without conditions on the samples. Furthermore, we
derived the KL divergence between NC-MSGs which enabled
us to define the centers of mass of NC-MSGs as minimization
problems. The latter is solved using the proposed Riemannian
gradient descent. Simulations have shown that the proposed Rie-
mannian gradient descent is fast on both minimization problems.
Also, a Nearest centroïd classifier based on the KL divergence
has been implemented. It has been applied on the large-scaled
dataset Breizhcrops and showed robustness to transformations
of the test set.
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