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Abstract—In many statistical signal processing applications,
the quality of the estimation of parameters of interest plays an
important role. We focus in this paper, on the estimation of the
covariance matrix. In the classical Gaussian context, the Sample
Covariance Matrix (SCM) is the most often used, since it is the
Maximum Likelihood estimate. It is easy to manage and has a lot
of well-known statistical properties. However it may exhibit poor
performance in context of non-Gaussian signals, contaminated
or missing data. In that case M -estimators provide a good
alternative. In this paper, we extend to the complex data case,
a theoretical result already proposed by Tyler in the real data
case, deriving the asymptotical distribution of any homogeneous
functional of degree 0 of the M -estimates. Then, applying this
result to the Adaptive Normalized Matched Filter (ANMF), we
obtain a robust ANMF and give the relationship between its
Probability of False Alarm (Pfa) and the detection threshold.

I. INTRODUCTION

Many signal processing applications deal with the statistical
model of collected data. As the latter is traditionally consid-
ered to be Gaussian-distributed, one needs only to estimate
its mean and covariance matrix. The classical covariance
estimator used is the well-known SCM. Indeed it is easy to
manage and has a lot of well-known statistical properties.
However, the SCM suffers from major drawbacks. Firstly,
when the data turn out to be non-Gaussian, as for instance
in adaptive Radar and Sonar processing [1], the SCM is a bad
estimate: indeed, it performs poorly in the case of impulsive
noise and it is not robust to outliers. One possible alternative is
given by the so-called M -estimators, originally introduced by
Huber [2] and investigated in the seminal work of Maronna [3].
They have been introduced within the framework of elliptical
distributions [4] which encompass a large number of well-
known distributions as for instance the Gaussian distribution
or the multivariate Student (or t) distribution. M -estimators
of the covariance matrix are however seldom used in the sig-
nal processing community. Notable exceptions are the recent
papers by Ollila [5]–[7] who advocates their use in several
applications such as array processing.

One possible reason for this lack of interest is that their
statistical properties are not well-known in the signal process-

ing community, as opposed to the Wishart distribution of the
SCM in the Gaussian context. However, they already have
been studied in the real case by Tyler [8]. Thus, to promote the
use of M -estimators, we show in this paper that in a Gaussian
context and for signal processing estimations problems which
only need the covariance matrix up to a scale factor, the
estimated parameter of interest has the same mean square error
when estimated with the SCM or with an M -estimator with a
few more data. Moreover, when the context is non-Gaussian
or contains outliers, the performance of the M -estimator is
scarcely influenced while the SCM’ performance is completely
damaged.

In this paper, we extend to the complex data case, the result
obtained by Tyler [9] in the real data case. Then we focus on
the Adaptive Normalized Match Filter (ANMF) test introduced
by Kraut and Scharf [10], [11]. Using the complex analogue
of Huber’s estimator to estimate the covariance matrix needed
in this detector, we obtain a robust ANMF test. Eventually, we
give the relationship between the Probability of False Alarm
(Pfa) and the detection threshold.

This paper is organized as follows. Section II first intro-
duces the required background. Then Section III provides our
contribution about the estimators asymptotic distribution. In
Section IV, we apply our results to the ANMF test and give
the statistical properties of the obtained detector. Eventually,
Section V concludes this work.

Vectors (resp. matrices) are denoted by bold-faced lower-
case letters (resp. uppercase letters). ∼ means "distributed as",
d
= stands for "shares the same distribution as", d→ denotes
convergence in distribution and ⊗ denotes the kronecker
product. Moreover, Im is the m × m identity matrix and
K is the commutation matrix which transforms vec(A) into
vec(AT ). Eventually, Im(y) represents the imaginary part of
the complex vector y and Re(y) its real part.

II. BACKGROUND

In the following section, ′ represents the transposition
operator in the real case, and H in the complex case.



A. Elliptical distribution

Let z be a m-dimensional real (resp. complex) random
vector. z has a real (resp. complex) elliptical distribution if
its probability density function (PDF) can be written as

gz(z) = |Λ|−1hz((z− µ)′Λ−1(z− µ)), (1)

where hz : [0,∞) → [0,∞) is any function such that (1)
defines a PDF, µ is the statistical mean and Λ is a scatter
matrix. The scatter matrix Λ reflects the structure of the
covariance matrix of z, i.e. the covariance matrix is equal to
Λ up to a scale factor. This real (resp. complex) elliptically
symmetric distribution will be denoted by E(µ,Λ) (resp.
CE(µ,Λ)). One can notice that the Gaussian distribution is
a particular case of elliptical distributions.

In this paper, we will assume that µ = 0m,1. Without loss of
generality the scatter matrix will be taken to be the covariance
matrix. Indeed, function hz in (1) can always be defined such
that this equality holds.

B. M -estimators of the scatter matrix

Let (z1, ..., zN ) be a N -sample of m-dimensional real (resp.
complex) independent vectors with zi ∼ E(0m,1,Λ) (resp.
zi ∼ CE(0m,1,Λ)) , i = 1, ..., N . The real (resp. complex)
M -estimator of Λ is defined as the solution of the following
equation

M̂ =
1

N

N∑
n=1

u
(
z′nM̂−1zn

)
znz′n. (2)

M -estimators have first been studied in the real case, defined
as solution of (2) with real samples. Existence and unicity of
the solution of (2) has been shown in the real case, provided
function u satisfies a set of general assumptions stated by
Maronna in [3]. Ollila has shown in [5] that these conditions
hold also in the complex case.

Let us now consider the following equation, which is
roughly speaking the limit of (2) when N tends to infinity:

M = E
[
u(z′M−1z) zz′

]
, (3)

where z ∼ E(0m,1,Λ) (resp. CE(0m,1,Λ)). Maronna has
shown in [3] that:

- Equation (3) (resp. (2)) admits a unique solution M (resp.
M̂) and

M = σΛ, (4)

where σ is given in [12].
- A simple iterative procedure provides M̂.
- M̂ is a consistent estimate of M.

C. Wishart distribution

The real (resp.complex) Wishart distribution W (N,Λ)

(resp. CW (N,Λ)) is the distribution of
N∑

n=1

znz′n, where zn

are real (resp. complex circular), i.i.d, Gaussian with zero
mean and covariance matrix Λ. Let

WN = N−1
N∑

n=1

znz′n (5)

be the related SCM which will be also referred to, with a slight
abuse, as a Wishart matrix. The asymptotic distribution of the
Wishart matrix WN is
√
Nvec(WN −Λ)

d−→ N
(
0m2,1, (Λ⊗Λ)(Im2 + K)

)
√
Nvec(WN −Λ)

d−→ CN
(
0m2,1, (Λ

T ⊗Λ)
)

(6)
respectively in the real and complex case.

These few elements being recalled, the main theoretical
results are given in the next section.

III. M -ESTIMATORS ASYMPTOTIC PROPERTIES

A. Asymptotic distribution of the complex M -estimators

To derive the asymptotic distribution of the complex
M -estimators, several quantities must be introduced. Let
(z1, ..., zN ) be a N -sample of m-dimensional complex in-
dependent vectors with zn ∼ CE(0m,1,Λ) , n = 1, ..., N .
zn = xn + jyn, where xn = Re(zn) and yn = Im(zn).
Moreover un = (xT

n ,y
T
n )T .

Let us denote M̂ the complex M -estimator solution of (2)
obtained with the N data zn, n = 1...N and the weight
function u(.). M̂u is the real M -estimator satisfying equation
(2) with the N data un, n = 1...N and the weight function
ur(s) = u(s/2). Moreover, let Mu be the solution of (3).

Note that M̂u is a 2m × 2m real M -estimator built with
independent data which asymptotic distribution has been given
by Tyler in [8].

Theorem 3.1: The asymptotic distribution of the complex
M -estimator M̂ is given by

√
Nvec(M̂−M)

d−→ CN
(
0m2,1,Σ

)
, (7)

with
Σ = σ1M

T ⊗M + σ2vec(M)vec(M)H , (8)

and where σ1 and σ2 are the coefficients defined for the
asymptotic covariance of the real M -estimator M̂u. Their
general expressions are given in [8].

Proof: The proof will be given in a forthcoming paper.

In the following part, we extend to the complex case a
property obtained by Tyler in [9], for real M -estimators.



B. An important property of complex M -estimators

Let V be a fixed hermitian positive-definite matrix and
V̂ a sequence of symmetric positive definite random matrix
estimates of order m which satisfies

√
N
(

vec(V̂ −V)
)

d−→ CN
(
0m2,1,T

)
, (9)

with
T = ν1V

T ⊗V + ν2vec(V)vec(V)H , (10)

where ν1 and ν2 are any real numbers.
Let H(V) be a r-dimensional multivariate function on the

set of m × m complex hermitian positive-definite matrices,
possessing continuous first partial derivatives and such as
H(V) = H(αV) for all α > 0. For instance, in DOA methods
H is a function which associates an angle to a covariance
matrix: V̂

H→ θ̂, and in adaptive radar the function which
associates the ANMF test statistics to a covariance matrix:
V̂

H→ Λ(V̂).
Theorem 3.2: The asymptotic distribution of H(V̂) is given

by

√
N
(
H(V̂)−H(V)

)
d−→ CN

(
0r,1, ν1H

′(V)(VT ⊗V)H ′(V)H
)
.

(11)

where H ′(V) =

(
dH(V)

dvec(V)

)
.

Proof: The proof will be given in a forthcoming paper.

One can notice that when the data have a complex Gaussian
distribution, the SCM is a complex Wishart matrix which
verifies the conditions of theorem 3.2. Its coefficients (µ1, µ2)

are equal to (1, 0). Complex normalized M -estimators also
verify the theorem conditions with (µ1, µ2) = (σ1, σ2). Thus
they have the same asymptotic distribution as the complex
normalized Wishart matrix, up to a scale factor σ1 depending
on the considered M -estimator.

IV. APPLICATION: THE ROBUST ANMF TEST

In this section we use the complex analogue of Huber’s
M -estimator as described in [5]. Thus, with the notations
of equation (2), the weight function u of this complex M -
estimator is such as

u(s) =

{
1/β for s ≤ k2
k2/sβ for s > k2

(12)

where k2 and β depend on a parameter q, according to

q = F2m(2k2), β = F2m+2(2k2) + k2
1− q
m

. (13)

Fm(.) is the cumulative distribution function of a χ2 variate
with m degrees of freedom. Briefly, q = 1 leads to the SCM

while smaller values bring robustness to outliers. The chosen
value is q = 0.75. The theoretical asymptotic covariance of
Huber’s M -estimator is given by (7).

A. Asymptotic performance of the ANMF test using Huber’s
M -estimator

We consider an adaptive radar receiving a data vector y of
length m. The estimated covariance matrix of the environment
is M̂ and we try to detect signals with steering vector p. This
steering vector defines the DOA and/or the target speed. The
ANMF test statistics is

Λ(M̂|y) =
|pHM̂−1y|2

(pHM̂−1p)(yHM̂−1y)
. (14)

In radar detection, to be able to use a detector, one must be
able to determine the detection threshold λ which ensures a
fixed false alarm rate. The probability of false alarm Pfa is
defined as the probability of detecting a signal in the noise
only case:

Pfa = P(Λ > λ|H0) (15)

where H0 is the noise only assumption.
The ANMF test statistics distribution is well-known in the

Gaussian noise case where M̂ is the Wishart distributed SCM.
As already mentionned, the SCM is a non robust estimator. In
this context, the Pfa value is given by (see for instance [13]):

Pfa = (1− λ)a−1 2F1(a, a− 1; b− 1;λ), (16)

where
a = N −m+ 2, b = N + 2 (17)

and 2F1 is the Hypergeometric function defined as

2F1(a, b; c;x) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

xk

k!
(18)

As we mentionned previously, robustness may be brought
by using M -estimators. The question raised is: how do we
correctly set the Pfa value? As we will now see, the an-
swer is provided by theorem 3.2. Let us notice first that
the test statistics (14) is unchanged if we substitute M̂

with M̂/Tr(M̂). Moreover M̂/Tr(M̂) satisfies the theorem
requirements. Therefore, for N large and any elliptically
distributed noise, the PFA is still given by (16) if we replace
N by N/σ1.

B. Simulations using the robust ANMF

In both figures 1 and 2, we have computed Λ(M̂|y). The
vertical scale represents the logarithm of the variance of Λ

obtained with the SCM and the complex analogue of Huber’s
M -estimator defined in (12). The horizontal scale represents
the number of samples used to estimate the covariance matrix.
In figure 1, we consider a Gaussian context and a third curve



represents the variance of Λ for σ1N data. As one can see, it
overlaps the SCM’s curve, illustrating theorem 3.2. Here, σ1 is
equal to 1.066. In figure 2, we have considered a K-distributed
environment, with shape parameter firstly equal to 0.1, and
then 0.01 for a more impulsive noise. This illustration brings
once again to our minds that the SCM isn’t robust in a non-
Gaussian context contrary to Huber’s M -estimator. Indeed, the
more the noise differs from a Gaussian noise, the more the
detector’s variance is deteriorated in the SCM case, while it
still gives good results with Huber’s M -estimator.

Fig. 1. Variance (logarithmic scale) on the ANMF test statistics for Huber’s
estimate and the SCM, with a spatially white Gaussian additive noise.

Fig. 2. Variance (logarithmic scale) on the ANMF test statistics for Huber’s
estimate and the SCM, with a K-distributed additive noise.

V. CONCLUSION

In this paper we have analyzed the statistical properties
of general M -estimators of scatter matrix. Using the al-
ready known result of the asymptotic covariance of real M -
estimators, we have extended these results to the complex

case. Then we have shown that for a Gaussian distribution,
parameters which are function of the covariance matrix share
the same asymptotic ditribution, up to a scalar factor σ1,
whether they are obtained with a complex M -estimator or
the classical SCM. The function H which gives the parameter
must be such as H(αM) = H(M). Roughly speaking, the
covariance matrix must be needed only up to a scale factor,
which is often the case in signal processing applications. Thus,
in the Gaussian case M -estimators built with σ1N data achieve
the same asymptotic performance as the SCM built with N

data. And in the non-Gaussian case, they are more robust than
the SCM. σ1 is in most cases very close to 1. To illustrate our
results, we have simulated a radar detector, the ANMF test and
we were able to deduce the PFA-threshold. As a conclusion,
this theoretical analysis is in favor of M -estimators since they
provide robustness and behave almost like standard tools.

In a forthcoming paper, we will give more information on
the scale factor σ1, showing that it is most often very close to
1.
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