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Abstract

Original methods for radar detection performance analysis are derived for a #uctuating or non-#uctuating target
embedded in additive and a priori unknown noise. This kind of noise can be, for example, the sea or ground clutter
encountered in surface-based radar for the detection of low grazing angle targets and/or in high-resolution radar. In these
cases, the spiky clutter tends to have a statistic which strongly di!ers from the Gaussian assumption. Therefore, the
detection theory is no longer appropriate since the nature of statistics has to be known. The new methods proposed here
are based on the parametric modelling of the moment generating function of the noise envelope by PadeH approximation,
and lead to a powerful estimation of its probability density function. They allow to evaluate the radar detection
performances of targets embedded in arbitrary noise without knowledge of the closed form of its statistic and in the same
way to take into account any possible #uctuation of the target. These methods have been tested successfully on synthetic
signals and used on experimental signals such as ground clutter. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Typische Methoden zur Analyse der Eigenschaften von Radardetektoren sind fuK r bewegte und nicht-bewegte Ziele in
additivem und a priori unbekannten Rauschen hergeleitet worden. Derartiges Rauschen kann beispielsweise als See- oder
Bodenclutter im ober#aK chen-basierten Radar fuK r die Detektion von Zielen mit kleinen grazing angles und/oder beim
hochau#oK senden Radar angetro!en werden. In diesen FaK llen tendiert das mit Spitzen versehene clutter zu einer Statistik,
die sich von einer angenommenen Gau{verteilung nachhaltig unterscheidet. Demzufolge sind die theoretischen Betrach-
tungen zur Detektion aufgrund der unbekannten statistischen Eigenschaften nicht mehr geeignet. Die hier vorgestellten
neuen Methoden basieren auf der parametrischen Modellierung der momentenerzeugenden Funktion mit Hilfe der Pade
Approximation und fuK hren zu einer leistungsstarken SchaK tzung der Wahrscheinlichkeits dichtefunktion. Diese
Methoden gestatten die UG berpruK fung des Detektionsverhaltens bei Zielen im Umgebungsrauschen ohne Kenntnis der
Statistik in geschlossener Form und unter BeruK cksichtigung jeglicher Quellen#uktuation. Tests mit synthetischen
Signalen wurden erfolgreich mit diesen Methoden durchgefuK hrt und auf experiementelle Signale, wie Bodenclutter
angewendet. ( 2000 Elsevier Science B.V. All rights reserved.

Re2 sume2

De nouvelles meH thodes d'analyse de performances de deH tection radar sont preH senteH es dans le cadre d'une cible
#uctuante ou non noyeH e dans un bruit additif a priori inconnu. Ce type de bruit peut e( tre, par exemple, du fouillis de mer
ou de sol rencontreH dans le cadre de la deH tection de cible à site bas et/ou pour un radar à haute reH solution distance; la
nature impulsionnelle d'un tel fouillis eH carte l'hypothèse gaussienne geH neH ralement retenue pour la modeH lisation de sa
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statistique. Les nouvelles meH thodes proposeH es ici se basent sur la modeH lisation parameH trique de la fonction geH neH ratrice de
moments de l'enveloppe du bruit par approximants de PadeH et conduisent à une estimation de sa densiteH de probabiliteH .
Elles permettent d'eH valuer les performances de deH tection radar d'une cible noyeH e dans un bruit quelconque sans
connaissance de sa statistique et permettent, de la me(me manière, de prendre en compte toute #uctuation eH ventuelle de la
cible. Ces meH thodes ont eH teH testeH es avec succès sur signaux syntheH tiques et ont eH teH mises enwuvre sur signaux reH els, tel que
du fouillis de fore( t. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Description of the problem

The radar detection of a target against a back-
ground of unwanted clutter due to echoes from sea
or land is a problem of interest in the radar "eld.
For many years, the statistics of quadrature com-
ponents of the radar clutter were supposed to be
jointly Gaussian because of the low radar resolu-
tion capabilities: in this case, the clutter was viewed
as a sum of echoes from a very large number of
elementary scatterers (Central Limit Theorem).
Current systems have now improved their resolu-
tion capabilities and hence their detection perfor-
mance. However, as resolution is increased, the
statistics of the additive noise is no longer Gaus-
sian. Recent experimentations conducted at ON-
ERA and other organizations like MIT [5] indicate
that large deviations from Rayleigh statistics are
observed in situations such as low grazing angle
illumination and/or high resolution. In such cases,
due to the spiky nature of the clutter, the empirical
distribution exhibits both higher tails and larger
standard deviation relative to the mean than pre-
dicted by the Rayleigh distribution. Therefore,
many work has been devoted to "t empirical mod-
els of distribution to experimental data. This is the
case of the compound Gaussian processes [8,9],
also called spherically invariant random processes
(SIRP) which allow to model the multivariate prob-
ability density function (PDF) of the envelope of
the clutter returns, taking into account the possible
spatial or temporal correlation of the processes.
The well-known log-normal, Weibull and K-distri-
bution densities [6] belong to this class of distribu-
tions but the main problems with this kind of
approach are the quality of the estimation of the
SIRP parameters and the complexity of the optimal
detector implementation. In this paper, we propose

to analyze the performances of radar detection of
a target embedded in any combination of clutter
and thermal noise without knowledge of the closed
form of noise densities. The estimation of the noise
envelope density is only performed according to the
modelisation with PadeH approximation of the mo-
ment generating function (MGF) for the noise en-
velope. This method is based on the estimation of
all n-order moments of the noise envelope, which
we will suppose exactly estimated. This kind of
modelisation allows to derive, for a constant false
alarm rate, the simple form of the detection prob-
ability (P

$
) of a target with constant or #uctuating

envelope embedded in a complex noise fully char-
acterized by the moments of its envelope.

2. General relations of the detection theory

2.1. Neymann}Pearson criterion

We consider here the basic problem of detecting
the presence or absence of a complex signal s(t)
with envelope A in a set of measurements
y(t)"y

I
(t)#iy

J
(t) corrupted by a sum of indepen-

dent additive complex noise signals c(t) corre-
sponding to the clutter echoes and white Gaussian
thermal noise. This problem can be described
mathematically in terms of a test between the fol-
lowing pair of statistical hypothesis, where c(t)
denotes all the unwanted noises:

Hypothesis H
0
: y(t)"c(t), (1)

Hypothesis H
1
: y(t)"s(t)#c(t). (2)

The Neymann}Pearson criterion "xes the prob-
ability of false alarm P

&!
and maximizes the

probability to detect signal P
$

over the detection
threshold h depending on the P

&!
value.
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2.2. Statistical framework

Throughout this paper, we consider the Envelope
Detection scheme of the complex signal y(t). In
a statistic framework, expressions of P

$
and

P
&!

need to be derived and depend on the noise
envelope statistic characterized by its probability
density function (PDF). If we note p

H0
(r) the prob-

ability density of the noise envelope Dc(t)D under
H

0
hypothesis, the detection threshold h is "xed by

the value of the given probability of false alarm P
&!

:

P
&!
"P

`=

h
p
H0

(r) dr. (3)

While denoting p
H1

(r) the PDF of the envelope of
the complex signal embedded in noise Ds(t)#c(t)D
under H

1
hypothesis, the detection probability

P
$

is fully characterized by

P
$
"P

`=

h
p
H1

(r) dr. (4)

Since phases between quadrature components of
the clutter, thermal noise and target are unknown,
they are commonly supposed to be uniformly dis-
tributed on [!p,p]. This hypothesis is very impor-
tant because in this case, each two-dimensional
density function of the quadrature component is
hence a circular symmetric distribution. So we can
"nd [7] a very interesting relation between the
PDF of the noise plus signal envelope (p

H1
(r;A)) and

the PDF of the noise envelope (p
H0

(r)), using the
coherent radial characteristic function of the noise
process.

2.3. Basic relation

Let us consider a random complex process with
real part a(t) and imaginary part b(t). This process is
characterised by its two-dimensional density func-
tion p(a, b), or dually, by a so-called coherent char-
acteristic function C(u

1
, u

2
), which is p(a, b) Fourier

transform:

C(u
1
, u

2
)"PP

`=

~=

p(a, b) e*(u1a`u2b) dadb. (5)

This characteristic function can be transformed in
a single radial variate o function (o represents the

value of the signal envelope, o"Ju2
1
#u2

2
) with

the assumption of a phase uniformly distributed i.e.
pU(a"arctan(b/a))"1/2p, independent of the en-

velope p
r
(r"Ja2#b2). So we have

p(a, b) dadb"pU(a)p
r
(r) dadr, (6)

and

C(o)"P
2p

0

pU(a)CP
`=

0

p
r
(r) e*or #04 a drDda

"P
`=

0

p
r
(r)C

1

2pP
2p

0

e*or #04 adaDdr,

i.e.

C(o)"P
`=

0

p
r
(r)J

0
(or) dr, (7)

where J
0
(x) denotes the ordinary Bessel function of

order 0. Inverting expression (7), we obtain p
r
(r) as

a function of C(o):

p
r
(r)"P

`=

0

roC(o)J
0
(or) do. (8)

In the following, the next two results will be used:
f For a signal with constant envelope A and an

uniform phase, the PDF is characterised by

p(r)"d(r!A),

where d(.) is the Dirac distribution, and the co-
herent radial characteristic function is given by

C(o)"J
0
(oA).

f The characteristic function C
H1

(o) of the sum of
the signal s(t) and unwanted clutter c(t), is equal
to the product of the characteristic functions of
signal C

s
(o) and of noise C

c
(o).

It is now possible to derive a relation between
the density p

H0
(r) of the envelope under hypo-

thesis H
0

(noise only) and the density p
H1

(r;A)
of the envelope under hypothesis H

1
(noise and

signal with constant envelope A), recalling that
the following results are derived under the strong
hypothesis of uniform phases distributions between
the in-phase and quadrature components of each
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process:

p
H1

(r;A)"P
`=

0

roC
s
(o)C

c
(o)J

0
(or) do

"P
`=

0

roJ
0
(oA)Cc(o)J

0
(or) do, (9)

with

C
c
(o)"P

`=

0

p
H0

(r) J
0
(or) dr. (10)

Replacing (10) in (9) leads to the following impor-
tant relation:

p
H1

(r;A)"P
`=

0
P

`=

0

roJ
0
(oA)J

0
(or)

]J
0
(or@)p

H0
(r@) dodr@. (11)

In the case of #uctuating target with envelope
density #uctuation law p(A;A

0
) (where A

0
repres-

ents the mean value of the #uctuations), relation
(11) becomes more general:

p
H1

(r;A
0
)"P

`=

0

p
H1

(r;A)p(A;A
0
) dA

"P
`=

0
P

`=

0

roJ
0
(or)J

0
(or@)p

H0
(r@)

]CP
`=

0

J
0
(oA)p(A;A

0
) dADdodr@. (12)

This relation is very important because it shows
that all the expressions needed to evaluate the de-
tection performances are related to the noise envel-
ope statistic p

H0
(r).

Example 1 (Gaussian noise). Non-yuctuating tar-
get: Relation (11) connects the PDF of the envelope
of a complex Gaussian noise, i.e. a Rayleigh distri-
bution (power 2p2):

p
H0

(r)"
r

p2
expA!

r2

2p2B, (13)

to the envelope PDF of a constant signal embedded
in this complex noise, which leads to the well

known Rice}Nakagami distribution:

p
H1

(r;A)"
r

p2
expA!

A2#r2

2p2 BI0A
r A

p2 B, (14)

where I
0
(x) is the modi"ed Bessel function of the

"rst kind and zero order. Replacing (14) in (4) gives
a "rst expression of P

$
for a non-#uctuating target

embedded in complex Gaussian noise:

P
$
"P

`=

h
p
H1

(r;A) dr"QA
A

p
,
h
pB, (15)

where Q(a,b) is the Marcum Q-function de"ned
by

Q(a, b)"P
`=

b

x expA!
x2#a2

2 BI0(ax) dx (16)

and the detection threshold h obtained for a given
P
&!

according to (3) and (13):

h"J!2p2 log(P
&!

). (17)

Fluctuating target: If the target is #uctuating ac-
cording to a Swerling I law of power A2

0
,

p(A;A
0
)"

2A

A2
0

expA!
A2

A2
0
B (18)

relation (12) becomes

p
H1

(r;A
0
)"

2r

2p2#A2
0

expA!
r2

2p2#A2
0
B, (19)

which corresponds to a Rayleigh distribution with
power 2p2#A2

0
. Then we have (h is derived ac-

cording to (17)):

P
$
"P

`=

h
p
H1

(r;A
0
) dr

"expA!
h2

2p2#A2
0
B. (20)

Example 2 (K-distributed noise and non-#uctuat-
ing target). The K-distributed noise envelope is
K-distributed with probability density function
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(PDF):

p
H0

(r)"
bl`1

2l~1C(l)
rlKl~1

(br), (21)

cumulative density function (CDF)

F(r)"1!
(br)l

C(l)2l~1
Kl(br), (22)

and coherent radial characteristic function

C(o)"
1

(1#o2/b2)l
, (23)

where Kl(.) is the modi"ed Bessel function of the
third kind, l is the shape of the density and para-
meter b is related to the second-order moment
p2 by:

b"2S
l
p2

.
(24)

Smaller is the value of the shape parameter l,
spikier is the K-distribution and when lP#R, it
is close to a Gaussian distribution.

Relation (11) becomes in this case

p
H1

(r;A)"P
`=

0

ro
J
0
(oA)J

0
(or)

(1#o2/b2)l
do.

In order to derive the expression of P
$

we just have
to integrate the above expression with respect to r.
Using the tables [1] this expression becomes

P
$
"1!P

`=

0

h
J
0
(oA)J

1
(oh)

(1#o2/b2)l
do. (25)

The expression of the threshold h is detailed further
in (46).

The two relations (11) and (12) are usually quite
di$cult to compute numerically for evaluating the
detection performances for several signal-to-noise
ratios.

In the next section, we will use an interesting
method proposed and developed in [2}4] which
allows to estimate the PDF of any noise from its
n-order moments and give very useful relations to
compute the pair P

$
, P

&!
for a given signal-to-noise

ratio. This method is described in the following
section in a general way, and then applied to the
detection performance analysis.

3. PadeH approximation

3.1. Description of the method

This method [2}4] is based on the parametric
construction of the moment generating function
(MGF) of the noise envelope by PadeH approxima-
tion. The MGF U(u) of a random process is de"ned
by the mono-lateral Laplace transform of its envel-
ope PDF p(r):

U(u)"P
`=

0

p(r) e~urdr. (26)

After a Taylor series expansion of e~ur around
u"0, U(u) can be expressed as follows:

U(u)"
=
+
n/0

k
n

(!u)n

n!
"

=
+
n/0

c
n
un, uP0, (27)

where k
n
":`=

0
rnp(r) dr denotes the nth-order mo-

ments of the process envelope.
If we assume all the moments k

n
perfectly known

up to order ¸#M#1, the main idea is to truncate
the in"nite series at the order ¸#M#1 and to
approximate it by a rational function P*L@M+(u)
(¸)M) de"ned by

P*L@M+(u)"
+L

n/0
a
n
un

+M
n/0

b
n
un

, (28)

where the coe$cients Ma
n
N and Mb

n
N are determined

so that the following relation is veri"ed:

+L
n/0

a
n
un

+M
n/0

b
n
un

"

L`M
+
n/0

c
n
un#O(uL`M`1). (29)

The notation O(uL`M`1) simply takes into account
terms of order higher than uL`M. To determine the
two sets of coe$cients Ma

n
N and Mb

n
N, we have to

match the coe$cients:

M
+
n/0

b
n
un

L`M
+
n/0

c
n
un"

L
+
n/0

a
n
un#O(uL`M`1). (30)

The moments matching conditions "x in a "rst step
the set of coe$cients Mb

n
N by solving a simple set of

M linear equations for the M unknown denomin-
ator coe$cients:

M
+
n/0

b
n
c
L~n`j

"!c
L`j

, 1)j)M (31)
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which can be written as matrix and linear system,

A
c
L~M`1

2 c
L

F F F

c
L~M`k

2 c
L`k~1

F F F

c
L

2 c
L`M~1

B b"!c, (32)

where b"(b
M

,2, b
k
,2, b

1
)T, and c"(c

L`1
,2,

c
L`k`1

,2, c
L`M

)T.
In a second step the set Ma

n
N is determined by

a simple convolution of the Mb
n
N and the Mc

n
N coe$-

cients:

a
j
"c

j
#

j
+
i/1

b
i
c
j~i

, 0)j)¸. (33)

The set of coe$cients Ma
n
N and Mb

n
N determined

from (32) and (33), de"nes, owing to the PadeH Ap-
proximation, the One Point parametric modelling
of the MGF given its power series expansion (27) at
u"0.

If we suppose that the rational fraction approxi-
mation has M distinct poles with negative real part
to assure its convergence for uPR, relation (28)
can be rewritten as

P*L@M+(u)"
M
+
k/1

j
k

u!a
k

, Re(a
k
)(0. (34)

From this description, we are able to determine
a random vector PDF and CDF using the inverse
Laplace transform of the corresponding MGF per-
formed by residue inversion formula and leading to
a sum of weighted decaying complex exponentials.

3.2. PDF and CDF expressions

We saw (26) that MGF is the PDF Laplace
transform. Using the inversion residue formula on
(34) results in approximate PDF and CDF as a sum
of weighted decaying complex exponentials:

p(r)"
M
+
k/1

j
k
eak r, Re(a

k
)(0, (35)

F(r)"1#
M
+
k/1

j
k

a
k

eak r. (36)

Given the moments of a random process, the tail
of the PDF is more accurately approximated, that
is, the region uP0 in U(u) corresponds to rPR in
p(r). This is the reason why such approximations
are very interesting in radar detection studies for
the P

$
and P

&!
computations (needing PDF tails

integration).
The PadeH approximation yields good results in

the estimation of a PDF and an example is shown
in Fig. 1 for the K-distribution PDF de"ned by (21)
with l"0.1, p2"1 and b related to l and p2 by
(24). The relative error e

3%-
is de"ned as follows:

e
3%-

"K
K

!11309
!K

5)%0
K

5)%0
K. (37)

3.3. Extension

f Variates generation: As we now know the expres-
sion of a random variate CDF (36), we can gener-
ate samples X according to (35) as follows:
f 1. Generate ;&U[0,1].
f 2. Generate X&F~1(;).
In our case these generated samples represent

variates envelope. As ones can write for a ran-
dom complex process Z that Z"DZD e+ U (where
U is the assumed uniform phase between the
I and Q components of the process), the complex
process can be retrieved in generating U as an
uniformely distributed variate in [0,2p]. This
could be useful in the case where only data envel-
ope are available.

f Two-points approximation: To obtain a more uni-
form approximation, we could use a two-points
approximation, often about uP0 and uP#R.
This requires that the MGF be investigated in
the vicinity of these two points, and not surpris-
ingly uP#R in U(u) implies rP0 in p(r). We
will not use the two-points PadeH approximation
in this paper because our goal is to apply the
method to detect problems that principally re-
quire the study of the tail of the distribution and
because of the lack of knowledge about the Mar-
kov coe$cients needed in the expansion at
uP#R (see [2] for more details).

f Stabilization: In the case where some poles have
positive real part, it is necessary to stabilize the
rational fraction without changing the moments.

2532 E. Jay et al. / Signal Processing 80 (2000) 2527}2540



Fig. 1. Analysis of PadeH K-distribution approximation (l"0.1) and (p2"1).

Such a stabilization procedure is proposed in
[2]. The task is to "nd a new approximation that
is stable and does not sacri"ce the original and
extrapolated moments. This consists in rewriting
the moments expression in terms of the residues
and the poles and looking for the smallest
change necessary to make the unstable approxi-
mation a stable one (i.e. singularities of the MGF
in the left-half plane). But any change on the
residues and the poles perturbes the moments
and a compromise between the two e!ects has to
be found.
In this work, we do not use this kind of proced-

ure. A "rst choice for the order of the numerator
¸ and the denominator M is ¸"M!1. This
assures the convergence of the MGF when
DuDP#R and the resulting approximation called
sub-diagonal is known to be one of the more accu-

rate (with diagonal approximation where ¸"M).
The second choice to "nd the value of M is to test
the negativity of the poles. The initialised value
of M is set to be equal to an upper value K
(so ¸"K!1) and we compute the poles and
residues values. If the poles satisfy the real part
negativity condition, then the approximation
is found. Otherwise, we change the value of M
to M!1 (¸ to ¸!1) and compute the new
residues and poles values testing the sign of the
real part of the poles. The upper value K is deter-
mined according to the rank of the Hankel matrix
in (32) which is not always full (in this case the
rank is full when equal to M). So we look for the
highest value K which coincides with M among all
the rank values coinciding with M (varying from
1 to 15). It means that for M*K the rank is
de"cient.
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Fig. 2. Analysis of Gaussian kernel K-distribution PDF estimation (l"0.1) and (p2"1).

3.4. Comparison with another method

This method has to be compared with a non-
parametric method, based on the PDF estimation
by a kernel method described in [10]. However,
this one is not well adapted to our problem because
of its poor quality of estimation in the tail of distri-
bution. The mismatch of this last method can be
seen in Fig. 2 where the kernel estimated PDF of
the K-distribution (l"0.1) is plotted. The relative
error shows the non-e$ciency of the kernel estima-
tion if applied to our task.

In the next section, we use the method to appro-
ximate the noise PDF (that allows to simply
determine the detection threshold value with
wanted P

&!
) and to take into account the target

#uctuations which PDF will be also estimated by
PadeH approximation.

4. Evaluation of detection performances

General relations given by (11) and (12) can be
simpli"ed when using PadeH approximations for the
noise envelope and envelope #uctuation PDF.
With the knowledge of the noise envelope of the
experimental data, p

H0
(r) can be approximated us-

ing (35):

p
H0

(r)"
M
+
k/1

j
k
eak r, (38)

where the set of coe$cients Mj
k
N and Ma

k
N is de-

termined by the PadeH approximation. So, the
detection threshold h is perfectly de"ned by
the determination (Newton "nd root algorithm) of
the non-linear equation (see (3)):

P
&!
"!

M
+
k/1

j
k

a
k

eakh. (39)

4.1. Non-yuctuating target

We always suppose that the constant envelope of
the target is Ds(t)D"A. Using (38) in (11) leads to

p
H1

(r;A)"P
`=

0

orJ
0
(oA)J

0
(or)

M
+
k/1

j
k

Jo2#a2
k

do.

(40)
Recalling, owing to [1], that

P
h

0

r J
0
(or) dr"hJ

1
(oh)/o,

P
`=

0

J
0
(oy)eakydy"

1

Jo2#a2
k

,

the detection probability P
$

de"ned by (4) takes the
simple form

P
$
"1!P

`=

0

hJ
0
(oA)J

1
(oh)

M
+
k/1

j
k

Jo2#a2
k

do,

(41)
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where the detection threshold h is perfectly de"ned
by the determination of (39).

4.2. Fluctuating target

In the case of #uctuating target (Swerling #uctu-
ations for example), it is possible to estimate the
envelope #uctuation density p(A;A

0
) (where A

0
is

mean value of #uctuation) by PadeH approximation:

p(A;A
0
)"

N
+
i/1

c
i

A
0

e(di @A0 )A, (42)

where the N parameters Mc
i
N and Md

i
N are once

determined when A2
0
"1. Eq. (12) can be trans-

formed as

p
H1

(r;A
0
)"P

`=

0

roJ
0
(or)

M
+
k/1

j
k

J(o2#a2
k
)

]
N
+
i/1

c
i

J(o2A2
0
#d2

i
)
do (43)

which leads to the detection probability formula
with the detection threshold h always given by the
resolution of (39):

P
$
"1!P

`=

0

hJ
1
(oh)

M
+
k/1

j
k

J(o2#a2
k
)

]
N
+
i/1

c
i

J(o2A2
0
#d2

i
)
do. (44)

Relations (41) and (44) are very general and can be
easily computed, since we have therefore only
one integration to compute instead of quadruple
generalized integration without PadeH approxima-
tion. The latter allows to evaluate any radar detec-
tion performance for any target embedded in any
noise.

Successful tests of this method on synthetic sig-
nals allow us to be optimistic for the evaluation of
PDF and CDF PadeH approximation obtained on
experimental forest clutter data and of their radar
detection performance that we perform in the next
section. We show, according to these results, the
mismatch between the real hypothesis and the
Rayleigh hypothesis.

5. Some results

5.1. Synthetic signals

We choose K-distributed clutter (power p2"1),
as described in (21), with a small shape parameter
l"0.1 and a parameter b given by (24). Fig.
3 shows some realisations of K-distributed pro-
cesses with di!erent values of the shape parameter
l"0.1, 2, 10,#R (l"#R corresponds to
a Rayleigh process) and power p2"1. The asso-
ciated coherent radial characteristic function is

C(o)"A1#
o2

b2B
~l

. (45)

Detection threshold h is de"ned by the determina-
tion of the non-linear equation

P
&!
"

(bh)l
C(l)2l~1

Kl(bh), (46)

and so, for a non-#uctuating target we "rst have

P
$
"1!P

`=

0

h
J
0
(oA)J

1
(oh)

(1#o2/b2)l
do. (47)

If we consider the target #uctuations with a Swer-
ling I probability law (variance A2

0
),

p(A;A
0
)"

2A

A2
0

expA!
A2

A2
0
B, (48)

Eq. (47) becomes

P
$
"1!P

`=

0

h
J
1
(oh)e~o2

A
2
0 @4

(1#o2/b2)l
do. (49)

Fig. 4 shows theoretical curves P
$
/P

&!
for di!erent

SNR (signal-to-noise ratio) varying from 10 to 50
dB, and the Fig. 5 represents the curves derived by
simulation and PadeH approximations. To simulate
K-distributed processes we use the elegant SIRP
theory (spherically invariant random process, [8,9])
which states that K-distribution (X"ZS) is derived
with Gaussian vector (Z ) whose standard deviation
is itself a gamma random variate (S), independent of
Z with a non-negative PDF f

S
(S) so-called the char-

acteristic PDF of the SIRV (vector). This repres-
entation is interesting to take into account the
possible noise correlation since a SIRV is invariant
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Fig. 3. Realizations of K-distributed noises for di!erents values of l"0.1, 2, 10,#R, power p2"1.

under linear transformation, that is to say that if
X is a SIRV then Y"AX#B is a SIRV with the
same characteristic PDF (A is a non-singular
matrix and B is a vector having the same dimension
as X ).

The Rayleigh probability law is the well-known
Gaussian complex vector envelope law. The #uctu-
ations coe$cients Mc

i
N and Md

i
N are derived once

for A2
0
"1 and then its law is deducted for each

value of the SNR from the reference (A2
0
"1).

The results show the excellent quality of the
approximation.

5.2. Experimental data

The signal here analysed corresponds to experi-
mental forest clutter data envelope spatially col-
lected at low grazing angle ((13) in 246 range bins
of 0.5 m with an X-band radar. The aim of this

measurements campaign was to study ground
clutter scatterers and we use few of them to evaluate
the radar detection performances of a virtual target
embedded in such an environment with the use of
a PadeH approximation on the noise envelope. For
convenience, the noise power has been normalized
to one.

Fig. 6 shows results of PDF and CDF PadeH
approximation of this experimental clutter data.
Fig. 7 gives detection performances of a hypo-
thetical non-#uctuating target which would be
embedded (in phase and amplitude) in such a noise.
The curves show the mismatch between real and
Rayleigh hypothesis. For the latter, we can see on
the curve that the false alarm rate increases until
P
&!
"1.34]10~4 if we consider the true statistic of

the analysed clutter.
The moments have been estimated from the

set of complex clutter data y
i

according to the
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Fig. 4. Theoretical detection curves for P
&!
"10~3, 10~4, 10~5, 10~6, 10~9: Swerling I #uctuating target embedded in K-distributed

noise (l"0.1 and p2"1).

Fig. 5. Detection curves for P
&!
"10~3, 10~4, 10~5, 10~6, 10~9: simulation and PadeH approximation (M"4): Swerling I #uctuating

target embedded in K-distributed noise (l"0.1 and p2"1).
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Fig. 6. Results of the approximation density obtained on the envelope of experimental data (forest clutter). The detection threshold h for
experimental data is calculated according to equation (39) with P

&!
"10~6 and it has to be compared with the one computed for the

Rayleigh hypothesis case.

classical way:

k(
n
"

1

N

N
+
i/1

Dy
i
Dn. (50)

Asymptotically, it can be shown that k(
n
tends to the

real values E(DyDn) of the moments as NPR (where
E(.) denotes the mathematical expectation). Larger
will be the number of data and better will be this
estimation.

The normalised MGF of experimental data takes
the form

U(u)"1!0.7652u#0.5u2!0.2877u3

#0.1431u4!0.06229u5#0.02408u6

!0.008382u7#0.00265u8!0.0007672u9

#0.0002043u10!0.0000503u11

and the [5/6] PadeH approximation becomes

P*5@6+(u)"
6
+
k/1

j
k

u!a
k

(51)

with

Mj
k
N
k|*1,6+

"M8.4237$10.244i,2

!0.035157$0.038976i,2

!8.953$48.34iN (52)

Ma
k
N
k|*1,6+

"M!2.823$1.9382i,2

!1.2425$3.153i,2

!3.2174$0.63591iN. (53)
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Fig. 7. Comparison between detection performances in experimental data (forest clutter) and detection performances in classical
Rayleigh noise. The two noise signals have the same power and the results are shown for a probability of false alarm rate "xed to
P
&!
"10~6.

Fig. 8. Classical scheme to analyse the detection performances.

The last graphic on Fig. 6 shows the mismatch
between the detection threshold values derived, the
real one, h

1
"6.47, by the resolution of (39), and

the other, h
2
"3.71, with the classical Gaussian

hypothesis.

6. Conclusion

This paper has recalled a general modelisation
method with few parameters of the true PDF of
a complex process from a power series expansion of
its MGF. This recalls the AR and ARMA spectral
density modelisation methods and allows to derive
simple and general relations of the pair (P

$
, P

&!
).

This method needs the knowledge to a high degree
of accuracy of the n-order moments of the envelope
of the unwanted noise often unavailable. We do not
solve this problem in this paper either assuming

they are known or simulating a large number of
variates in order to asymptotically tend to the real
values. A study of the in#uence of an error on the
moments estimation is currently investigated in
further works.
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Fig. 9. Applying PadeH approximation.

However, as we show in this work, PadeH ap-
proximation method gives powerfull expressions
for a computational aid and allows to evaluate
successfully, for instance, the detection perfor-
mance analysis without a priori knowledge on the
noise statistic.

As a conclusion to this paper and to show the
di!erence between the classical detection way and
the use of the PadeH approximation we present two
schemes (Fig. 8 for the classical way; Fig. 9 for the
use of PadeH approximation) resuming the two dif-
ferent approaches.
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