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Abstract

We derive the expression of an optimum non-Gaussian radar detector from the non-Gaussian spherically invariant random
process (SIRP) clutter model and a bayesian estimator of the SIRP characteristic density. SIRP modelizes non-Gaussian
process as a complex Gaussian process whose variance, the so-called texture, is itself a positive random variable (r.v.).
After performing a bayesian estimation of the texture probability density function (PDF) from reference clutter cells we
derive the so-called bayesian optimum radar detector (BORD) without any knowledge about the clutter statistics. We also
derive the asymptotic expression of BORD (in law convergence), the so-called asymptotic BORD, as well as its theoretical
performance (analytical threshold expression). BORD performance curves are shown for an unknown target signal embedded
in correlated K-distributed and are compared with those of the optimum K-distributed detector. These results show that
BORD reach optimal detector performances.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Coherent radar detection against non-Gaussian
clutter has gained many interests in the radar commu-
nity since experimental clutter measurements made
by organizations like MIT [17,18,4] have shown
to @t non-Gaussian statistical models. One of the
most tractable and elegant non-Gaussian models re-
sults in the so-called spherically invariant random
process (SIRP) which states that many non-Gaussian
random processes are the product of a Gaussian
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random process (called the speckle) with a non-
negative random variable (r.v.) (the so-called
texture), so that an SIRP is a compound Gaussian
process. This model is the base of many results like
Gini et al.’s works [8] in which the optimum detector
in the presence of composite disturbance of known
statistics modeled as SIRP is derived.
In this paper, a bayesian approach is proposed to

determine the probability density function (PDF) of
the texture from Nref reference clutter cells. We use
Bayes’ rule and a Monte Carlo estimation given a
non-informative prior on the texture. This approach
exploits the SIRP model particularity to describe
non-Gaussian processes as compound processes and
allows one to derive the expression of the optimum
detector called bayesian optimum radar detector
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(BORD). Henceforth, it is no more necessary to have
any knowledge about the clutter statistics and BORD
deals directly with the received data. In Sections 2
and 3 we brieIy recall the formulation of a detection
problem and describe how the SIRP model clutter
yields to general and particular optimum detector. In
Section 4, we explain the bayesian approach used to
determine a bayesian estimator to the texture PDF
and give the expression of the resulting BORD. In
this section the asymptotic expression of BORD (the
so-called asymptotic BORD) and the analytical per-
formance of the Asymptotic BORD are also derived.
Section 5 is devoted to the simulations description
to evaluate BORD performance (compared with
optimum detectors performance). Conclusions and
outlooks are given in Section 6.

2. General relations of detection theory

We consider here the basic problem of detecting the
presence (H1) or absence (H0) of a complex signal s in
a set of Nref measurements of m-complex vectors y=
yI + jyQ corrupted by a sum c of independent additive
complex noises (noises+clutter). The problem can be
described in terms of a statistical hypothesis test:

H0 : y = c; (1)

H1 : y = s + c: (2)

When present, the target signal s corresponds to a
modi@ed version of the perfectly known transmitted
signal t and can be rewritten as s = AT (�)t. A is the
target complex amplitude and we suppose to have de-
termined all the others parameters (�) which charac-
terize the target (Doppler frequency, time delay, etc).
In the following, p= T (�)t.
The observed vector y is used to form the likeli-

hood ratio test (LRT) �(y) which is compared with
a threshold 	 set to a desired false alarm probability
(Pfa) value:

�(y) =
py(y=H1)
py(y=H0)

H1
?
H0
	: (3)

LRT performances follow from the statistics of the
data: Pfa is the probability of choosing H1 when the

target is absent, and the detection probability (Pd)
is the probability of choosing H1 when the target is
present, that is,

Pfa = P(�(y)¿	|H0)
and

Pd = P(�(y)¿	|H1):

3. Non-Gaussian clutter case: SIRV and optimum
radar detector

In the case of non-Gaussian clutter, detection strate-
gies can be derived if we consider a particular clutter
nature, i.e. if an a priori hypothesis is made on the
clutter statistics. To model non-Gaussian clutter and
derive general detector expressions, we use the SIRP
representation [1,8,13,19].

3.1. Description and general expressions

A spherically invariant random vector (SIRV)
is a vector issued from a SIRP which modelizes
each element of the clutter vector c as the product
of a m-complex Gaussian vector x (the speckle)
(CN(0; 2M)) with a positive r.v. � (the texture),
that is c = x

√
�. The so-formed vector c is, con-

ditionally to �, a complex Gaussian random vector
(CN(0; 2�M)) with multivariate PDF p(c=�). The
PDF of the clutter is then

p(c) =
∫ +∞

0

�−m

(2�)m|M|exp
(
−c†M−1c

2�

)
p(�) d�;

(4)

where † is the transpose conjugate operator, and |M|
is the determinant of the matrix M. This general ex-
pression leads, for a known p(�), to multivariate PDFs
of non-Gaussian random vectors. For example, joint
K-distributed PDF is obtained if p(�) is a Gamma
PDF (see further).

3.2. Optimum SIRV detector

Applied to the detection problem, expression (4)
gives pC(y=H0) and pC(y=H1)=pC(y− s=H0) when
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the target signal s is known. The LRT becomes
∫ +∞
0 �−m exp(−q1(y)=2�) d�∫ +∞
0 �−m exp(−q0(y)=2�) d�

H1
?
H0
�; (5)

where

q0(y) = y†M−1y; (6)

q1(y) = q0(y− s) for a known signal s and �= ln(	).
When the target complex amplitude A is unknown,
ML estimation of A is performed [8]:

ÂML =
p†M−1y
p†M−1p

; (7)

and the detection strategy is given by (5) where
now [8]

q1(y) = y†M−1y − |p†M−1y|2
p†M−1p

: (8)

With (8), expression (5) is called generalized LRT
(GLRT).

3.3. Examples: various optimum SIRV detectors

All the following optimumSIRV detectors are given
for an unknown amplitude target whose value is esti-
mated is the ML sense. So, the quadratic forms q0(y)
and q1(y) are, respectively, given by (6) and (8).

3.3.1. OKD: optimum K detector
In the case of K-distributed clutter (size m) with

parameters � and b, texture PDF is a Gamma(�; 2=b2)
PDF with expression

p(�) =
��−1b2�

�(�)2�
exp

(
−�b2

2

)
: (9)

The PDF of y under H0 hypothesis is then given by

py(y=H0) =
2b�+mq0(y)(�−m)=2

�m|M|�(�)2�+m K�−m

(
b
√
q0(y)

)
;

(10)

where K�(:) is the modi@ed Bessel function of
order � and �(:) is the Gamma function. The value
of � determines the spikiness of the distribution. Fol-
lowing the same processes with (5) expression of

the so-called optimum K-distributed detector (OKD)
becomes ∀m¿ 2
(
q1(y)
q0(y)

)(�−m)=2 K�−m(b
√
q1(y))

K�−m(b
√
q0(y))

H1
?
H0
	: (11)

For m= 1, q0(y) = |y|2 (where y is the scalar vector
we observe) and expression (11) becomes

|y|�−1K�−1(b|y|)
H1
?
H0

2�−1�(�)
2b�−1�	

: (12)

3.3.2. OLD: optimum Laplace detector
This detector can be considered as a particular case

of OKD since the K-distribution becomes a Laplace
PDF when � = 1. The texture PDF is then an expo-
nential PDF with parameter b2=2, with expression

p(�) =
b2

2
exp

(
−b2�
2

)
; (13)

and the resulting expression of the OLD becomes
∀m¿ 2
(
q1(y)
q0(y)

)(1−m)=2 K1−m(b
√
q1(y))

K1−m(b
√
q0(y))

H1
?
H0
	: (14)

For m= 1, q0(y) = |y|2 and we just have

K0(b|y|)
H1
?
H0

1
2	

: (15)

3.3.3. OStD: optimum Student-t detector
Student-t(�; b) marginal PDF is obtained when the

texture PDF is an inverse gamma PDF IG(�; 2=b2)
whose expression is

p(�) =
b2��−�−1

2��(�)
exp

(
−b2

2�

)
: (16)

The resulting expression of the OStD is then
(
b2 + q0(y)
b2 + q1(y)

)m+� H1
?
H0
	: (17)

3.3.4. O�D: optimum � detector
As for the other examples given from now, the

texture PDF of a � SIRV (the marginal PDF is a �
PDF with � degrees of freedom and parameter b; �2 is
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the variance) is analytically unknown. It is, however,
possible [13] to derive the optimum � detector for
�6 1, which is
∑m

k=1(−1)k−1Ck−1
m−1(b

2�2)k−1Dk(q1(y); �; b�)∑m
k=1(−1)k−1Ck−1

m−1(b2�2)k−1Dk(q0(y); �; b; �)

H1
?
H0
	;

(18)

where for j = 0; 1,

Dk(qj(y); �; b; �)

=
m−1∏
i=1

(�− i)(qj(y))�−ke−b2�2qj(y)

and

Ck−1
m−1 =

(m− 1)!
(k − 1)!(m− k)!

:

3.3.5. OgRD: optimum generalized Rayleigh
detector
As said previously, the texture PDF of a gener-

alized Rayleigh SIRV (the marginal PDF is a gen-
eralized Rayleigh PDF with parameters 	 and  ; �2

is the variance) is analytically unknown but the
optimum generalized Rayleigh detector is given for
	6 2 by

(
q1(y)
q0(y)

)1−m

exp
(
�	

 	
[q0(y)	=2 − q1(y)	=2]

)

×
∑m−1

k=1 (Dk(	)=k!)(�
√
q1(y)= )	k∑m−1

k=1 (Dk(	)=k!)(�
√
q0(y)= )	k

H1
?
H0
!; (19)

where ! is an threshold notation other than 	,

Dk(	) =
k∑

j=1

(−1)jCj
k

j−1∏
i=0

(
j	
2

− i
)
;

and Cj
k = (k)!=(j)!(k − j)!.

3.3.6. OWD: optimum Weibull detector
For a Weibull SIRV, the texture PDF can be writ-

ten as an integral form depending on the G-Meijer’s
functions. Its expression can be found in [3,9]

and the optimum Weibull detector is given for
06 b6 2 by
(
q0(y)
q1(y)

)m
×

∑m−1
k=1 (Dk(b)=k!)(a�b)kFkb

1 (y) exp(−a�bFkb
1 (y))∑m−1

k=1 (Dk(b)=k!)(a�b)kFkb
0 (y) exp(−a�bFkb

0 (y))

H1
?
H0
	; (20)

where a, b and �2 are, respectively, the two parameters
of the marginal SIRV Weibull and its variance. In the
OWD expression, we also have

Fkb
p =

√
qp(y)

kb
for p= 0; 1;

Dk(b) =
k∑

j=1

(−1)jCj
k

j−1∏
i=0

(
jb
2

− i
)
;

and

Cj
k =

(k)!
(j)!(k − j)!

:

3.3.7. ORD: optimum rice detector
The Rice marginal PDF of an SIRV, with parame-

ter % and variance �2, gives rise to the optimum rice
detector whose expression is given for 0¡%6 1 by

exp[K(q0(y)− q1(y))]

×
∑m

k=1 (−1)kCk
m−1(%=2)

kDk(q1(y); �; %)∑m
k=1 (−1)kCk

m−1(%=2)kDk(q0(y); �; %)

H1
?
H0
	; (21)

where K = �2=2(1− %2), and for j = 0; 1

Dk(qj(y)) =
k∑

l=0

Cl
kIk−2l(K%qj(y)):

I�(:) is the @rst kind modi@ed Bessel function of order
�, and Cl

k = (k)!=(l)!(k − l)!.
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3.3.8. OCpGD: optimum clutter plus Gaussian
detector
When thermal noise is separately accounted in the

received data, the general expression (5) has to be
changed because the total correlation matrix of the
noise plus clutter depends on the texture since we have

My=� = 1
2E(yy

†=�) = �Mx + �2bI; (22)

where I is the identity matrix. GLRT expression (5)
becomes
∫ +∞
0 (1=|�Mx + �2bI|) exp(− q1(y;�)

2 )p(�) d�∫ +∞
0 (1=|�Mx + �2bI|) exp(− q0(y;�)

2 )p(�) d�

H1
?
H0
	; (23)

where now

q0(y; �) = y†(�Mx + �2bI)
−1y; (24)

and q1(y; �) is deduced from q0(y; �) as in the previous
case (known or unknown target amplitude).
This case was introduced by Gini et al. in [8] where

the authors consider K-distributed clutter plus thermal
noise to derive OKGD (optimum K plus Gaussian
detector). This detector cannot be derived in a simple
analytical form but theoretical performances are given
in an integral form.
From expressions (5) and (23) we can see that

SIRV detectors depends on the texture PDF. In [9,10]
the authors used a PadPe approximation to estimate the
texture PDF and then to derive an adaptive detector.
This method depends on the quality of the moment
estimation and requires reference clutter cells to esti-
mate the PadPe coeCcients.
In the next section we propose to use a bayesian

estimator of the texture PDF which comes from the
Bayes’rule and Monte Carlo integration. Then, BORD
expression is derived.

4. Bayesian optimum radar detector

4.1. Bayesian study of the problem

As we have said in the previous section, for a
known texture PDF p(�), it is possible to derive
the associated detector expression. The idea of a
bayesian approach is to determine, from Nref reference

clutter cells of size m, R = [r1; : : : ; rNref ]
T where ri =

[ri(1); : : : ; ri(m)]T, a bayesian estimator for p(�). We
write p(�) as follows:

p(�) =
∫
Rm

p(�=r)p(r) dr: (25)

Given rNrefi=1 a Monte Carlo estimation of (25) is

p̂Nref (�) =
1
Nref

Nref∑
i=1

p(�=ri): (26)

This estimate is unbiased and as the samples {ri ; i =
1; : : : ; Nref} are statistically independent, the strong
law of large numbers applies and gives

lim
Nref→+∞

p̂Nref (�)
a:s:→p(�): (27)

To evaluate (26) we have to know the expression of
the a posteriori PDF of � given the Nref reference cells,
that is the expression of p(�=ri). Using the Bayes’rule,
we have

p(�=ri) =
p(ri=�)p(�)

p(ri)
; (28)

and as p(�) is unknown (as well as p(ri)) we replace
it by a prior distribution, called g(�). This processing
step works as an information processor that updates
the prior density function g(�) into the posterior PDF
p(�=ri). The Bayes’rule can be interpreted as a rele-
vant mechanism to provide a rational solution of how
to learn from the reference cells about the quantity of
interest �. By this way, Eq. (26) becomes

p̂Nref (�) =
1
Nref

Nref∑
i=1

p(ri=�)g(�)
p(ri)

; (29)

where the normalization constant p(ri) is obtained by
integrating the numerator in (26) over g(�) and is
given by

p(ri) =
∫ +∞

0
p(ri=�)g(�) d�: (30)

Replacing p̂Nref (�) in (5), the expression of the
so-called Bayesian Optimum Radar Detector can be
derived.
Other methods are investigated in [7,15] to attain

detector adaptivity but only with respect to parame-
ters of p(�). The proposed method makes the detector
adaptive with respect to the unknown p(�) and it is no
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more necessary to have knowledge about the clutter
statistics.

4.2. BORD expression

The Nref reference clutter cells [r1; : : : ; rNref ]
T are

supposed to be modeled as SIRV and so we have

p(ri=�) =
�−m

(2�)m|M| exp
(
− Zi
2�

)
; (31)

where Zi = r†iM
−1ri. If we consider this likelihood

function as a function of � it is proportional to
an inverse gamma PDF, IG(m + 1; 2=Zi) (an in-
verse gamma PDF is the PDF of the inverse of a
Gamma-distributed variable). In (28) a prior distribu-
tion is required for the reference clutter texture and
in this case we could choose an inverse gamma prior,
IG(ap; bp) (parameters ap and bp would have to be
chosen in order to make the prior as non-restrictive
as possible). This prior would be the so-called conju-
gate prior because the resulting PDF would belong to
the same PDF family as the likelihood function (see
[14,16] for more details).
As the clutter statistics is unknown we choose a

non-informative prior distribution g(�) = 1=�, called
JeRrey’s prior which is proportional to the square root
of the Fischer’s information measure and which is also
an asymptotical case of the inverse gamma PDF when
parameters ap → 0 and bp → +∞.
With the non-informative prior, the a posteriori PDF

of � given the Nref reference cells can be derived and
(28) becomes

p(�=ri) =
�−m−1

(2�)m|M|p(ri) exp
(
− Zi
2�

)
: (32)

The normalization constant p(ri) is computed as
follows:

p(ri) =
∫ +∞

0
p(ri=�)g(�) d�

=
∫ +∞

0

�−m−1

(2�)m|M| exp
(
− Zi
2�

)
d�

=
�(m)

�m|M|Zm
i
; (33)

and (32) becomes

p(�=ri) =
Zm
i

2m�(m)
�−m−1 exp

(
− Zi
2�

)
: (34)

This expression is exactly an inverse gamma PDF with
parameters m and 2=Zi. So, we have

p̂Nref (�) =
�−m−1

2m�(m)Nref

Nref∑
i=1

Zm
i exp

(
− Zi
2�

)
; (35)

where we recall that Zi = r†iM
−1ri. Replacing (35) in

(4) for each observed vector yobs (size m) and given
the Nref reference clutter vectors r

Nref
i=1 we have to com-

pute the following expression under Hj (j = 0; 1) to
form the GLRT:

ANrefm

Nref∑
i=1

Zm
i

∫ +∞

0
�−2m−1 exp

(
−Wi;j(yobs)

2�

)
d�

=22mANrefm �(2m)
Nref∑
i=1

Zm
i

(Wi;j(yobs))2m
; (36)

where Zi is given previously and

(ANrefm )−1 = (2�)m|M|Nref 2m�(m);
Wi; j(yobs) = qj(yobs) + Zi:

The so-called BORD expression becomes

�Nref (yobs) =

∑Nref
i=1 [

Zi
(q1(yobs)+Zi)2

]m∑Nref
i=1 [

Zi
(q0(yobs)+Zi)2

]m
H1
?
H0
�: (37)

Both of the quadratic forms q0 and q1 are, respectively,
given by (6) and (8).
BORD expression depends only on the reference

clutter cells which provide all the necessary infor-
mation about the clutter statistics. That makes itself
“self-adaptive” if the correlation matrix is determined
from the reference cells of the clutter. This problem
was investigated in [5,7] where the authors use the nor-
malized sample covariance matrix estimator (NSCM).
Given thatM=Mr=E(�) = E(rr†)=E(r†r), the NSCM
estimate of M is given by

M̂ =
m
Nref

Nref∑
k=1

rkr
†
k

r†krk
; (38)
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Fig. 1. CFAR property of the BORD with respect to the texture PDF shown for correlated K-distributed environments with parameters
� = 0:1, 0.5, 2, 20 for m = 10.

where rk (k=1; : : : ; Nref ) are the Nref reference clutter
cells of size m.

4.3. CFAR property of the BORD

We can show by simulations that the BORD is
CFAR (Constant False Alarm Rate) with respect to the
texture PDF. It means that whatever the clutter statis-
tics is (dually whatever the texture PDF is), BORD
probability of false alarm is the same. In other words
the BORD law is independent of the clutter statistics.
This property is shown in Figs. 1 and 2 where the de-
tection threshold 	 is plotted against diRerent Pfa val-
ues. What ever the clutter statistics is (K-distributed
with various parameters, Gaussian, Student-t or whose
texture PDF is a Weibull PDF), the calculation of the
detection threshold for a @xed Pfa is the same for all.

4.4. Asymptotical result of the BORD: AsBORD

BORD expression comes after a Monte Carlo es-
timation of (25) given Nref reference clutter vector
rNrefi=1. Given Zi=r†iM

−1ri, which is a positive r.v. with

PDF p(Z), BORD expression can be considered as
the Monte Carlo estimation of

∫ +∞
0 (Zm=(q1(yobs) + Z)2m)p(Z) dZ∫ +∞
0 (Zm=(q0(yobs) + Z)2m)p(Z) dZ

: (39)

Given that r =
√
�x where x is a complex Gaussian

vector of size m with covariance matrix 2M, we have
Z = r†M−1r= �x†M−1x.
The quadratic form Q=x†M−1x is �22m distributed

(�22m = G(m; 2)).
So, Z=� is G(m; 2�) and the PDF of Z is derived by

integrating p(Z=�) over the prior g(�). Finally, we can
show that

lim
Nref→+∞

�Nref (yobs) =
(
q0(yobs)
q1yobs)

)m
: (40)

This asymptotical result, called asymptotic BORD
(AsBORD), coincides with the GLRT given, for
example, in [15]. It was obtained after replacing the
texture � by its two maximum likelihood estimates
(the one under H0 and the other under H1) in the opti-
mum detection structure (5), where � was considered
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Fig. 2. CFAR property of the BORD with respect to the texture PDF shown for diRerent correlated environments: K-distributed clutter
with parameter �=0:1, Gaussian clutter, Student-t clutter and unknown clutter whose texture PDF is a Weibull PDF. m=10. Comparison
with the theoretical expression of the AsBORD threshold.

as an unknown deterministic parameter. This was
also obtained after diRerent calculations in [2] and
for Gaussian clutter in [11,12]. Moreover, with the
NSCM estimate of the correlation matrix this expres-
sion is also called adaptive linear quadratic (ALQ)
in [5,6].

4.5. CFAR property of the AsBORD

Replacing both of the quadratic forms q0 and q1
in (40) and after simple modi@cation, the AsBORD
expression can be written as follows:

|p†M−1xobs|2
(p†M−1p)(x†obsM−1xobs)

H1
?
H0

m
√
	− 1
m
√
	

; (41)

where xobs is the (Gaussian) speckle of the observed
SIRV.
The left term of (41) is independent of the texture.

Then AsBORD PDF is statistically independent of the
texture PDF that makes the AsBORD to be CFAR

with respect of the texture PDF. In this case it is
possible to derive the AsBORD PDF.

4.6. AsBORD PDF

According to (41) the AsBORD expression depends
on Gaussian vectors and on a related quadratic form.
Extending the Cochran’s theorem to complex

Gaussian vectors and after simple computation, the
AsBORD PDF is a Beta PDF with parameters 1
and m− 1 whose expression is [9]

p(u) = (m− 1)(1− u)m−2: (42)

Then the expression of the threshold value depends
only on Pfa and m, the size of the observed vector [9]:

	= P(m=1−m)
fa : (43)

Applying Cochran’s theorem implies that the covari-
ance matrix of the observed vector is non-singular.
Under this condition AsBORD PDF applies also to
the BORD as shown in Fig. 2.
In [9] the AsBORD PDF in the case of real vectors

is also derived.
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Fig. 3. Performance comparison between OGD, OKD and BORD for an unknown target complex amplitude in correlated K-distributed
clutter (� = 0:1; Pfa = 10−3; m = 10).
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Fig. 4. Performance comparison between OGD, OKD and BORD for an unknown target complex amplitude in correlated K-distributed
clutter (� = 0:5, Pfa = 10−3, m = 10).
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Fig. 5. Performance comparison between OGD, OKD and BORD for an unknown target complex amplitude in correlated K-distributed
clutter (� = 2, Pfa = 10−3, m = 10).

-30 -25 -20 -15 -10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCR input − m = 10

P d

OKD/BORD/OGD Perf. comp. in Correlated K clutter (ν=20, P
fa

=10-3)

OKD
BORD
OGD

Fig. 6. Performance comparison between OGD, OKD and BORD for an unknown target complex amplitude in correlated K-distributed
clutter (� = 20, Pfa = 10−3, m = 10).
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(� = 1:03; 2:3, Pfa = 10−3, m = 10).

5. Detection performances of BORD

The correlation matrix M is considered to be
known.M values come from a given Gaussian power
spectral density and is an m × m Toeplitz matrix
whose @rst auto-correlation coeCcient is %1 =0:0098.
We compare BORD performance with those of op-

timum detectors such OKD, OGD (optimum Gaussian
detector, optimum for Gaussian clutter) or OStD for
an unknown target signal embedded in K-distributed
clutter or Student-t clutter.
In the case of K-distributed clutter, OKD is opti-

mum and we see that BORD performance reach OKD
performance whatever the value of � is. DiRerent val-
ues of the shape parameter are tested, �=0:1; 0:5; 2; 20.
When � → +∞ K-PDF tends to a Gaussian PDF
which is con@rmed in the series of Figs. 3–6.
In the case of Student-t clutter (shown in Fig. 7)

the conclusions are the same: BORD reach optimum
performances given by those of the optimum detector
OStD.
All the curves represent the detection probability Pd

versus the signal-to-clutter ratio (SCR) given for one

pulse. As m=10 pulses are considered, the total SCR
is 10 log10(m) = 10 dB more than for one pulse. The
detection threshold is previously computed via Monte
Carlo simulation for each of the detectors to keep a
false alarm rate equal to Pfa = 10−3.
Once the detection threshold is obtained we evalu-

ate performance with Nref =1000 samples of reference
clutter and for Nobs = 500 samples of observed clut-
ter data (which corresponds in fact to the number of
Monte Carlo trials used for the evaluation of the prob-
ability of detection) in which an unknown complex
target signal for a diRerent SCR is embedded.

6. Conclusions and outlooks

The present paper has addressed a bayesian ap-
proach to the determination of the clutter statistics if
we consider the clutter vector modeled as a SIRV.
By this way a bayesian estimator of the texture PDF
of the SIRV has been derived from reference clutter
cells and the resulting BORD expression depends only
on these reference cells. For example, in the case of
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CFAR (Constant False Alarm Rate) detector th ref-
erence clutter cells are the cells adjacent to the cell
under test.
We derive also the asymptotic expression of BORD,

called AsBORD, whose PDF is derived in a closed
form. With this latter expression we are able to com-
pute the threshold value to set to verify a desired Pfa in
the case where the correlation matrix is non-singular.
Under this assumption, the theoretical threshold ex-
pression applies also to BORD. In this paper, we use
Monte Carlo simulation to set the threshold value of
BORD. In further work we will compare the per-
formances of BORD and AsBORD for experimental
ground clutter data and study the applicability of the
theoretical threshold expression with respect to the
correlation of the data.
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