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Abstract  - We propose to apply an efficient
approx imat ion  ca l led  «  saddlepoin t
approximation »  to some fusion problems. The aim
of this method is to approximate the law of a sum of
(n) iid (independent identically distributed)
variables. A lot of statistical problems (maximum
likelihood estimator, hypothesis testing,…) can be
formulated as such a sum. This approximation is
very accurate even for small (n) and easy to
implement. We describe the principle of the method
and we applied it to optimal fusion in multiple
sensor and to a detector in non Gaussian clutter
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1 Introduction

    The saddlepoint (SP) approximation was
introduced in by H. E. Daniels in 1954 [1] and has
been developed and enhanced until today [2]. It
consists of approximate the law of a sum of (n) iid
general variables

† 

Zn =
1
n

Xi
i=1

n

Â (1)

This approximation is very accurate even for small
(n) (n≥3) and has, under general condtions, the
strong following property of the relative error,

† 

fn (x)
ˆ f n (x)

=1+ o(1
n

) (2)

† 

ˆ f n (x)  is the SP approximation of the density

† 

fn (x)  of 

† 

Zn . Morerover, this approximation
remains accurate even for tail distribution areas
wich is crucial, for example, in detection problems
(probability of false alarm). For a vast family of
densities (like exponential densities) relative error
does not depend of x (uniform convergence).
Compared with the saddlepoint approximation , the
law of large numbers approximation is much poor.
This later approximation works for absolute error

with very large (n) and doesn’t work in the tail
distribution area.
A lot of statistical problems (maximum likelihood
estimator, hypothesis testing,…) can be formulated
as sum of (n) iid  variables  such the logarithm of
the likelihood. For example, in chapters 3, 4 the SP
approximation is applied successfully in
classification, sensor fusion or detection. In these
examples, there is no altenative (law of large
numbers, convolution) to compute precisely and
rapidly the underlying laws

2 Saddlepoint formula

    Let X be a random variable following the law of
the sample 

† 

Xi  in (1). Following [1], suppose that
the moment generating function K(t) of X
converges in some interval [-c1,c2],

† 

K(t) = log(E[etX ])  for - c1 < t < c2 (3)

Then by inverse Fourier transformation, 

† 

fn (x)  can
be expressed as,

† 

fn (x) =
n

2p
exp[n(K(t) - tx]dt

-•

+•

Ú (4)

which can be expressed with (t) being now a
complex variable,

† 

fn (x) =
n

2ip
exp[n(K(t) - tx)]dt

t -•

t +•

Ú (5)

for every 

† 

t . Let 

† 

T0  be the unique minimum of

† 

K(t) - tx  on the real axis,

† 

K '(T0) - x = 0 (6)

then replacing 

† 

t  by the root T0 in (5), the integrand
of (5) becomes negligible when (n) increases and
when (t) is outside a immediate neighbourhood of
T0. T0 is called a saddlepoint because the

† 

K(t) - tx is minimum at 

† 

T0  for real (t) and the



modulus of the integrand of (5) is maximum at 

† 

T0
Developping 

† 

K(t) - tx  around T0 we obtain the
SP approximation [1],

Density saddlepoint approximation

† 

ˆ f n (x) =
n

2pK ' '(T0)
exp(K(T0) - T0x) (7)

where 

† 

K ' '(T0)  is always positive [1]

Sometimes rather then estimating the density, we
prefer to estimate the cumulative function

† 

P(Zn > a) . A very accurate SP approximation
especially in the tail propability area is due to
Lugananni and Rice [3]

Cumulative probability function saddlepoint
approximation

† 

ˆ P (Zn > a) =1- F(y) + f(y)(t-1 - y-1) (8)

where 

† 

f  is the standard Gaussian distribution and

† 

F its cumulative distribution function,

† 

f(t) =
1
2p

exp(-t 2 /2)   F(y) = f(t)dt
-•

y
Ú (9)

† 

t = T0[nK ' '(T0)]1/ 2   y = ± 2n (T0a - K(T0))1/ 2

and 

† 

K '(T0) -a = 0 , y is chosen such that it has
the same sign as (t)

The root T0 can be computed with a newton
algorithm like,

† 

tk +1 = tk - K '(tk ) /K ' '(tk ) (10)

with 

† 

t0  chosen close to –c1 or close to c2

We can easily generalize the SP approximation
when Xi are idenpendent but not identically
distributed by computing each moment generating
function,

† 

K(t) =
1
n

Ki(t) =
i=1

n

Â 1
n

log(E[etX i ])
i=1

n

Â (11)

Note : In practice the training densities of X are not
available. But they are not required, it is sufficient
to evaluate the empirical moment generation
functions in order to compute completely the
saddlepoint approximations and its derivatives,

† 

ˆ K (t) = log(1
n

etX j

j=1

n

Â ) (12)

3 Sensors fusion.

    We compute the optimal threshold estimation
with saddlepoint approximation for the optimal
fusion in multiple sensor. The SP approximation
can be performed also with discrete variables
(decentralized fusion [8]) : each sensor gives its
local decision

3.1 Modelisation

    Consider (k) sensors observing a target in
classification context (2 hypothesis H0 and H1). The

sensor (i) measures some characteristic

† 

Y*
i of the

unknown target class. 

† 

Y*
i has one distribution under

H0 (

† 

f0
i ) and one under H1 (

† 

f1
i)  (see figures 1, 2).

The goal is to classify by  fusionning the

measurements 

† 

Y*
i  (here taken one-dimentional)

collected by each sensor.

Figure1 Densities of the classifier for sensor 1 and 2



Figure 2 Densities of the classifier for sensor 3 and 4

The number of the measurements (ni) of the i-th

sensor 

† 

(Yj
1,...,Yn( i)

i )  is not fixed in advance and

therefore the law of the fusions cannnot be
computed offline. They have to be rapidly and
precisely estimated in order to decide optimally
(

† 

d = Hi)

† 

f1
i(Yj

i)
f0

i(Yj
i)j=1

ni

’
i=1

k

’ > s fi  d = H1  (13)

with a false decision controlled by the threshold (t)

† 

 Pfa = P(Z > a =
log(s)

ni
i=1

k

Â
/H0) = e

where 

† 

Pfa  is the probabiliy of false alarm Let Z be,

† 

Z = (1/ ni
i=1

k

Â ) log[
j=1

ni

Â
i=1

k

Â f1
i

f0
i (Yj

i)] (14)

The goal is to compute the law of Z to determine
this threshold.. Z is a complex mixture of densities,
its law can not be analytically expressed.

3.2 Saddlepoint derivation

    The fusionned likelihood ratio Z (14)  can be
written as

† 

Z =
1
k

1
n(i)

X j
i

j=1

n( i)

Â
i=1

k

Â (15)

where

† 

X j
i = log(s10

s1i

) +
1

2s 0i
2 (Yj

i - m0i)
2 -

1
2s1i

2 (Yj
i - m1i)

2

† 

= ai (Yj
i)2 + bi Yj

i + ci

under H0, 

† 

Yj
i follows the Gaussian law

† 

f0
i = N(m0i,s 0i) . The corresponding moment

generation function is

† 

K(t) = 1
k

Ki(t) 
i=1

k

Â

where,

† 

Ki(t) = log(E[etX*
i
/H0])

is straightforwardly computed as,

† 

Ki(t) = -
1

2s 0i
2 m0i

2 + cit +
(m0is 0i

2 + bis 0i
2 t)2

s 0i
2 (2 - 4ais 0i

4 )
-

† 

1
2

log(1- 2ais 0i
2 t)  (16)

K(t) is defined (3) if and only if,

† 

-c1 = maxai£0

1
2ais 0i

2 £ t £ minai≥0

1
2ais 0i

2 = c2

The root 

† 

T0  (6) is computed with the algorithm

(10) with 

† 

t0 = -c1 + e . On average, this algorithm



converges after 6 Newton iterations. SP
approximation is performed with (8).

3.3 Simulation Results

    For simplicity and without loss of generality we
suppose tthat each sensor has collected the same
number of measurements in range (n/s=2, 4 ,8). The
number of sensors is in range (k=2,4). The law of
the optimal fusion P(Z>t/H0) is computed by 106

Monte Carlo trials for a 

† 

Pfa less than 0.5 (see

Figure 3). This law is supposed to be exact, it is the
reference for the next approximations. SP
approximation is  applied to estimate P(Z>t/H0) for

† 

Pfa Œ [10-3  0.5]

Figure 3. Law of the fusionned lassifier P(Z>t/H0)  for 

† 

Pfa Œ [10-3  0.5]

We show the results of the SP approximation

† 

ˆ P (Z ≥ t /H0)  by computing the relative error

† 

RE(t) = P(Z ≥ t /H0) / ˆ P (Z ≥ H0) (17)

As previewed by the theory we observe (see Figure
4) that the RE is close to one, especially when the
number of measurements increases (2, 4, 8).

Moreover, the RE is nearly independent of the
threshold. Even for very few measurements and
even in the tail area distribution, the saddlepoint
approximation is accurate (unlike the law of large
numbers). Note that the gaussian choice of the

underlying densities 

† 

f0,1
i  is not relevant, the

densities can be much more general.

Figure 4. Relative Error for the SP approximation for 

† 

Pfa Œ [10-3  0.5]



4 Detection in non Gaussian SIRP
clutter

    Coherent radar detection against non-Gaussian
clutter has gained many interests in the radar
community since experimental  clut ter
measurements made by organizations like MIT [4]
showed to fit non-Gaussian statistical models. One
of the most tractable and elegant non-Gaussian
model results in the so-called Spherically Invariant
Random Process (SIRP) theory which states that
some non-Gaussian random processes are the
product of a Gaussian random process - called
speckle - with a non-negative random variable
(r.v.)- called texture. Using this model many results
arised. For example in Gini and al.'s works [5] the
optimum detector in the presence of composite
disturbance of known statistics modeled as SIRP is
derived. In previous Jay and al.’s works [6,7], a
bayesian approach was proposed to determine the
PDF of the texture (the characteristic PDF of the
SIRP) from n reference clutter cells. Although SIRP
model allows to derive optimum non-Gaussian
detectors, it is quite difficult to determine their
analytical expression. In this section, we propose to
apply the Saddlepoint approximation to estimate the
performance of a detector called Asymptotical
BORD which was derived in [6,7] and which is an
asymptotical result of the so-called BORD.

The basic problem of detecting the presence (

† 

H1)

or absence (

† 

H0 ) of a complex signal 

† 

s in a set of

† 

n  measurements of m-complex (or real) vectors y
corrupted by a sum 

† 

c  of independent additive
complex (or real) noises (noises + clutter) can be
described in terms of a statistical hypothesis test,

† 

H0 : y = c  and 

† 

H1 : y = s + c . The target signal

† 

s corresponds to a modified version of the
perfectly known transmitted signal and can be
rewritten as 

† 

s = Ap, where 

† 

A  is the complex
target amplitude. The observed vector 

† 

y  is used to
form the well-known Likelihood Ratio Test (LRT)

† 

L(y)  which is compared with a threshold 

† 

h  set to

a desired false alarm probability (

† 

Pfa ) computed as

follows,

† 

Pfa = P(L(y) > h /H0) (18)

4.1 SIRV and Bayesian Optimum Radar
Detector

    SIRV (Vector) model interprets each element of
the clutter vector 

† 

c  as the product of a 

† 

m -complex
(or real) Gaussian vector 

† 

X  with a positive random
variable (r.v.) 

† 

t  the so-called texture, that is

† 

c = X t . Applied to the detection problem the
LRT becomes:

† 

exp(- q1(y)
2t

) - exp(l -
q0(y)

2t
)

È 

Î Í 
˘ 

˚ ˙ 
0

•

Ú p(t)
t m dt

H1
>
<

H 0

0 (19)

where 

† 

q0 = y H M-1y  and 

† 

q1 = q0(y - s)  for a

known signal 

† 

s and 

† 

l = log(h) . From 

† 

n  clutter

reference cells of size 

† 

m , 

† 

R = r1,...,rn[ ]T
 where

† 

ri = ri(1),...ri(m)[ ]T
, a bayesian estimator 

† 

ˆ p n (t)
of

† 

p(t)  can be computed and the so-called BORD
expression is given by [6,7] :

† 

Ln (y) =

ri
H M-1ri

(q1(y) + ri
H M-1r)2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

m

i=1

n

Â

ri
H M-1ri

(q0(y) + ri
H M-1r)2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

m

i=1

n

Â

H1
>
<

H 0

l . (20)

Asymptotically, BORD converges in law when

† 

n Æ +•  to the Asymptotical BORD :

† 

1- (Ln (y))m ª
| pH M-1y |2

pH M-1py H M-1y
=

Q1

Q2

= U (21)

for which it is possible to obtain analytically the
PDF [6]. When 

† 

y  is a complex vector, we have,

† 

pU (u) = (n -1)(1- u)n-2 (22)

and when 

† 

y  is a real vector,

† 

pU (u) = u-1/ 2(1- u)(n-3)/ 2 B((n -1) /2,1/2)[ ]-1 (23)

where 

† 

B((n -1) /2,1/2)  is the Beta function.
Then the detection threshold 

† 

l  can be computed as
f o l l o w s  f o r  a  f i x e d  

† 

Pfa  v a l u e

† 

Pfa = P(U > a /H0) = (1-a)n-1 w i t h

† 

a =1- ( ln )-1  and for a complex vector 

† 

y .
When 

† 

y  is real valued, we have to compute the
following expression,

† 

Pfa = B((n -1) /2,1/2)[ ]-1 u-1/ 2(1- u)(n-3)/ 2 du
a

1

Ú (24)

whose result is related to the 

† 

1F2  hypergeometric
function. Generally, and for example when we have
to estimate the correlation matrix 

† 

M  from the
received data, these formulas become no more valid
and it is quite heavy to compute the detection
threshold via Monte Carlo runs especially when

† 

Pfa  is low like 

† 

10-6   or less.



So, in the next section, the Saddle-point
Approximation is presented and applied to this
problem. We will see that this method allows to
compute the PDF of variables expressed in a more
general form than (21).

4.2 Saddlepoint approximation

    This approximation can be applied to general
Gaussian quadratic forms ratios like,

† 

m = P[ Q1

Q2

=
XT BX
XT AX

> a] (25)

where the square matrices 

† 

B and 

† 

A  are (nxn)
positive symetrical (

† 

B can be singular) and 

† 

X  is a
centered Gaussian vector. 

† 

m can be expressed as,

† 

m = P[ li(a)Yi
2

i=1

n

Â > 0] (26)

where  

† 

Yi are iid standard Gaussians,

† 

 Yi ~ N(0,1) and 

† 

li(a)  the eigen values of the
symetrical matrix 

† 

(B-aA) . Indeed,

† 

m = f(X)dX
X T BX
X T AX

>a

Ú = f(X)dX
X T (B-aA )X >0

Ú .

Changing variables, 

† 

X = UY where 

† 

U  is an
orthogonal matrix of the eigen value decomposition
of the symetrical matrix 

† 

(B-aA) , such that

† 

(B-aA) = ULUT   then,

† 

m = f(Y )dY
li (a )Yi

2 >0
i=1

n

Â

Ú = P[ li(a)Yi
2

i=1

n

Â > 0] =

† 

P[Z =
1
n

Xi
i=1

n

Â > 0] (27)

Now the formulation (26) allows to use the saddle-
point approximation (8). The computation of the
moment generating function and its derivatives is
straightforwardly,

† 

K(t) = Ki(t)
i=1

n

Â = exp[tli(a)x 2)Ú ]
i=1

n

Â f(x)dx =

† 

-
1
2

log(1- 2tli(a)
i=1

n

Â ) (28)

which is defined when (3) is verified :

† 

-c1 = maxai£0

1
2li(a)

£ t £ minai≥0

1
2li(a)

= c2

4.3 Simulation Results

    Applied to the detection problem and after a

s imple  var iab le  change  (

† 

q = M-1/ 2 p
,

† 

q = M-1/ 2 p ), the saddlepoint approximation can

be computed for (21), with 

† 

B = q(qHq)-1q  and

† 

A = Idn   (25) with n=10.

Figure 5 represents the 

† 

Pfa  computed with the true

value (24) and Figure 6 shows the relative error
(RE) of the SP approximation for a 

† 

Pfa  varying

between 

† 

10_ 3 and 0.5. Again, we observe the good
behavior of the SP approximation.

† 

RE =
Pfa

ˆ P fa
(a) = P( Q1

Q2

> a /H0)

Figure 5. True 

† 

Pfa  vs 

† 

a  for the detector        Figure 6. Relative Error vs 

† 

a  for the SP approximation



5 Conclusions

    Modified saddlepoint approximations have been
proposed and applied to optimal fusion in multiple
sensor and to detection in non Gaussian clutter.
This approximation is very accurate even for a
small sample size and even for tail area of the
distribution. Morover this method is easy to
implement and requires a little of computation
effort.
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