

ONERA/DEMR/TSI

retour sur innovation

QUELQUES NOTATIONS

Signal temporel et sa transformée de Fourier dans L²

$$z(t) = a(t) e^{i \phi(t)}$$

$$Z(f) = \int_{-\infty}^{+\infty} z(t) e^{2i\pi f t} dt = A(f) e^{i \psi(f)}$$

Produit scalaire dans L² (unitarité de la transformée de Fourier)

$$< z_1, z_2 > = \int_{-\infty}^{+\infty} z_1(t) z_2^*(t) dt = < Z_1, Z_2 > = \int_{-\infty}^{+\infty} Z_1(f) Z_2^*(f) df$$

Energie dans L²:
$$E_z = \int_{-\infty}^{+\infty} |z(t)|^2 dt = \int_{-\infty}^{+\infty} |Z(f)|^2 df$$

VALEURS MOYENNES D'OPERATEURS

Waleur moyenne d'une fonction de la fréquence ou de l'opérateur fréquence $c+\infty$

$$< g(f)> = < g(\mathcal{W})z, z> = \int_{-\infty}^{+\infty} g(f) \, |Z(f)|^2 \, df = \int_{-\infty}^{+\infty} z^*(t) \, g(\mathcal{W}) \, z(t) \, dt$$

avec ${\cal W}$ l'opérateur fréquence : ${\cal W}=\frac{1}{2i\pi}\,\frac{d}{dt}$ (${\cal W}=f\,{\cal I}$ en temps)

Etendue spectrale (cas centré) :
$$\sigma_f^2 = \int_{-\infty}^{+\infty} f^2 |Z(f)|^2 df = \int_{-\infty}^{+\infty} |\mathcal{W} z(t)|^2 dt$$

Valeur moyenne d'une fonction du temps ou de l'opérateur temps

$$< g(t) > = < g(\mathcal{T})z, z > = \int_{-\infty}^{+\infty} g(t) |z(t)|^2 df = \int_{-\infty}^{+\infty} Z^*(f) g(\mathcal{T}) Z(f) dt$$

avec ${\cal T}$ l'opérateur fréquence : ${\cal T}=-\frac{1}{2i\pi}\,\frac{d}{df}$ (${\cal T}=t\,{\cal I}$ en fréquence)

Etendue temporelle (cas centré) : $\sigma_t^2 = \int_{-\infty}^{+\infty} t^2 |z(t)|^2 dt = \int_{-\infty}^{+\infty} |\mathcal{T} Z(f)|^2 df$

DECOMPOSITION DU SIGNAL SUR DES BASES

Un signal peut se décomposer comme suit :

$$z(t) = \int F(a) \, u(a,t) \, da \qquad \text{avec} \qquad F(a) = \int z(t) \, u^*(a,t) \, dt$$

$$\mathcal{A} u(a,t) = a u(a,t)$$

 \bigcirc Si l'opérateur est hermitien $<\mathcal{A}z,z>=< z,\mathcal{A}z>$, alors les fonctions propres forment une base complète et orthogonale

Exemple 1 : la résolution de $\mathcal{W}u(t,f)=f\,u(t,f)\,$ conduit à $\,u(t,f)=\lambda\,e^{2i\pi ft}$

Exemple 2 : la résolution de $\mathcal{T}u(t,a)=a\,u(t,a)$ conduit à $u(t,a)=\lambda\,\delta(t-a)$

OPERATEUR TRANSLATION

Opérateur translation (ou déphasage) :

$$e^{2i\pi \tau W} z(t) = z(t+\tau)$$
 $e^{2i\pi \tau W} Z(f) = Z(f-\nu)$ $e^{2i\pi \tau W} Z(f) = e^{2i\pi \tau f} Z(f)$ $e^{2i\pi \tau W} z(t) = e^{2i\pi \tau f} z(t)$

 \bigcirc La combinaison des deux opérateurs temps et fréquence $e^{2i\pi} (\nu T + \tau W)$ devient un problème car les opérateurs ne commutent pas. Le commutateur est défini comme :

$$[\mathcal{T}, \mathcal{W}] = \mathcal{T} \mathcal{W} - \mathcal{W} \mathcal{T} = \frac{\imath}{2\pi} \mathcal{I}$$

Si les opérateurs commutent avec leur commutateur, on peut écrire :

$$e^{2i\pi (\nu \mathcal{T} + \tau \mathcal{W})} = e^{i\pi \tau \mathcal{W}} e^{2i\pi \nu \mathcal{T}} e^{i\pi \tau \mathcal{W}}$$

Relation d'incertitude (générale entre deux opérateurs)

$$\sigma_{\mathcal{T}}^2 \sigma_{\mathcal{W}}^2 \ge \frac{1}{2} \left| < [\mathcal{T}, \mathcal{W}] > \right|$$

SIGNAL ANALYTIQUE

Un signal réel $x(t) = a(t) \cos \phi(t)$ peut s'écrire comme la partie réelle d'une infinité de formes complexes :

$$z(t) = \alpha(t) e^{i\beta(t)}$$

L'unicité de cette représentation est donnée par la notion de signal analytique (à fréquences positives)

$$z(t) = x(t) + iH\{x(t)\} = x(t) + \frac{i}{\pi} \operatorname{vp} \int_{-\infty}^{+\infty} \frac{x(s)}{t - s} ds$$

Le module du signal analytique associé au signal réel définit l'enveloppe

$$a(t) = |z(t)|$$

La dérivée de la phase du signal analytique associé au signal réel définit la fréquence instantanée

$$f_i(t) = \frac{1}{2\pi} \frac{d \arg z(t)}{dt}$$

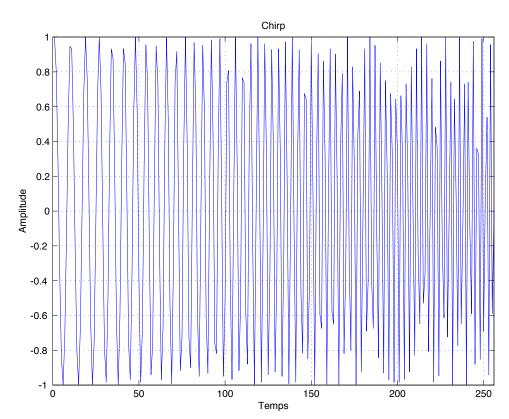
PRESENTATION DE L'OUTIL TEMPS-FREQUENCE

But: Analyse des signaux non stationnaires (parole, radar, contrôle non destructif, ...)

Moyen: Décomposition du signal sur une base dédiée: analyse temps-fréquence linéaire

Analyse Temporelle

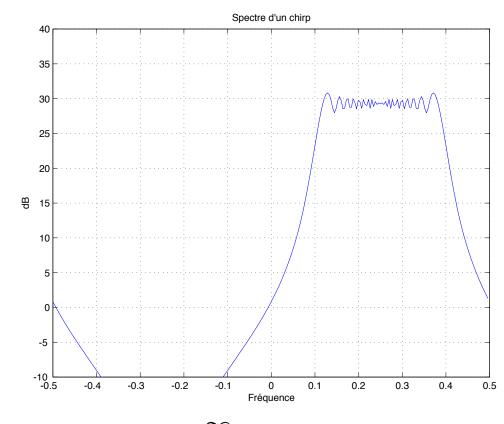
Shannon



$$z(t) = \int_{-\infty}^{\infty} \frac{z(u) \, \delta(u - t) \, du}{}$$

Analyse Spectrale

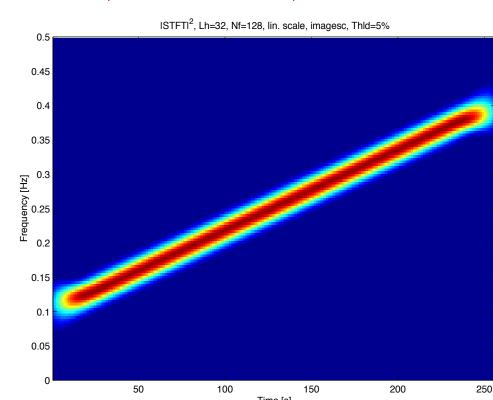
Fourier



$$z(t) = \int_{-\infty}^{\infty} Z(v) e^{2i\pi vt} dv$$

Analyse mixte Temps-Fréquence

Gabor, Ondelettes, Court terme



$$z(t) = \int_{-\infty}^{\infty} \frac{z(u)}{z(u)} \, \delta(u-t) \, du \qquad \qquad z(t) = \int_{-\infty}^{\infty} \frac{Z(v)}{z(v)} \, e^{2i\pi vt} \, dv \qquad \qquad z(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{K(u,v)}{z(u)} \, g_{u,v}(t) \, du \, dv$$

PAVAGE DU PLAN TEMPS-FREQUENCE - RELATION **D'INCERTITUDES**

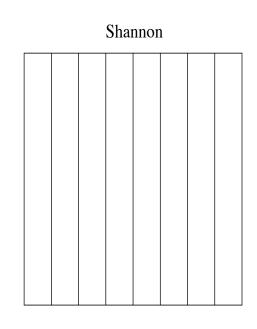
- Inégalité d'Heinseberg : pour tout signal h, on a $\sigma_t^h \, \sigma_f^h \geq 1$
- Le seul signal qui vérifie l'égalité est la gaussienne : $\sigma_h = \sigma_t^h = 1/\sigma_f^h$

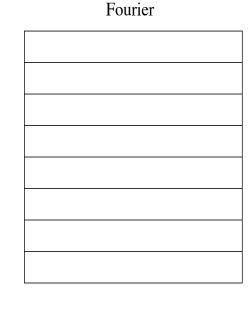
Bonne résolution temporelle

$$\sigma_t = 0$$

Mauvaise résolution en fréquence

$$\sigma_f = \infty$$





fréquence

Mauvaise résolution temporelle

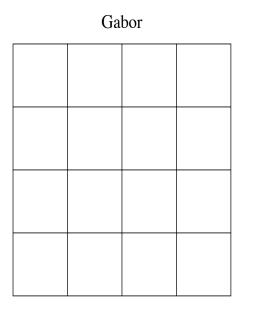
$$\sigma_t = \infty$$

Bonne résolution en fréquence

$$\sigma_f = 0$$

Résolutions couplées :

$$\sigma_t = \sigma_h, \quad \sigma_f = 1/\sigma_h$$
 $\sigma_t \sigma_f = 1$





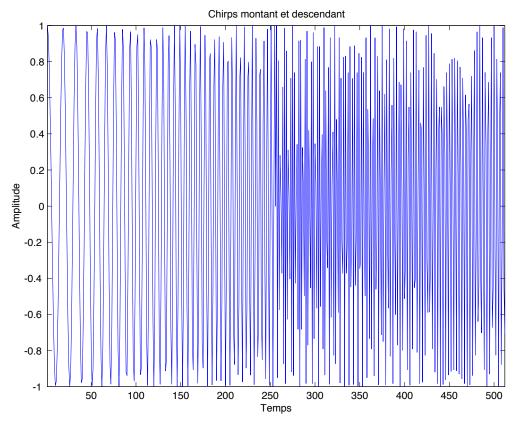
Résolutions couplées :

$$\sigma_t = \sigma_h / f, \quad \sigma_f = f / \sigma_h$$
 $\sigma_t \, \sigma_f = 1$

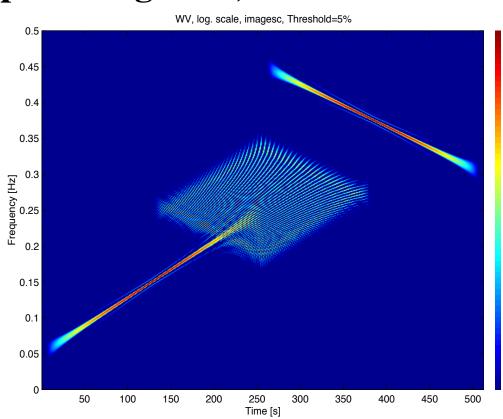
ONERA

AVANTAGE DE L'ANALYSE TEMPS-FREQUENCE

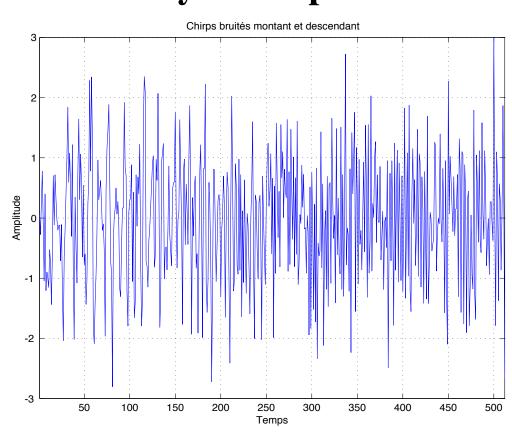
Lisibilité, accès aux lois de fréquence instantanée ou au retard de groupe des signaux, résistance au bruit



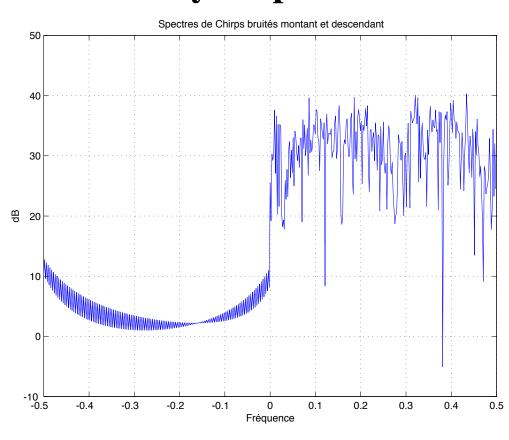




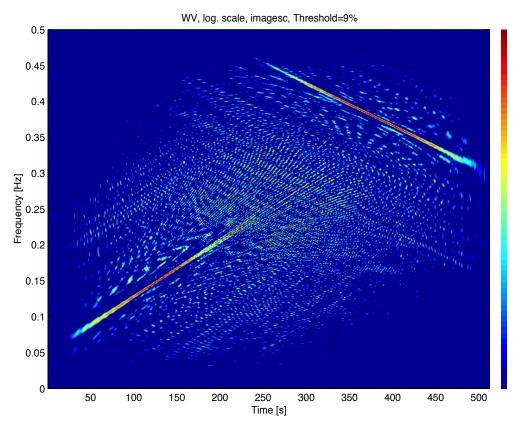
Analyse Temporelle



Analyse Spectrale



Analyse mixte temps-Fréquence



CONSTRUCTION DE L'OUTIL TEMPS-FREQUENCE

But : Définir une fonctionnelle P(t,f) du signal z(t) permettant de

ullet répartir l'énergie totale E_z du signal z(t) dans le plan temps et fréquence,

$$E_z = \int_{-\infty}^{+\infty} |z(t)|^2 dt = \int_{-\infty}^{+\infty} |Z(f)|^2 df = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P_z(t, f) df dt$$

• retrouver par marginalisation la puissance instantanée et la densité spectrale d'énergie du signal :

$$\int_{-\infty}^{+\infty} P_z(t, f) \, df = |z(t)|^2 \qquad \qquad \int_{-\infty}^{+\infty} P_z(t, f) \, dt = |Z(f)|^2$$

PROPRIETES RECHERCHEES

 \bullet Principe de Covariance : Cohérence de la représentation après une transformation physique ${\mathcal T}$ du signal z(t)

$$z \rightarrow P_{z}$$

$$\downarrow \qquad \downarrow$$

$$\mathcal{T}z \rightarrow P_{\mathcal{T}z} = \mathcal{T}' P_{z}$$

Ex: translation de temps, translation de fréquence (effet Doppler approximé), changement d'échelle (vrai effet Doppler), rotation, Lorentz, ...

• Unitarité : Conservation du produit scalaire entre l'espace des signaux et l'espace des réprésentations (Théorème de Parseval étendu)

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P_{z_1}(t,f) P_{z_2}(t,f) dt df = \left| \int_{-\infty}^{+\infty} z_1(t) z_2^*(t) dt \right|^2$$

PROPRIETES RECHERCHEES

En notant
$$z(t) = a(t) e^{i\phi(t)} \longrightarrow Z(f) = A(f) e^{i\psi(f)}$$

ullet Accès à la Fréquence instantanée $f_i(t)$ et au retard de groupe $au_g(f)$ par marginalisation.

$$f_i(t) = \frac{1}{2\pi} \frac{d\phi}{dt} = \frac{\int_{-\infty}^{+\infty} f P_z(t, f) df}{\int_{-\infty}^{+\infty} P_z(t, f) df}$$

$$\tau_g(f) = -\frac{1}{2\pi} \frac{d\psi}{df} = \frac{\int_{-\infty}^{+\infty} t P_z(t, f) dt}{\int_{-\infty}^{+\infty} P_z(t, f) dt}$$

- Localisation sur des signaux donnés :
 - signaux monochromatiques :

$$z(t) = e^{2i\pi f_0 t} \longrightarrow P_z(t, f) = \delta(f - f_0)$$

$$z(t) = \delta(t - t_0) \longrightarrow P_z(t, f) = \delta(t - t_0)$$

$$z(t) = e^{i\phi(t)}$$

- signaux chocs :
$$z(t)=c$$
 \rightarrow $T_z(t,f)=c(f-f_0)$ \rightarrow $P_z(t,f)=\delta(t-t_0)$ - loi de modulation quelconque : $z(t)=e^{i\phi(t)}$ \rightarrow $P_z(t,f)=\delta\left(t-\frac{1}{2\pi}\frac{d\phi}{dt}\right)$

- Conservation des supports temporel et spectral
- Positivité

CONSTRUCTION DE L'OUTIL TEMPS-FREQUENCE

© Construction par les fonctions caractéristiques en théorie des probabilités et la théorie des opérateurs

La fonction caractéristique est la transformée de Fourier de la densité de probabilité

$$M(\tau, \nu) = \langle e^{2i\pi(\nu t + \tau f)} \rangle = \int_{-\infty}^{+\infty} P(t, f) e^{2i\pi(\nu t + \tau f)} dt df$$

Cette fonction caractéristique peut être vue comme la valeur moyenne d'un opérateur (à définir !!)

$$M(\tau, \nu) = \langle \mathcal{M}(\tau, \nu) \rangle = \int_{-\infty}^{+\infty} z^*(t) \mathcal{M}(\tau, \nu) z(t) dt$$

ex : avec $\,\mathcal{M}(\tau,\nu)=e^{2i\pi(\nu\,\mathcal{T}+\tau\,\mathcal{W})}=e^{2i\pi\,(\nu\mathcal{T}+\tau\mathcal{W})}=e^{i\pi\,\tau\mathcal{W}}\,e^{2i\pi\nu\mathcal{T}}\,e^{i\pi\,\tau\mathcal{W}}$ on obtient la fonction d'ambiguïté bien connue en radar

$$M(\tau,\nu) = \int_{-\infty}^{+\infty} z \left(t + \frac{\tau}{2}\right) z^* \left(t - \frac{\tau}{2}\right) e^{2i\pi\nu t} dt$$

CONSTRUCTION DE L'OUTIL TEMPS-FREQUENCE

Construction par modèle de noyau respectant des contraintes

Pour conserver la notion première de répartition d'énergie dans le plan temps-fréquence, ces distributions sont construites sur des formes bilinéaires $z(u) z^*(v)$ du signal temporel (ou, de manière équivalente, fréquentiel $Z(u) Z^*(v)$):

$$P_{z}(t,f) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} K(u,v;t,f) z(u) z^{*}(v) du dv$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \hat{K}(u,v;t,f) Z(u) Z^{*}(v) du dv,$$

le noyau K(u,v;t,f) ou $\hat{K}(u,v;t,f)$ restant à déterminer d'après les propriétés recherchées.

COVARIANCE PAR LE GROUPE DES TRANSLATIONS

Problème : Détermination de la classe de solutions covariantes par le groupe de transformation des translations en temps et en fréquence :

$$z(t) \longrightarrow z'(t) = e^{-2i\pi f_0 t} z(t - t_0)$$

$$\downarrow \qquad \downarrow$$

$$P_z(t, f) \longrightarrow P_{z'}(t, f) = P_z(t - t_0, f - f_0)$$

Solution : Classe de COHEN paramétrée par un noyau $\psi(\xi, au)$

$$P_{z}(t,f) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{2i\pi\xi(s-t)} \psi(\xi,\tau) z \left(s + \frac{\tau}{2}\right) z^{*} \left(s - \frac{\tau}{2}\right) e^{-2i\pi f \tau} d\xi ds d\tau$$
$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Pi(s-t,\xi-f) W_{z}(s,\xi) ds d\xi$$

$$\mathbf{avec}\ \psi(\xi,\tau) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Pi(t,f)\,e^{-2i\pi(f\tau+\xi t)}\,dt\,df\ \mathbf{et}\ \Pi(t,f) = \int_{-\infty}^{+\infty} K\left(t+\frac{\tau}{2},t-\frac{\tau}{2};0,0\right)\,e^{-2i\pi f\tau}\,d\tau$$

$$\mathbf{et}$$

$$W_z(t,f) = \int_{-\infty}^{+\infty} z \left(t + \frac{\tau}{2} \right) z^* \left(t - \frac{\tau}{2} \right) e^{-2i\pi f \tau} d\tau$$

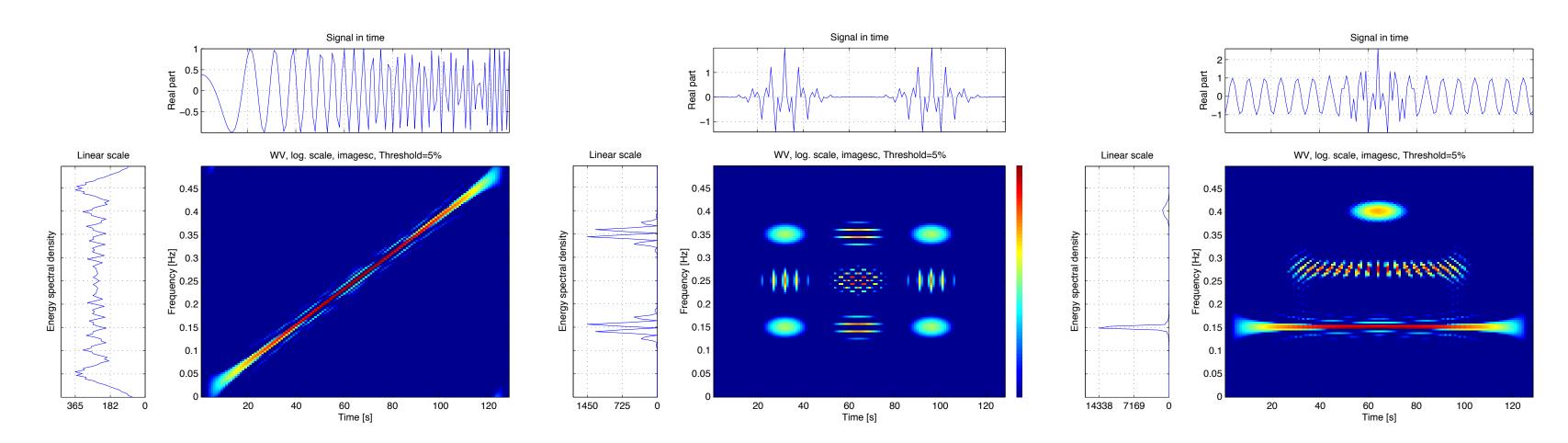
LES PRINCIPALES DISTRIBUTIONS DE LA CLASSE DE COHEN

Nom	$\psi(\xi, au)$	$P_z(t,f)$
Wigner-Ville	1	$\int_{-\infty}^{+\infty} z \left(t + \frac{\tau}{2} \right) z^* \left(t - \frac{\tau}{2} \right) e^{-2i\pi f \tau} d\tau$
s-Wigner	$e^{2i\pi s\xi\tau}$	$\int_{-\infty}^{+\infty} z \left(t - \left(s - \frac{1}{2} \right) \tau \right) z^* \left(t - \left(s + \frac{1}{2} \right) \tau \right) e^{-2i\pi f \tau} d\tau$
Rihaczek	$e^{i\pi\xi\tau}$	$z(t) Z^*(f) e^{-2i\pi f \tau}$
Born-Jordan	$\frac{\sin \pi \xi \tau}{\pi \xi \tau}$	$\int_{-\infty}^{+\infty} \left[\frac{1}{ \tau } \int_{t- \tau /2}^{t+ \tau /2} z \left(s + \frac{\tau}{2} \right) z^* \left(s - \frac{\tau}{2} \right) ds \right] e^{-2i\pi f \tau} d\tau$
Choï-Williams	$e^{-(\pi\xi\tau/\sigma)^2/2}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\sigma}{ \tau } e^{-2\sigma^2(s-t)^2/\tau^2} z \left(s + \frac{\tau}{2}\right) z^* \left(s - \frac{\tau}{2}\right) e^{-2i\pi f \tau} ds d\tau$
Spectrogramme	$A_h(\xi, au)$	$\left \int_{-\infty}^{+\infty} z(s) h^*(s-t) e^{-2i\pi f s} ds \right ^2$
Séparable	$G(\xi) h(\tau)$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(\tau) g(s-t) z \left(s + \frac{\tau}{2}\right) z^* \left(s - \frac{\tau}{2}\right) e^{-2i\pi f \tau} ds d\tau$

CAS PARTICULIERS DE DISTRIBUTIONS DE LA CLASSE DE COHEN

WIGNER-VILLE (E.P. Wigner en mécanique quantique en 1932) : distribution la plus populaire

$$W_z(t,f) = \int_{-\infty}^{+\infty} z \left(t + \frac{u}{2} \right) z^* \left(t - \frac{u}{2} \right) e^{-2i\pi f u} du = \int_{-\infty}^{+\infty} Z \left(f + \frac{\nu}{2} \right) Z^* \left(f - \frac{\nu}{2} \right) e^{2i\pi f \nu} d\nu$$

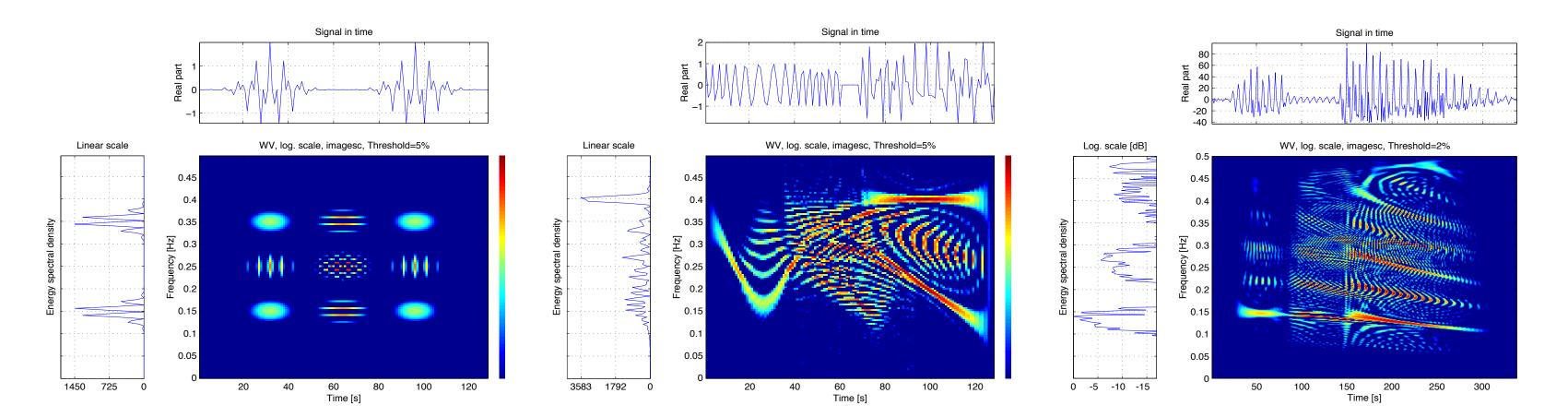


ullet Reliée à la fonction d'ambiguïté radar $A_z(au,
u)$ par simple transformation de Fourier 2D

$$A_z(\tau,\nu) = \int_{-\infty}^{+\infty} z \left(u + \frac{\tau}{2} \right) z^* \left(u - \frac{\tau}{2} \right) e^{-2i\pi\nu u} du = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} W_z(t,f) e^{-2i\pi(\nu t + f\tau)} dt df$$

INCONVENIENTS

- Aucune distribution ne satisfait à toutes les contraintes (ex : positivité et unitarité)
- Illisibilité due aux interférences entre composantes élémentaires du signal



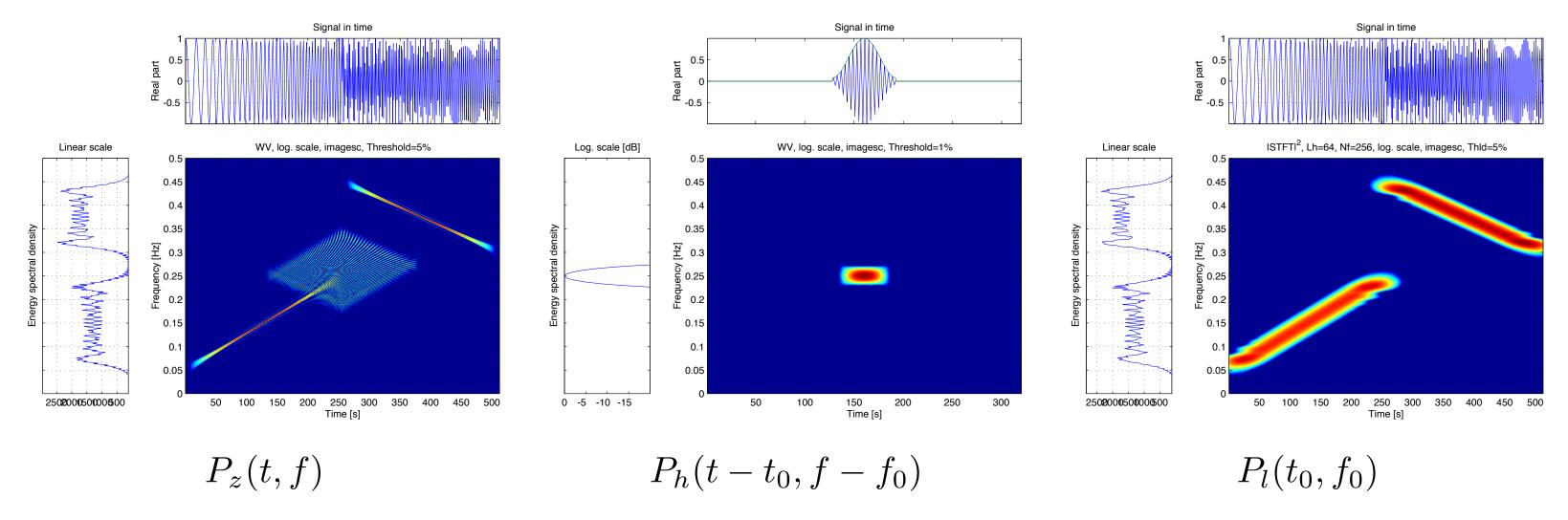
• Nécessité de "gommer" les interférences

REGULARISEES DE DISTRIBUTIONS DE LA CLASSE DE COHEN

Lissage des distributions temps-fréquence — Spectrogramme (Fourier à Court Terme, GABOR) :

$$P_l(t_0, f_0) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P_z(t, f) P_h(t - t_0, f - f_0) df dt = \left| \int_{-\infty}^{+\infty} z(u) h^*(u - t_0) e^{-2i\pi f_0 u} du \right|^2$$

où $h(t) e^{2i\pi f_0 t}$ est une fenêtre analysante localisée en t=0 et en $f=f_0$.



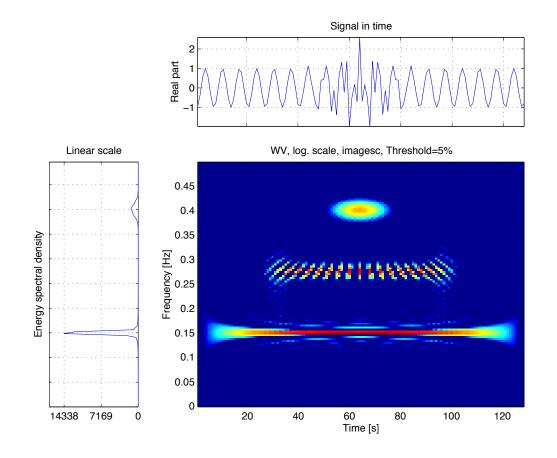
Inconvénients : Inégalité d'Heinsenberg, aucun contrôle de l'étendue de la fenêtre conjointement en temps et fréquence.

LISSAGE DES DISTRIBUTIONS DE LA CLASSE DE COHEN

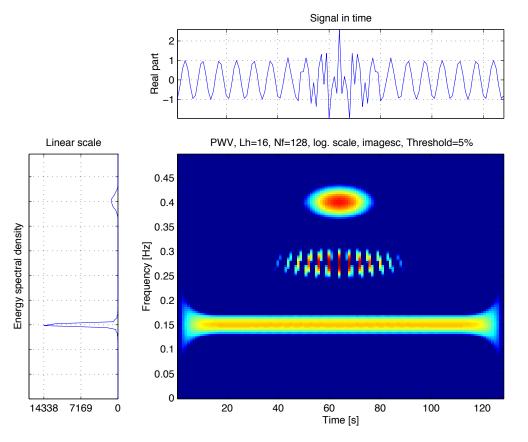
Lissage séparable $(P_h(t,f)=g(t)\,H(f))$ des distributions \longrightarrow Pseudo Wigner-Ville Lissée :

$$P_z(t,f) = \int_{-\infty}^{+\infty} h(\tau) \int_{-\infty}^{+\infty} g(s-t) z(s+\tau/2) z^*(s-\tau/2) e^{-2i\pi f \tau} ds d\tau$$

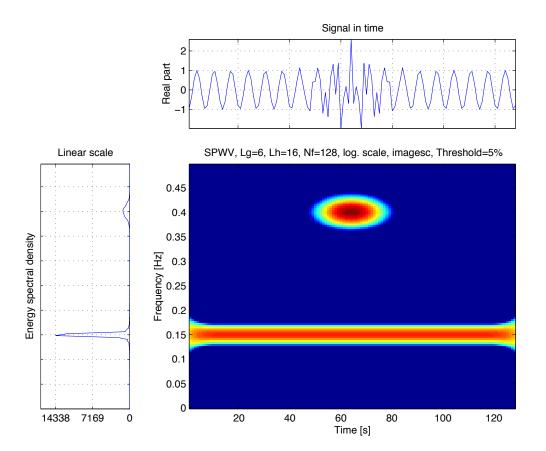
Si $g(t) = \delta(t)$, on obtient la Pseudo Wigner-Ville



Wigner-Ville



Pseudo Wigner-Ville



Pseudo Wigner-Ville Lissée

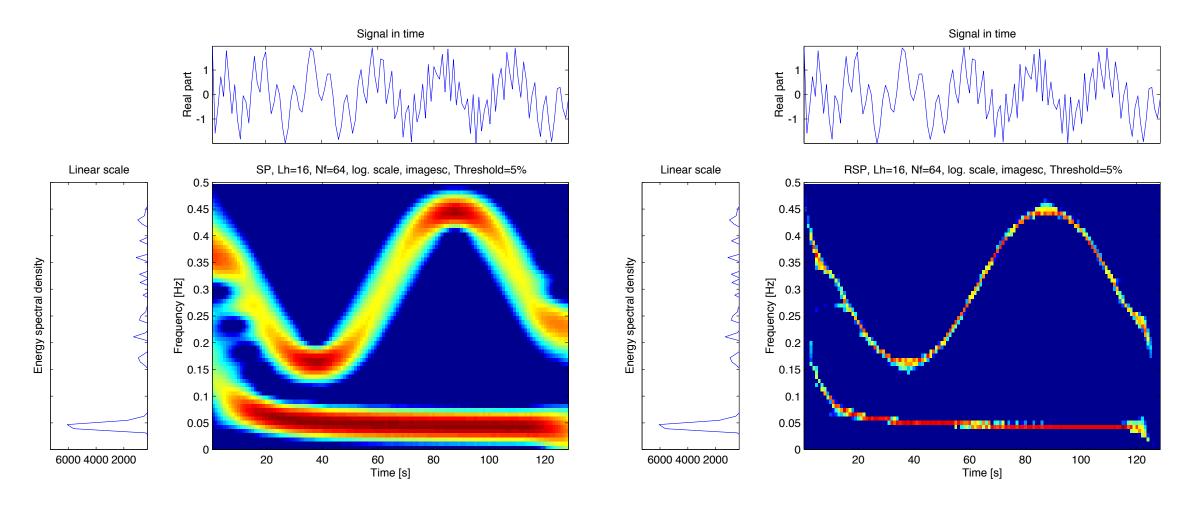
REALLOCATION DES DISTRIBUTIONS DE LA CLASSE DE COHEN

Réallocation de l'énergie autour des barycentres d'énergie :

$$P_m(t', f') = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(t, f) \, \delta(t' - \hat{t}(t, f)) \, \delta(f' - \hat{f}(t, f)) \, dt \, df$$

avec
$$\hat{t}(t,f) = t - \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} t_0 \, \phi(t_0, f_0) \, W_z(t - t_0, f - f_0) \, dt_0 \, df_0$$

$$\hat{f}(t,f) = f - \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_0 \, \phi(t_0, f_0) \, W_z(t - t_0, f - f_0) \, dt_0 \, df_0$$



Spectrogramme

Spectrogramme Réalloué

LIMITATION DE LA CLASSE DE COHEN

- Construction cohérente pour la classe des signaux dits à bande étroite ($B/f_0 << 1$) pour laquelle le groupe de covariance des translations en temps et en fréquence s'applique : Exemple : Effet Doppler en radar souvent assimilé à une translation de fréquence en bande étroite.
- Le groupe de covariance ne conserve pas l'espace des signaux réels et l'espace des signaux analytiques (à fréquence positive),
- Impossibilité pour la classe de Cohen de localiser des signaux réels dits à large bande.
- La localisation parfaite sur les signaux complexes (chocs, chirps) n'est due qu'aux interactions constructives et destructives entre les composantes à fréquence positive et négative.

 \downarrow

Nécessité d'une construction plus cohérente basée sur le groupe physique des translations-dilatations en temps.

CLASSES DE SOLUTIONS COVARIANTES PAR LE GROUPE AFFINE

Problème : Détermination de la classe de solutions covariantes par le groupe affine des translations en temps et des contractions-dilatations en temps :

$$Z(f) \longrightarrow Z'(f) = a^{r+1} e^{-2i\pi t_0 f} Z(af)$$

$$\downarrow \qquad \downarrow$$

$$P_Z(t,f) \longrightarrow P_{Z'}(t,f) = a^q P_Z(a^{-1}(t-t_0), af)$$

Solution : Classe de BERTRAND paramétrée par un noyau K(u,v)

$$P_Z(t,f) = f^{2r+2-q} \int_0^{+\infty} \int_0^{+\infty} K(u,v) Z(fu) Z^*(fv) e^{2i\pi ft(u-v)} du dv$$

CAS PARTICULIERS DES DISTRIBUTIONS AFFINES

 $\bullet\,$ Fonctions Affines de Wigner $P_Z^{(k)}(t,f)$ à noyau K(u,v) diagonal

$$P_Z^{(k)}(t,f) = f^{2r+2-q} \int_{-\infty}^{+\infty} \mu_k(u) Z(f\lambda_k(u)) Z^*(f\lambda_k(-u)) e^{2i\pi f t(\lambda_k(u) - \lambda_k(-u))} du$$

où $\lambda_k(u)=\left[k\frac{e^{-u}-1}{e^{-ku}-1}\right]^{\frac{1}{k-1}}$ et $\mu_k(u)$ est une fonction restant à déterminer d'après les propriétés recherchées.

Exemple: Affine unitaire (k = 0)

$$P_Z^{(0)}(t,f) = f^{2r+2-q} \int_{-\infty}^{+\infty} \left[\frac{u}{2\sinh(u/2)} \right]^{2r+2} Z\left(f \frac{u e^{u/2}}{2\sinh(u/2)} \right) Z^* \left(f \frac{u e^{-u/2}}{2\sinh(u/2)} \right) e^{2i\pi f t u} du$$

- localise parfaitement les signaux chocs et les signaux hyperboliques
- tend en bande étroite vers la distribution de Wigner-Ville (pour les signaux analytiques)
- reliée à la fonction d'ambiguïté large-bande

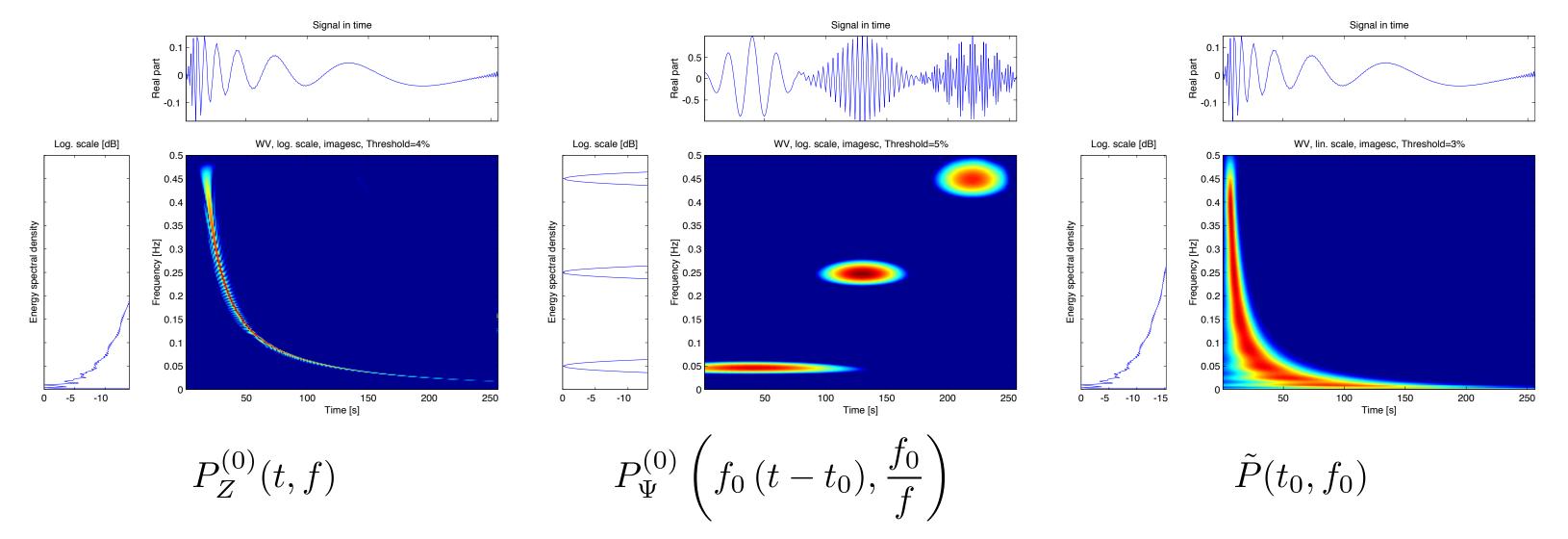
ONERA

REGULARISEES DES DISTRIBUTIONS AFFINES: ONDELETTES

Lissage des distributions temps-fréquence affines — Transformation en Ondelettes

$$\tilde{P}(t_0, f_0) = \int_{-\infty}^{+\infty} \int_0^{+\infty} P_Z^{(0)}(t, f) P_{\Psi}^{(0)} \left(f_0(t - t_0), \frac{f}{f_0} \right) dt df = f_0^{-1} \left| \int_0^{+\infty} Z(f) \Psi^* \left(\frac{f}{f_0} \right) e^{2i\pi f t_0} df \right|^2$$

où $\Psi(f)\,e^{2i\pi ft}$ est l'ondelette mère analysante localisée autour de la fréquence f=1 et du temps t=0.



Inconvénients : Inégalité d'Heinsenberg, pas de contrôle de l'étendue de la fenêtre en temps et fréquence

TOMOGRAPHIE DES DISTRIBUTIONS TEMPS-FREQUENCE

En s'appuyant sur la propriété d'unitarité : $< P_z(t,f), P_h(t,f)> = < z, h> = < Z, H>$, on obtient respectivement pour la distribution de Wigner-Ville $W_z(t,f)$ et celle de Bertrand $P_Z^{(0)}(t,f)$:

• pour $h(t) = e^{i\pi(a\,t^2 + 2b\,t)}$ définissant un signal *chirp* général

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} W_z(t, f) \, \delta(f - at - b) \, dt \, df = \left| \int_{-\infty}^{+\infty} z(t) \, e^{-i\pi at^2} \, e^{-2i\pi bt} \, dt \right|^2$$

Transformation de Radon sur la distribution de Wigner-Ville \longrightarrow Transformation de Fourier fractionnaire

ullet pour $H(f)=f^{-2i\pi\beta-1/2}\,e^{-2i\pi f\xi}\,Y(f)$ définissant un signal à retard de groupe hyperbolique

$$\int_{0}^{+\infty} \int_{-\infty}^{+\infty} P_Z^{(0)}(t,f) \,\delta\left(t - \xi - \frac{\beta}{f}\right) \,\mathrm{d}t \,\mathrm{d}f = \left|\int_{0}^{+\infty} Z(f) \,e^{2i\pi\xi f} \,f^{2i\pi\beta - 1/2} \,\mathrm{d}f\right|^2.$$

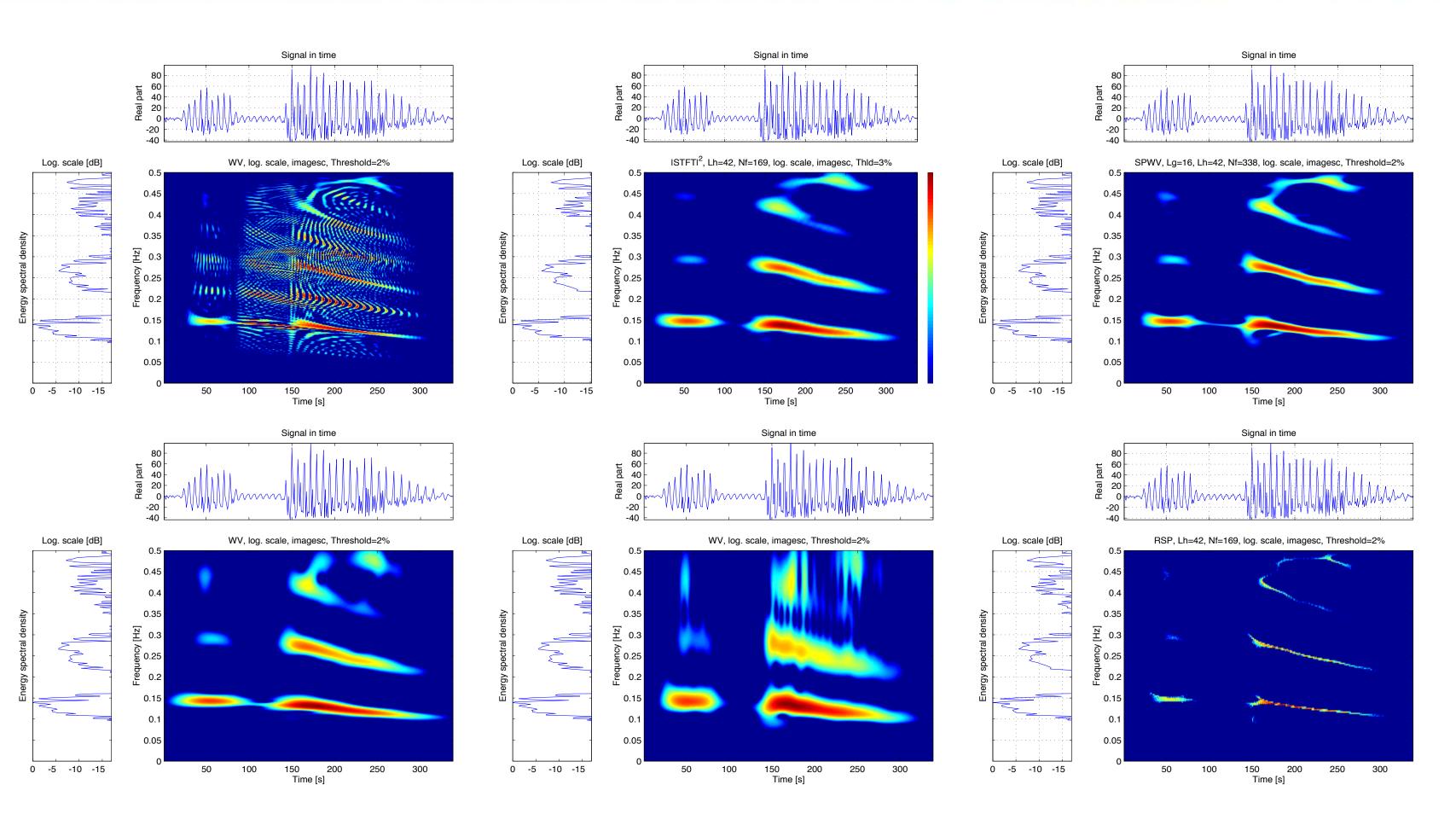
Transformation de Radon généralisée sur la distribution de Bertrand \longrightarrow Transformation de Mellin

LES ONDELETTES

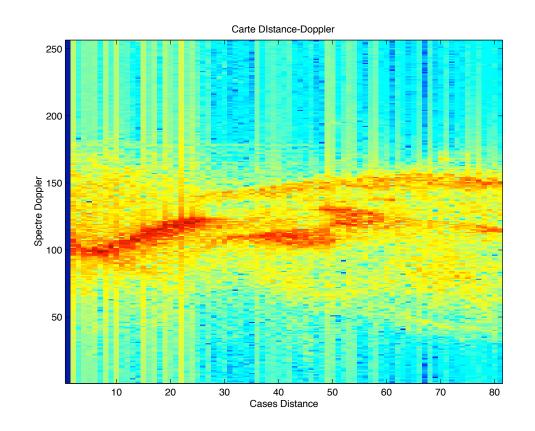
Deux luttes d'influence :

- Les ondelettes continues pour l'analyse du signal :
 - Analyse de type temps-fréquence : fenêtre qui se translate et se contracte/dilate
 - Reconstruction possible mais redondance d'informations (base sur-abondante)
- Les ondelettes discrètes :
 - détermination de la meilleure base de décomposition (orthogonalité, régularité) en vue du codage, de la compression et de la reconstruction (notamment en images : JPEG4)
 - paramètre d'échelle a en puissance de deux, en p/q

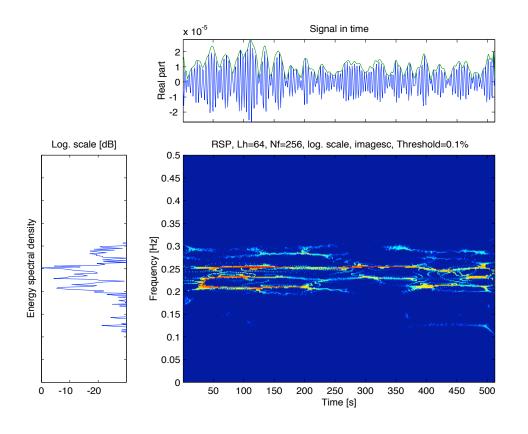
EXEMPLES SUR UN SIGNAL DE PAROLE



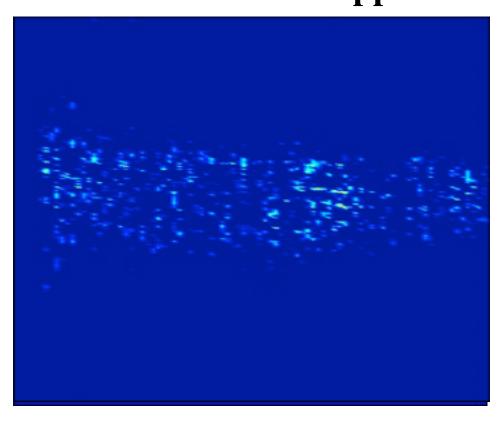
ANALYSE DE LA CONTAMINATION IONOSPHERIQUE SUR LE FOUILLIS EN HF (NOSTRADAMUS)



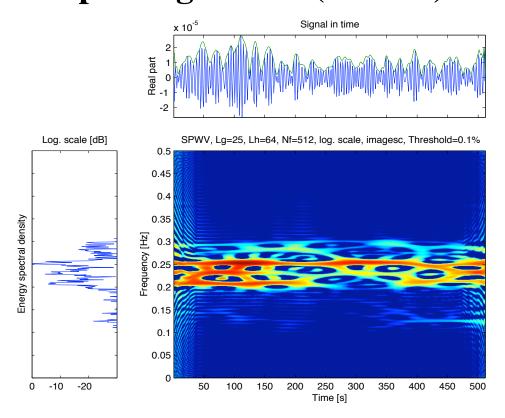
SP, Lh=64, Nf=256, log. scale, imagesc, Threshold=0.1% Log. scale [dB] 0.45 0.4 0.35 0.05 0 -10 -20



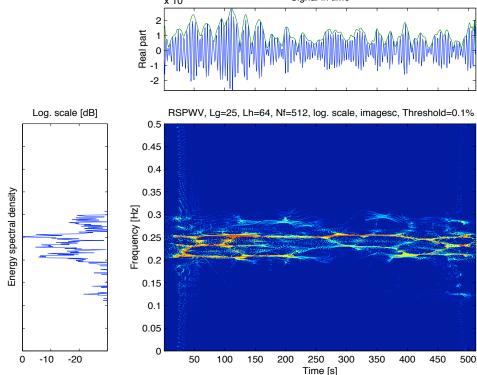
Carte Distance-Doppler



Spectrogramme (case 50)



Spectrogramme réalloué (case 50)

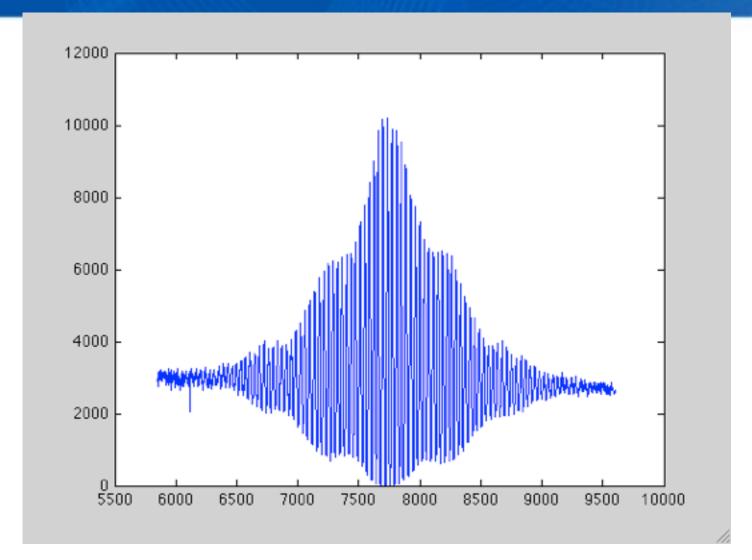


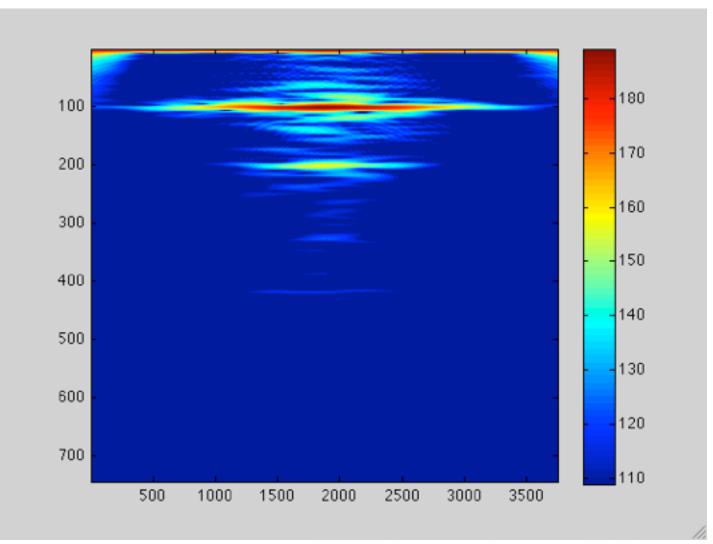
Evolution temporelle

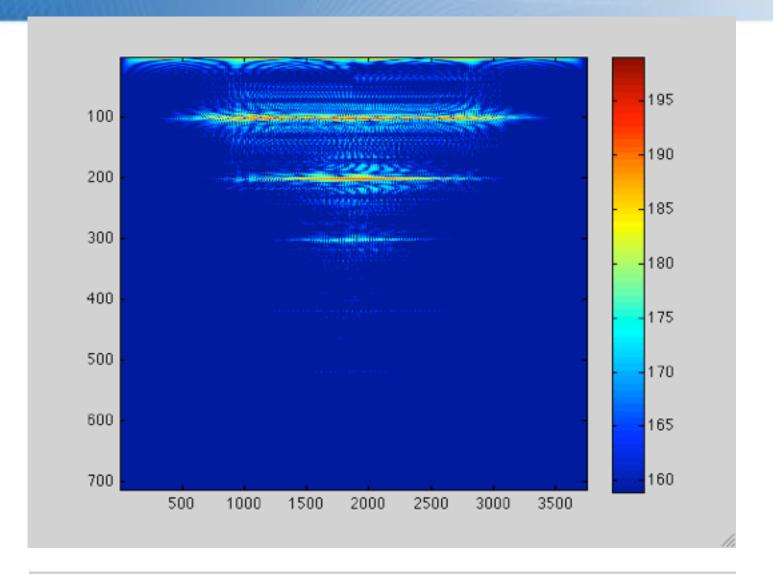
Pseudo Wigner-Ville Lissée

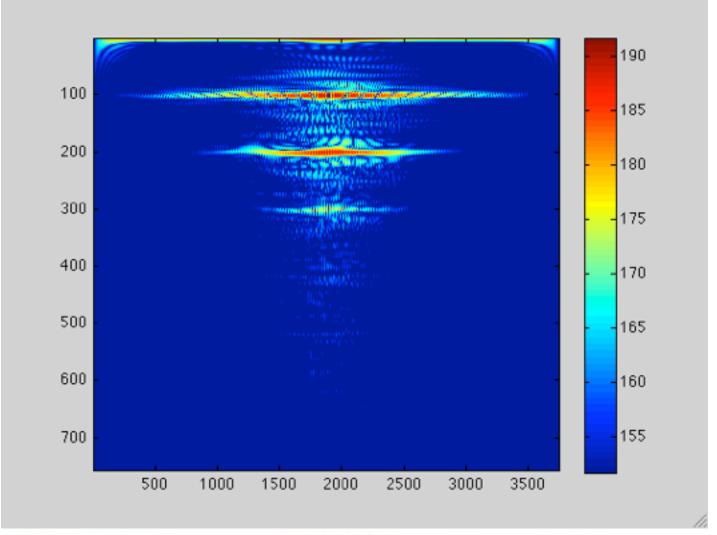
Pseudo Wigner-Ville Lissée réallouée

EXEMPLE D'ANALYSE DE SIGNAL









CONCLUSIONS

- L'analyse Temps-Fréquence permet d'accéder aux caractéristiques de phénomènes non-stationnaires et d'apporter une aide dans la compréhension de phénomènes physiques,
- Comme toute méthode d'analyse, elle comporte avantages et inconvénients,
- Présentée ici pour l'analyse de signaux à une dimension, elle peut se transposer pour l'analyse des signaux à plusieurs dimensions,
- L'analyse en ondelettes continues est un cas particulier de l'analyse temps-fréquence : elle ne diffère de l'analyse de Fourier à Court Terme que pour les signaux à large bande.

