

Robust Estimation and Detection Schemes in non-Standard Conditions for Radar, Array Processing and Imaging

Jean-Philippe Ovarlez

ONERA, The French Aerospace Lab, Département ElectroMagnétisme et Radar, Unité *Méthodes Avancées en Traitement de Signal* & Laboratoire SONDRA de CentraleSupélec

20 novembre 2019

Introduction

- Introduction
- Some Background on Detection Theory
- Robust Estimation and Detection
- Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging

Plan

- Introduction
 - Introduction
 - Radar and Imaging Sensors New challenges
 - Applicative Context
 - Methodological Context
- 2 Some Background on Detection Theory
- Robust Estimation and Detection
- 4 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging

Radar Detection

RADAR = RAdio Detection And Ranging

Some Background on Detection Theory

- emits and receives electromagnetic waves,
- detects the presence of targets,

Cartes de détection

Image ISAR

Image SAR

lassification SAR

- but also: estimates parameters (range, radial velocity, angles of presentation, acceleration, amplitude (related to Radar Cross Section), etc.),
- images, classifies, recognizes.

Note: Almost all the conventional Statistical Signal Processing methodologies and background modelling tools are based on Gaussian hypothesis (standard conditions).

Radar and Imaging Sensors - New challenges

Positioning: facing the new non-standard conditions

- Complex Environments: ground, dynamic environments (sea, ionosphere), heterogeneous, non-Gaussian, reverberating.
- Complex targets: small RCS, extended targets, fluctuating, dispersive, anisotropic.
- Sensor Diversity: temporal, spatial, polarimetric, interferometric, spectral.
- Improvement of sensor resolution: spatial, spectral, angular.
- Outliers, jamming
- . Increase of the dimension and the size of signals to analyze.

Heterogeneous Environments

Non-Gaussian Environments

Non-Stationary Targets and Environments

Curse of Dimensionality

Applicative Context

Air, ground, sea Surveillance

- Radar Detection, Space-Time Adaptive Processing
- Synthetic Aperture Radar
- Sources Localization
- Change Detection, Infrastructure Monitoring
- **♥ Anomaly Detection in Hyperspectral Imaging**
- 9 Tracking

Big Data

- **©** Recognition

- **⊌** Graphes Analysis

Finance

- e Time Series
- **[©] Risk Management ©** Classification
- **⊌** Prediction

Methodological Context

Goals: Improvement of sensors performance and their processing

- To model thanks statistics the variability of the unknown environment and data,
- To estimate the spectral properties of the environment (ionosphere, sea, wind through forest, etc.),
- To elaborate estimators and detectors that are robust and adaptive to these environments,
- To regulate the False Alarm on these heterogeneous, non-stationary, non-Gaussian environments,
- To improve the classification, the clustering techniques.

Methods: Statistical Signal Processing

- Robust Estimation Techniques of spectral and statistic characteristics of the environment and targets: adaptivity, statistic learning, cognitive, maximal exploitation of the a priori,
- Optimal Detection Schemes (Likelihood, Bayesian) for stealthy target embedded in these complex environments
- Exploitation of emerging statistical Signal Processing techniques: Time-Frequency Analysis, Random Matrix Theory, Clustering, Compressive Sensing, etc.

Special issue: *Greco et al.*, Introduction to the Issue on Advanced Signal Processing Techniques for Radar Applications, IEEE Journal of Selected Topics in Signal Processing, 2015.

Book: Greco and De Maio, Modern Radar Detection Theory, Scitech Publishing, IET, 2015.

Introduction

00000

Methodological Context

Goals: Improvement of sensors performance and their processing

- To model thanks statistics the variability of the unknown environment and data,
- To estimate the spectral properties of the environment (ionosphere, sea, wind through forest, etc.),
- To elaborate estimators and detectors that are robust and adaptive to these environments,
- To regulate the False Alarm on these heterogeneous, non-stationary, non-Gaussian environments,
- To improve the classification, the clustering techniques.

Methods: Statistical Signal Processing

- Robust Estimation Techniques of spectral and statistic characteristics of the environment and targets: adaptivity, statistic learning, cognitive, maximal exploitation of the *a priori*,
- Optimal Detection Schemes (Likelihood, Bayesian) for stealthy target embedded in these complex environments,
- Exploitation of emerging statistical Signal Processing techniques: Time-Frequency Analysis, Random Matrix Theory, Clustering, Compressive Sensing, etc.

Special issue: *Greco et al.*, Introduction to the Issue on Advanced Signal Processing Techniques for Radar Applications, IEEE Journal of Selected Topics in Signal Processing, 2015.

Book: Greco and De Maio, Modern Radar Detection Theory, Scitech Publishing, IET, 2015.

- North Control of the Control of the
- 1 Introduction
- Some Background on Detection Theory
 - Problem Statement
 - Modeling Homogeneous Gaussian Noise/Clutter
 - Examples of CFAR Detection Schemes Under Gaussian Noise
 - Examples of Gaussian Hypothesis Failure
- Robust Estimation and Detection
- Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging

• In a m-vector z, detecting an unknown complex deterministic signal s = Ap embedded in an additive noise y can be written as the following statistical test:

Hypothesis
$$H_0$$
: $\mathbf{z} = \mathbf{y}$ $\mathbf{z}_i = \mathbf{y}_i$ $i = 1, ..., n$
Hypothesis H_1 : $\mathbf{z} = \mathbf{s} + \mathbf{y}$ $\mathbf{z}_i = \mathbf{y}_i$ $i = 1, ..., n$

where the z_i 's are n "signal-free" independent secondary data used to estimate the noise parameters. ⇒ Neyman-Pearson criterion [Kay 93]

• Detection test: comparison between the Likelihood Ratio $\Lambda(z)$ and a detection threshold λ :

$$\Lambda(\mathbf{z}) = rac{
ho_{\mathbf{z}}(\mathbf{z}/H_1)}{
ho_{\mathbf{z}}(\mathbf{z}/H_0)} \mathop{\gtrless}\limits_{H_0}^{H_1} \lambda \,,$$

- Probability of False Alarm (type-I error): $P_{fa} = \mathbb{P}(\Lambda(z) > \lambda/H_0)$
- Probability of Detection: $P_d = \mathbb{P}(\Lambda(z) > \lambda/H_1)$ for different Signal-to-Noise Ratios (SNR),
- When P_{fa} does not depend on the noise/clutter parameters, the detector is said to be CFAR (Constant False Alarm Rate)

Modeling Homogeneous Gaussian Noise/Clutter

Problem to solve in Gaussian environment

$$\begin{cases}
H_0: & z = y & z_i = y_i & i = 1, ..., n \\
H_1: & z = s + y & z_i = y_i & i = 1, ..., n
\end{cases}$$

where **y** and
$$\mathbf{y}_i \sim \mathcal{CN}\left(\mathbf{0}_m, \mathbf{\Sigma}\right)$$
, i.e. $p_{\mathbf{z}}(\mathbf{z}) = \frac{1}{\pi^m \ |\mathbf{\Sigma}|} \exp\left(-\mathbf{z}^H \, \mathbf{\Sigma}^{-1} \, \mathbf{z}\right)$

Goal: to choose the best hypothesis while minimizing the risk of being wrong (False Alarm) from an observation vector **z** \implies **All is known for Gaussian assumption!**

Sample Covariance Matrix (SCM)

When Σ is unknown, the Gaussian environment is modeled through the SCM:

$$\hat{S}_n = \frac{1}{n} \sum_{i=1}^{n} z_i z_i^H.$$

- Simple Covariance Matrix estimator. Very tractable.
- Wishart distributed, Well-known statistical properties: unbiased and efficient.
- The SCM is the most likely covariance matrix estimate (MLE) and is the empirical mean of the cross-correlation of *n* m-vectors **z**_i where *n* can represent any samples support (range, time, spatial, angular domain)

Examples of CFAR Detection Schemes Under Gaussian Noise

• Adaptive Matched Filter [Robey et al. 92]: $\Lambda_{AMF}(\mathbf{z}) = \frac{\left|\mathbf{p}^H \, \hat{\mathbf{S}}_n^{-1} \, \mathbf{z}\right|^2}{\mathbf{p}^H \, \hat{\mathbf{S}}^{-1} \, \mathbf{p}} \overset{H_1}{\gtrsim} \lambda_{AMF}$:

$$P_{fa} = {}_{2}F_{1}\left(n-m+1,n-m+2;n+1;-rac{\lambda_{AMF}}{n}
ight),$$

• Adaptive Kelly Filter [Kelly 86]: $\Lambda_{Kelly}(\mathbf{z}) = \frac{\left|\mathbf{p}^H \, \hat{\mathbf{S}}_n^{-1} \, \mathbf{z}\right|^2}{\left(\mathbf{p}^H \, \hat{\mathbf{S}}_n^{-1} \, \mathbf{p}\right) \cdot \left(\mathbf{p} + \mathbf{z}^H \, \hat{\mathbf{S}}_n^{-1} \, \mathbf{z}\right)} \underset{H_2}{\overset{H_1}{\gtrless}} \lambda_{Kelly}:$

$$P_{ extit{fa}} = \left(rac{1}{\lambda_{ extit{Kelly}}} - 1
ight)^{n+1-m}\,,$$

• Adaptive Normalized Matched Filter [Scharf 94]: $\Lambda_{ANMF}(\mathbf{z}) = \frac{\left|\mathbf{p}^H \hat{\mathbf{S}}_n^{-1} \mathbf{z}\right|^2}{\left(\mathbf{p}^H \hat{\mathbf{S}}_n^{-1} \mathbf{z}\right) \left(\mathbf{z}^H \hat{\mathbf{S}}_n^{-1} \mathbf{z}\right)} \stackrel{H_1}{\geqslant} \lambda_{ANMF}$:

$$P_{fa} = (1 - \lambda_{ANMF})^{n-m+1} {}_{2}F_{1}(n-m+2, n-m+1; n+1; \lambda_{ANMF}).$$

Examples of Gaussian Hypothesis Failure

High Resolution Radars

- Small number of scatterers in the cell under test Varying number of scatterers from cell to cell Central Limit Theorem non valid ⇒ non-Gaussianity
- No validity of conventional tools based on Gaussian statistics [Farina 87, Ovarlez 96, Thesis Jay 02].

Low-Grazing angles Illumination Radar

- Microshadowing \Rightarrow impulsive clutter [Billingsley 93],
- Transitions of clutter areas, heterogeneity of spatial area under test \Rightarrow difficulty to set up the detection test λ_{opt} and the Probability of False Alarm depending on the area [Ovarlez 95].

100 month on the control of the cont

Non-Gaussian behavior

False Alarm regulation problem

Examples of Gaussian Hypothesis Failure

- The SAR images are more and more complex, detailed, heterogeneous. The spatial statistic of SAR images is not at all Gaussian,
- In polarimetry research field, almost all Non-Coherent Polarimetric Decomposition and classification techniques [Lee and Pottier 09] are generally based on conventional covariance matrix estimate (covariance or coherency matrix), typically the Sample Covariance Matrix (SCM),
- All these techniques may give very different results when using another estimates [Formont 12] that may fit better to the reality! Are they more physically valid? Which one to choose?

Examples of Gaussian Hypothesis Failure

RXD CDF

Cauchy
Blocks
Mixture of t-Distributions

10-2

Mixed
(x²(144)) Trees
Grass

0 100 200 300 400 500 600 700 800 900 1000

Mahalanobis Distance

[Manolakis 2002]

- Anomaly Detection (e.g. RXD [Reed and Yu 90]) in Hyperspectral Images: detection of all that is different from the background (Mahalanobis distance) - Regulation of False Alarm. Application to radiance images.
- Detection of targets in Hyperspectral Images: To detect (GLRT) targets (characterized by a given spectral signature p) - Regulation of False Alarm. Application to reflectance images (after some atmospheric corrections).

- Robust Estimation and Detection
 - Going to Robust Adaptive Detection
 - Modeling the Background
 - Robust Estimation
 - Robust Detection

Robust Estimation and Detection

00000000000000

Generally, some parameters (e.g. second order statistic Σ) are unknown and cannot be estimated through Gaussian methodology

Robust Estimation and Detection

0000000000000

Robust Covariance Matrix Estimation

Requirements:

- Background modeling: SIRV (K-distribution, Weibull, etc.), CES (Multidimensional Generalized Gaussian Distributions, etc.),
- Estimation procedure: ML-based approaches, M-estimation, LS-based methods, etc.
- Adaptive detectors derivation and adaptive performance evaluation.

Modeling the Background

Complex Elliptically Symmetric (CES) distributions:

Let z be a complex circular random vector of length m. z has a Complex Elliptically Symmetric distribution ($CE(\mu, \Sigma, g_z)$) if its PDF is [Kelker 70, Frahm 04, Ollila 12]:

$$g_{\mathbf{z}}(\mathbf{z}) = \pi^{-m} \left| \mathbf{\Sigma} \right|^{-1} h_{\mathbf{z}} \left(\left(\mathbf{z} - \boldsymbol{\mu} \right)^{H} \mathbf{\Sigma}^{-1} \left(\mathbf{z} - \boldsymbol{\mu} \right) \right),$$

Robust Estimation and Detection

0000000000000

where $h_z:[0,\infty)\to[0,\infty)$ is the density generator, where μ is the statistical mean (generally known or $= \mathbf{0}_m$) and Σ is the scatter matrix. In general, $E[\mathbf{z} \mathbf{z}^H] = \alpha \Sigma$ where α is known.

- Large class of distributions: Gaussian $(h_z(z) = \exp(-z))$, SIRV, MGGD $(h_z(z) = \exp(-z^{\alpha}))$, etc. Validated through several experimentations [Billingslev 93. Ovarlez 95].
- Closed under affine transformations (e.g. matched filter),
- Stochastic representation theorem: $|\mathbf{z}| =_d \mu + \mathcal{R} \mathbf{A} \mathbf{u}^{(k)}$ where $\mathcal{R} > 0$, independent of $\mathbf{u}^{(k)}$ and $\mathbf{\Sigma} = \mathbf{A} \mathbf{A}^H$ is a factorization of $\mathbf{\Sigma}$, where $\mathbf{A} \in \mathbb{C}^{m \times k}$ with $k = \operatorname{rank}(\mathbf{\Sigma}).$

Modeling the Background

Spherically Invariant Random Vector: a CES subclass

The *m*-vector **z** is a complex Spherically Invariant Random Vector [Yao 73, Jay 02] if its PDF can be put in the following form:

$$g_{\mathbf{z}}(\mathbf{z}) = \frac{1}{\pi^{m} |\mathbf{\Sigma}|} \int_{0}^{\infty} \frac{1}{\tau^{m}} \exp\left(\frac{(\mathbf{z} - \boldsymbol{\mu})^{H} \mathbf{\Sigma}^{-1} (\mathbf{z} - \boldsymbol{\mu})}{\tau}\right) p_{\tau}(\tau) d\tau, \qquad (1)$$

Robust Estimation and Detection

0000000000000

where $p_{\tau}:[0,\infty)\to[0,\infty)$ is the texture generator.

- Large class of distributions: Gaussian $(p_{\tau}(\tau) = \delta(\tau 1))$, K-distribution $(p_{\tau} \text{ gamma})$, Weibull (no closed form), Student-t $(p_{\tau} \text{ inverse gamma})$, etc.
- Main Gaussian Kernel: closed under affine transformations,
- The texture random scalar τ is modeling the variation of the power of the Gaussian vector \mathbf{x} along his support (e.g. heterogeneity of the noise along range bins, time, spatial domain, etc.),
- ullet Exploitation of the spectral information using the covariance matrix (scatter matrix) $oldsymbol{\Sigma}$,
- Stochastic representation theorem: $\mathbf{z} =_d \boldsymbol{\mu} + \sqrt{\tau} \mathbf{A} \mathbf{x}$, where $\tau \geq 0$ is the texture, independent of \mathbf{x} and $\mathbf{x} \sim \mathcal{CN}(\mathbf{0}_m, \mathbf{\Sigma})$.

Estimating the Covariance/Scatter Matrix: Conventional Estimators

Robust Estimation and Detection

00000000000000

Assuming n available SIRV secondary data $\mathbf{z}_k = \sqrt{\tau_k} \, \mathbf{x}_k$ where $\mathbf{x}_k \sim \mathcal{CN}(\mathbf{0}_m, \mathbf{\Sigma})$ and where τ_k scalar random variable.

• The Sample Covariance Matrix (SCM) may be a poor estimate of the Elliptical/SIRV Scatter/Covariance Matrix because of the texture contamination:

$$\hat{S}_{n} = \frac{1}{n} \sum_{k=1}^{n} z_{k} z_{k}^{H} = \frac{1}{n} \sum_{k=1}^{n} \tau_{k} x_{k} x_{k}^{H} \neq \frac{1}{n} \sum_{k=1}^{n} x_{k} x_{k}^{H},$$

• The Normalized Sample Covariance Matrix (NSCM) may be a good candidate of the Elliptical SIRV Scatter/Covariance Matrix:

$$\hat{\boldsymbol{\Sigma}}_{NSCM} = \frac{1}{n} \sum_{k=1}^{n} \frac{\mathbf{z}_{k} \, \mathbf{z}_{k}^{H}}{\mathbf{z}_{k}^{H} \, \mathbf{z}_{k}} = \frac{1}{n} \sum_{k=1}^{n} \frac{\mathbf{x}_{k} \, \mathbf{x}_{k}^{H}}{\mathbf{x}_{k}^{H} \, \mathbf{x}_{k}},$$

This estimate does not depend on the texture τ_k but it is biased and share the same eigenvectors but have different eigenvalues, with the same ordering [Bausson 07].

Estimating the Covariance/Scatter Matrix

M-estimators:

Let $(\mathbf{z}_1,...,\mathbf{z}_n)$ be a *n*-sample $\sim CE_m(\mathbf{0}_m,\mathbf{\Sigma},g_z)$ (Secondary data).

PDF $g_z(.)$ specified: MaximumLikelihood-estimator of Σ : $\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \frac{-g_z'\left(\mathbf{z}_i^H \widehat{\Sigma}^{-1} \mathbf{z}_i\right)}{g_z\left(\mathbf{z}_i^H \widehat{\Sigma}^{-1} \mathbf{z}_i\right)} \mathbf{z}_i \mathbf{z}_i^H$,

Robust Estimation and Detection

00000000000000

PDF
$$g_{\mathbf{z}}(.)$$
 not specified: M -estimator of Σ : $\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} u\left(\mathbf{z}_{i}^{H} \widehat{\Sigma}^{-1} \mathbf{z}_{i}\right) \mathbf{z}_{i} \mathbf{z}_{i}^{H}$,

[Kent et al. 91, Maronna 06, Pascal et al. 08, Mahot et al. 13]

- Existence, Uniqueness, Asymptotic Properties.
- Convergence of the recursive algorithm, etc.
- Several PhD ONERA thesis: E. Jay 02, F. Pascal 06, M. Mahot 12, E. Terreaux 18.

Examples of M-Estimators

SCM:

$$u(r) = 1$$

Huber's M-estimator:

$$u(r) = \begin{cases} K/e & \text{if } r <= e \\ K/r & \text{if } r > e \end{cases}$$

Robust Estimation and Detection

00000000000000

- Huber = mix between SCM and Tyler [Huber 64],
- Tyler and SCM are "not" (theoretically) *M*-estimators,
- Tyler is the most robust while SCM is the most efficient.

Tyler:

$$u(r) = \frac{m}{r}$$

Robust Estimation and Detection

Estimating the Covariance Matrix: Tyler's M-Estimators

Let $(\mathbf{z}_1,...,\mathbf{z}_n)$ be a *n*-sample $\sim CE_m(\mathbf{0}_m,\mathbf{\Sigma},g_{\mathbf{z}(.)})$ (Secondary data).

Tyler Estimator ([Tyler 87, Pascal 08])

$$\widehat{\boldsymbol{\Sigma}}_{FPE} = \frac{m}{n} \sum_{k=1}^{n} \frac{\boldsymbol{z}_{k} \, \boldsymbol{z}_{k}^{H}}{\boldsymbol{z}_{k}^{H} \, \widehat{\boldsymbol{\Sigma}}_{FPE}^{-1} \, \boldsymbol{z}_{k}}.$$

- The Tyler M-estimator does not depend on the texture (SIRV or CES distributions),
- Convergence of the algorithm: $\widehat{\mathbf{\Sigma}}_{n+1} = f\left(\widehat{\mathbf{\Sigma}}_n\right)$ with $f(\widehat{\mathbf{\Sigma}}) = \frac{m}{n} \sum_{k=1}^n \frac{\mathbf{z}_k \mathbf{z}_k^H}{\mathbf{z}^{-1}}$ and $\widehat{\mathbf{\Sigma}}_0 = \mathbf{I}_m$. Existence. Uniqueness.
- True Maximum Likelihood Estimate when considering textures $\{\tau_k\}_{k\in[1,n]}$ as unknown deterministic parameters.
- Known asymptotic behavior: Any M-estimator behaves exactly as SCM but with σ_1 more more secondary data ($\sigma_1 = (m+1)/m$ times more for Tyler): It implies that SCM can be simply replaced by any M-estimate in previous detectors without changing performance in Gaussian case (finite distance).

CES distribution \Rightarrow two-step GLRT ANMF

Adaptive Normalized Matched Filter detector

$$H(\widehat{\boldsymbol{\Sigma}}) = \Lambda_{ANMF}(\boldsymbol{z}, \widehat{\boldsymbol{\Sigma}}) = \frac{\left|\boldsymbol{p}^{H} \ \widehat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{z}\right|^{2}}{\left(\boldsymbol{p}^{H} \ \widehat{\boldsymbol{\Sigma}}^{-1} \ \boldsymbol{p}\right) \left(\boldsymbol{z}^{H} \ \widehat{\boldsymbol{\Sigma}}^{-1} \ \boldsymbol{z}\right)} \overset{H_{1}}{\underset{H_{0}}{\gtrless}} \lambda_{ANMF},$$

Robust Estimation and Detection

00000000000000

where $\widehat{\Sigma}$ stands for any *M*-estimators [Conte 95, Kraut 99].

- The ANMF is scale-invariant (homogeneous of degree 0), i.e. $\forall \alpha, \beta \in \mathbb{R}$, $\Lambda_{ANME}(\alpha \mathbf{z}, \beta \widehat{\boldsymbol{\Sigma}}) = \Lambda_{ANME}(\mathbf{z}, \widehat{\boldsymbol{\Sigma}})$.
- Its asymptotic distribution (conditionally to z!) is known [Pascal 15, Ovarlez 15].

$$\sqrt{n} \left(H\left(\widehat{\boldsymbol{\Sigma}}\right) - H(\boldsymbol{\Sigma}) \right) \stackrel{d}{\longrightarrow} \mathcal{CN} \left(0, 2 \, \sigma_1 \, H(\boldsymbol{\Sigma}) \, \left(H\left(\boldsymbol{\Sigma}\right) - 1 \right)^2 \right) \, .$$

Recall for SCM:
$$\sqrt{n}\left(H\left(\widehat{\mathbf{S}}\right) - H(\mathbf{\Sigma})\right) \stackrel{d}{\longrightarrow} \mathcal{CN}\left(0,\,2\,H(\mathbf{\Sigma})\,\left(H\left(\mathbf{\Sigma}\right) - 1\right)^2\right)$$
.

- It is CFAR w.r.t the covariance/scatter matrix.
- It is CFAR w.r.t the texture.

Illustrations of the Result on the ANMF

- $\Lambda = \mathrm{var}\left(H(\widehat{oldsymbol{\Sigma}}) H(oldsymbol{\Sigma})\right)$. Here $\widehat{oldsymbol{\Sigma}} = \mathsf{complex}$ Huber's M-estimator.
- Figure 1: Gaussian context, here $\sigma_1 = 1.066$.
- Figure 2: K-distributed clutter (shape parameter: $\nu = 0.1$ and 0.01).

Validation of theorem (even for small n)

Robust Estimation and Detection

00000000000000

Interest of the M-estimators

Performances are slightly the same in Gaussian case but are clearly better in non-Gaussian case.

Illustrations of the Result on P_{f_2}

• Figure 1: Gaussian context :

$$P_{fa} = (1 - \lambda_{ANMF})^{n-m+1} {}_{2}F_{1}(n-m+2, n-m+1; n+1; \lambda_{ANMF}).$$

Robust Estimation and Detection

00000000000000

• Figure 2: K-distributed clutter (shape parameter: $\nu = 0.1$), here $\sigma_1 = 1.066$:

$$P_{\textit{fa}} = \left(1 - \lambda_{\textit{ANMF}}\right)^{n/\sigma_{1} - m + 1} \ _{2}F_{1}\left(n/\sigma_{1} - m + 2, n/\sigma_{1} - m + 1; n/\sigma_{1} + 1; \lambda_{\textit{ANMF}}\right) \, .$$

Validation of theorem (even for small n)

Interest of the M-estimators for False Alarm regulation

Illustration of the ANMF CFAR Properties For CES Noise

False Alarm regulation for ANMF built with Tyler's estimate

Robust Estimation and Detection

00000000000000

Figure: Illustration of the CFAR properties of the ANMF built with the Tyler's estimator, for a Toeplitz CM whose (i, j)-entries are $\rho^{|i-j|}$.

Properties of ANMF-Tyler Detector on Clutter Transitions

- K-distributed clutter transitions: from Gaussian to impulsive noise,
- Estimation of the covariance matrix onto a range bins sliding window.

Properties of ANMF-Tyler Detector on Clutter Transitions

Robust Estimation and Detection

00000000000000

- ANMF-Tyler: The same detection threshold is guaranteed for a chosen P_{fa} whatever the clutter area,
- ANMF-Tyler: Performance in terms of detection is kept for moderate non-Gaussian clutter and improved for spiky clutter.

Introduction

- Introduction
- 2 Some Background on Detection Theory
- Robust Estimation and Detection
- Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
 - Surveillance Radar against Ground and Sea Clutter
 - Detection Performance on STAP Data
 - Detection Performance on SAR Image
 - Hyperspectral Imaging: Detection and Anomaly Detection

False Alarm Regulation on THALES Ground Clutter

Data Description

- "Range-azimuth" map from ground clutter data collected by a radar from THALES Air Defense, placed 13 meters above
 ground and illuminating area at low grazing angle.
- Ground clutter complex echoes collected in 868 range bins for 70 different azimuth angles and for m=8 pulses.

False Alarm Regulation on THALES Ground Clutter

Data processing

• Rectangular CFAR mask 5×5 for $0 \le k \le m$ different steering vectors \mathbf{p}_k .

$$\mathbf{p}_{k} = \begin{pmatrix} 1 \\ \exp\left(\frac{2i\pi(k-1)}{m}\right) \\ \exp\left(\frac{2i\pi(k-1)2}{m}\right) \\ \vdots \\ \exp\left(\frac{2i\pi(k-1)(m-1)}{m}\right) \end{pmatrix}$$

- For each **z**, computation of associated detectors $\Lambda_{ANMF}(\widehat{\Sigma}_{Tyler})$ and $\Lambda_{ANMF}(\widehat{\Sigma}_{NSCM})$
- Mask moving all over the map.

False Alarm Regulation on THALES Ground Clutter

Azimut/range bins map

Relationship " P_{fa} -threshold"

Figure: ANMF with Tyler's M-estimate - False alarm regulation for $\mathbf{p}_0 = (1\dots 1)^T$.

Black curve fits red curve until $PFA = 10^{-3}$ [Ovarlez et al. 16].

Introduction

Persymmetric Tyler-ANMF and Tyler ANMF on THALES dataset - m=8, n=8

Persymmetric Tyler-ANMF and Tyler ANMF on THALES dataset - m = 8, n = 20

Introduction

00000

Detection Performance on THALES Sea Clutter

Introduction

Detection Performance on Simulated Data

Introduction

Figure: Doppler-angle map for the range bin 255 with n=404 secondary data, m=256 [Pailloux 10]

00000

Detection Performance on SAR Image

Analysis of Performance

- Evaluation the CFAR property of the AMF and ANMF detectors,
- Comparison of the target detection performance between AMF and ANMF.

Dataset from SANDIA National Laboratories

Left: Original SAR Image without target. Right: SAR image with specific embedded target.

Artificial embedded target

Left: SAR Image of the target. Right: True target response **p** in angular and spectral spaces ($N_{\theta} = 5$ sub-looks, $N_f = 5$ sub-bands).

Detection Performance on SAR Image

Perfect PFA regulation with ANMF-Tyler but poor PFA regulation for AMF-SCM

Left: FA Regulation with ANMF-Tyler. Right: FA Regulation with AMF-SCM. $N_{ heta}=$ 5, $N_f=$ 5, K= 88.

Better target detection for ANMF-Tyler [Ovarlez 17, Mian 19]

Left: Full AMF-SCM detection test, $P_{fa}=1$. Right: AMF-SCM detection test, $P_{fa}=2.6\,10^{-3}$.

Left: ANMF-Tyler detection test, $P_{fa}=1$. Right: ANMF-Tyler detection test, $P_{fa}=2.6\,10^{-3}$.

Anomaly Detection

To detect all that is "different" from the background (Mahalanobis distance) - No information about the targets of interest available [Frontera 16].

"Pure" Detection

To detect targets characterized by a given spectral signature **p** - Regulation of False Alarm [Ovarlez 11, Frontera 17].

ANMF and M-estimates for Hyperspectral target detection [Frontera 14]

$$\Lambda(\mathbf{c}) = \frac{\left|\mathbf{p}^{H} \widehat{\boldsymbol{\Sigma}}^{-1} \left(\mathbf{c} - \hat{\boldsymbol{\mu}}\right)\right|^{2}}{\left(\mathbf{p}^{H} \widehat{\boldsymbol{\Sigma}}^{-1} \mathbf{p}\right) \left(\left(\mathbf{c} - \hat{\boldsymbol{\mu}}\right)^{H} \widehat{\boldsymbol{\Sigma}}^{-1} \left(\mathbf{c} - \hat{\boldsymbol{\mu}}\right)\right)} \stackrel{H_{1}}{\gtrless} \lambda$$

$$P_{\textit{fa}} = \left(1 - \lambda\right)^{\frac{n-1}{\sigma_1} - m + 1} {}_2F_1\left(\frac{n-1}{\sigma_1} - m + 2, \frac{n-1}{\sigma_1} - m + 1; \frac{n-1}{\sigma_1} - 1; \lambda\right), \text{ where } \sigma_1 = (m+1)/m.$$

- This two-step GLRT test is homogeneous of degree 0: it is independent of any particular Elliptical distribution: CFAR texture and CFAR Matrix properties,
- Under homogeneous Gaussian region, it reaches the same performance than those of the detector built with the SCM estimate.

Original data set

Hyperspectral Imaging (HSI)

GLRT RX Anomaly Detector: Mahalanobis Distance [Reed 90]

Binary Hypotheses test:
$$\left\{ \begin{array}{ll} \textit{H}_0 & : & \textbf{c} = \textbf{b} & \textbf{c}_1, \dots, \textbf{c}_n \\ \textit{H}_1 & : & \textbf{c} = \textit{A}\,\textbf{p} + \textbf{b} & \textbf{c}_1, \dots, \textbf{c}_n \end{array} \right. \text{ where } \textbf{b} \sim \mathcal{CN}(\textbf{0}_m, \textbf{\Sigma}) \text{ and } \textbf{c}_i \sim \mathcal{CN}(\textbf{0}_m, \textbf{\Sigma}), \textit{ A}$$
 known and \textbf{p} unknown

denoting
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} c_i$$

$$RXD_{SCM}(\mathbf{c}) = (\mathbf{c} - \hat{\mu})^H \ \hat{\mathbf{S}}_n^{-1} \ (\mathbf{c} - \hat{\mu}) \overset{H_1}{\geq} \lambda$$

$$(\text{Hotelling } T^2 \ \text{distributed})$$

$$\frac{n-m}{m(n+1)} RXD_{SCM}(\mathbf{c}) \sim F_{m,n-m}$$

- Derived and valid only under Gaussian hypotheses,
- Its false alarm rate is independent of the covariance matrix: CFAR-matrix property in homogeneous Gaussian data.

Extended GLRT RX Anomaly Detector: Mahalanobis Distance [Frontera 14]

Binary Hypotheses test:
$$\begin{cases} H_0 & : & \mathbf{c} = \mathbf{b} & \mathbf{c}_1, \dots, \mathbf{c}_n \\ H_1 & : & \mathbf{c} = A \mathbf{p} + \mathbf{b} & \mathbf{c}_1, \dots, \mathbf{c}_n \end{cases}$$
 where $\mathbf{b} \sim CE(\mu, \mathbf{\Sigma}, g_{\mathbf{z}})$ and $\mathbf{c}_i \sim CE(\mu, \mathbf{\Sigma}, g_{\mathbf{z}})$, A known and \mathbf{p} unknown

$$RXD_{M-est}(\mathbf{c}) = (\mathbf{c} - \hat{\mu})^H \ \widehat{\mathbf{\Sigma}}^{-1} \ (\mathbf{c} - \hat{\mu}) \overset{H_1}{\gtrless} \lambda$$

where $\widehat{\Sigma}$ and $\hat{\mu}$ are M-estimates of the location and scale

- Derived and valid for any Elliptical Contoured Distributions,
- Its false alarm rate unfortunately depends on texture statistic of the data.

Original image (Forest Region)

Target Spectrum

Anomaly Detection Results on Artificial Targets

Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 9, n = 80, PFA = 0.03).

Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 126, n = 288, PFA = 0.03).

Galaxies Anomaly Detection Results on MUSE data

Problem of detecting galaxies in HS MUSE (Multi Unit Spectroscopic Explorer) data (465-930 nm)

Better detection and False Alarm regulation with Tyler estimate (same Pfa).

- S. M. Kay, Fundamentals of Statistical Signal Processing Detection Theory, Vol. 2, Prentice-Hall PTR, 1998.
- E. J. Kelly. An adaptive detection algorithm. Aerospace and Electronic Systems, IEEE Transactions on, 23(1):115-127. 1986.
- F.C. Robey, D. R. Fuhrmann, E. J. Kelly and R. Nitzberg, A CFAR adaptive matched filter detector, Aerospace and Electronic Systems, IEEE Transactions on, 28(1):208-216, 1992.
- L. L. Scharf and B. Friedlander, Matched subspace detectors, Signal Processing, IEEE Transactions on, 42(8):2146–2157, 1994.
- A. Farina, A. Russo and F. Scannapieco, Radar detection in coherent Weibull clutter. Acoustics, Speech, and Signal Processing, IEEE Transactions on, 35(6), June 1987.
- E. Jay, Detection in non-Gaussian noise, PhD thesis, University of Cergy-Pontoise / ONERA, France, 2002.
- J.-P. Ovarlez, ONERA RT 6/5275 SN, Détection en Environnement Non-Gaussien, oct. 1996.
- J.-P. Ovarlez, ONERA RT 25/5272 SY, Evaluation de la Détectabilité des Cibles Volant à Basse Altitude par des Radars Sols. mai 1995.
- J. B. Billingsley, Ground Clutter Measurements for Surface-Sited Radar, Technical Report, 780, MIT, February 1993.
- J.-S. Lee and E. Pottier. Polarimetric Radar Imaging, From Basics to Applications, CRC Press, 2009.
- P. Formont. Statistical and Geometric Tools for the Classification of Highly Textured Polarimetric SAR Images. PhD Thesis, Paris Saclav University / ONERA, 2012.

- I. Reed and X. Yu. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. Acoustics, Speech and Signal Processing, IEEE Transactions on, 38(10):1760-1770, 1990.
- D. Kelker. Distribution theory of spherical distributions and a location-scale parameter generalization. Sankhya A 32. 1970.
- G. Frahm, Generalized elliptical distributions: theory and applications, PhD thesis, Universitätsbibliothek, 2004.
- E. Ollila, D. E. Tyler, V. Kojvunen and H. V. Poor, Complex elliptically symmetric distributions; Survey, new results and applications, Signal Processing, IEEE Transactions on, 60(11), 2012.
- K. Yao, A representation theorem and its application to spherically invariant random processes. *Information Theory, IEEE* Transactions on. 19(2), 1973.
- S. Bausson, F. Pascal, P. Forster, J.-P. Ovarlez and P. Larzabal, First and second order moments of the normalized sample covariance matrix of spherically invariant random vectors, IEEE Signal Processing Letters, 14(6):425-428, 2007.
- J. T. Kent and D. E Tyler. Redescending M-estimates of multivariate location and scatter Annals of Statistics. 19(4):2102-2119, 1991.
- R. A. Maronna, D. R. Martin and J. V. Yohai, Robust Statistics: Theory and Methods, Wiley Series in Probability and Statistics, John Wiley & Sons, 2006.
- F. Pascal. Détection et Estimation en Environnement Non-Gaussien. PhD thesis, University of Nanterre / ONERA. France, 2006.
- M. Mahot, Robust Covariance Estimation in Signal Processing, PhD thesis, Ecole Normale de Cachan / ONERA, 2013.

Bibliography

- M. Mahot, F. Pascal, P. Forster and J.-P. Ovarlez, Asymptotic properties of robust complex covariance matrix estimates, Signal Processing, IEEE Transactions on, 61(13):3348–3356, 2013.
- E. Terreaux, Robust model order selection using Random Matrix Theory, PhD Thesis, University Paris Saclay / ONERA, 2018.
- P. J. Huber, Robust estimation of a location parameter, The Annals of Mathematical Statistics, 35(1), 1964.
- F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster and P. Larzabal, Covariance structure maximum-likelihood estimates in compound gaussian noise: Existence and algorithm analysis, Signal Processing, IEEE Transactions on, 56(1):34–48, 2008.
- D. E. Tyler, A distribution-free M-estimator of multivariate scatter, The Annals of Statistics, 15(1), 1987.
- J.-P. Ovarlez, F. Pascal and A. Breloy, Asymptotic detection performance analysis of the robust adaptive normalized matched filter, IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 137–140, 2015.
- F. Pascal and J.-P. Ovarlez, Asymptotic properties of the robust ANMF, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2594–2598, 2015.
- G. Pailloux, Estimation Structurée de la Matrice de Covariance et Application à la Détection Radar, PhD thesis, University of Nanterre / ONERA, France, 2010.
- G. Pailloux, P. Forster, J.-P. Ovarlez and F. Pascal, Persymmetric adaptive radar detectors, *Aerospace and Electronic Systems, IEEE Transactions on*, **47**(4):2376–2390, 2010.
- E. Conte, M. Lops and G. Ricci, Asymptotically optimum radar detection in compound-gaussian clutter, Aerospace and Electronic Systems, IEEE Transactions on, 31(2):617–625, 1995.
- S. Kraut and L. L. Scharf, The CFAR adaptive subspace detector is a scale-invariant GLRT, Signal Processing, IEEE Transactions on, 47(9):2538–2541, 1999.

- J.-P. Ovarlez, G. Ginolhac and A. M. Atto. Multivariate linear time-frequency modeling and adaptive robust target detection in highly textured monovariate SAR image, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4029-4033, 2017.
- A. Mian, Robust Change Detection in Time Series SAR Images, PhD Thesis, Université de Paris Saclay / ONERA, 2019.
- A. Mian, J.-P. Ovarlez, A. M. Atto and G. Ginolhac, Design of New Wavelet Packets Adapted to High-Resolution SAR Images With an Application to Target Detection, Geoscience and Remote Sensing, IEEE Transactions on, 57(6), pp.3919-3932. June 2019
- J.-P. Ovarlez, S. K. Pang, F. Pascal, V. Achard and T.K. Ng. Robust Detection using the SIRV Background Modelling for Hyperspectral Imaging, Proc IEEE-IGARSS, Vancouver, Canada, July 2011.
- J. Frontera-Pons, Robust Detection and Classification for Hyperspectral Imaging, PhD Thesis, Paris Saclay University / ONERA, 2014.
- J. Frontera-Pons, M. A. Veganzones, S. Velasco-Forero, F. Pascal, J.-P. Ovarlez, J. Chanussot, Robust Anomaly Detection in Hyperspectral Imaging, Proc. IEEE-IGARSS, Quebec, Canada, July 2014.
- J. Frontera-Pons, M. A. Veganzones, F. Pascal and J.-P. Ovarlez, Hyperspectral Anomaly Detectors using Robust Estimators, Selected Topics in Applied Earth Observation and Remote Sensing (IEEE-JSTARS), IEEE Journal of, 9(2), pp.720-731, 2016.
- J. Frontera-Pons, F. Pascal, J.-P. Ovarlez, Adaptive Nonzero-Mean Gaussian Detection, Geoscience and Remote Sensing. IEEE Transactions on, 55(2), pp.1117-1124, 2017.
- J. Frontera-Pons, J.-P. Ovarlez and F. Pascal, Robust ANMF Detection in Noncentered Impulsive Background, IEEE Signal Processing Letters, 24(12), pp.1891-1895, 2017.

