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Radar Detection
RADAR = RAdio Detection And Ranging

• emits and receives electromagnetic waves,
• detects the presence of targets,
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General Introduction
Background on Radar, Array Processing, ...

Background on Signal Processing
Motivations for more robust detection schemes

Radar Background
Array Processing - Space Time Adaptive Processing (STAP)
SAR Image Processing
Hyperspectral Image Processing

Background on SAR and Radar Imaging

Radar Imaging allows to build more and more precise images :
Current use of very high bandwidth and long integration time (high 
azimuth bandwidth) : Very high spatial resolution (< 10cm), 
Application to surveillance (detection, change detection), 
classification, 3D reconstruction, EM analysis, … 
Due to the growing complexity of the scene (non stationarity, non-
Gaussianity), need to derive new procedures to exploit these 
images.
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Radar/SAR Imaging

Radar Imaging [Mensa, 1981, Soumekh, 1994, Soumekh, 1999] allows to build more and more
precise images:

• Current use of very high spectral bandwidth and very high angular bandwidth leading to
very high spatial resolution,

• Application to monitoring (detection, change detection), classification, 3D reconstruction,
EM analysis, etc.

These applications require some physical diversity to reach good performances.

Jean-Philippe Ovarlez 2019 Radar Tutorial 37 / 90

37/90

General Introduction
Background on Radar, Array Processing, ...

Background on Signal Processing
Motivations for more robust detection schemes

Radar Background
Array Processing - Space Time Adaptive Processing (STAP)
SAR Image Processing
Hyperspectral Image Processing

Background on SAR and Radar Imaging

Radar Imaging allows to build more and more precise images :
Current use of very high bandwidth and long integration time (high 
azimuth bandwidth) : Very high spatial resolution (< 10cm), 
Application to surveillance (detection, change detection), 
classification, 3D reconstruction, EM analysis, … 
Due to the growing complexity of the scene (non stationarity, non-
Gaussianity), need to derive new procedures to exploit these 
images.

2

ONERA RAMSES Image

ONERA RAMSES Image

R
A

M
SE

S 
Im

ag
e

ONERA ISAR Image

Radar/SAR Imaging

Radar Imaging [Mensa, 1981, Soumekh, 1994, Soumekh, 1999] allows to build more and more
precise images:

• Current use of very high spectral bandwidth and very high angular bandwidth leading to
very high spatial resolution,

• Application to monitoring (detection, change detection), classification, 3D reconstruction,
EM analysis, etc.

These applications require some physical diversity to reach good performances.

Jean-Philippe Ovarlez 2019 Radar Tutorial 37 / 90

Halpha Classification map SCM−AM−WH Iteration 10

 

 

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

1400

1600
1

2

3

4

5

6

7

8

2.2. La Détection et l’Estimation pour le Radar
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(a) �AMF (y,MSCM )
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(b) �P�AMF (y,RPSCM )
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(c) �(y,MFP )
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(d) �P�ANMF (y,RPFP )

Figure 2.33 – Résultats de détection Doppler-azimut dans une case distance pour 10 cibles de vitesse
di�érentes

2.2.8.2 STAP à Rang Réduit

Une manière de n’utiliser que peu de données secondaires est de faire appel aux techniques dites de
rang réduit qui exploitent le fait que la matrice de covariance des données STAP possède des valeurs
propres séparant l’espace signal (le fouillis) de l’espace bruit (bruit thermique). Connaissant la géomé-
trie de visée, il est également possible de déterminer, à l’avance (règle de Brennan), quel sera le rang
de chaque sous-espace. En projetant sur l’espace orthogonal au fouillis, on peut ainsi le rejeter. Cette
projection nécessite alors au moins autant de données secondaires que la taille de l’espace fouillis, soit en
fait nettement moins que la la taille de la matrice. Cette approche a été appliquée dans [T5] pour les
détecteurs AMF construits avec les matrices de projection � basées sur la covariance SCM et PSCM.

Les figures (Fig. 2.35) et (Fig. 2.36) présentent ainsi les résultats de détection (données CELAR) dans
une case distance d’une cible dans la direction azimutale 0 deg et de vitesse 4m/s cible pour les deux
détecteurs AMF et PAMF. La détection se fait premièrement avec un ensemble de K = 200 données
secondaires de taille m = 256 bien au dessus du rang de Brennan du fouillis donné par r = 46. On
s’assure ainsi une détection avec moins de 3 dB de pertes par rapport au traitement optimum. La persy-
métrie n’apporte dans ce cas que peu d’amélioration par rapport aux détecteurs classiques, les résultats
du PAMF sont donc très similaires à ceux de l’AMF (cf. (Fig. 2.35)). La figure (Fig. 2.36) présente les
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Problem Setting

• Frequently used portfolio allocation processes require the estimation of the covariance
matrix of the assets returns
(e.g. Global Minimum Variance [Maillard 10, Clarke 12], Maximum Variety [Fideas Capital] or Most
Diversified Portfolio [Choueifaty 08], Mean-Variance [Markovitz 52], etc.)

æ The Sample Covariance Matrix (SCM) - optimal under the Normal assumption - is the
mostly used estimator, but, financial time series of returns might exhibit outliers,

æ The field of robust estimation intends to deal with outliers ([Maronna 76, Tyler 87]),
æ Hybrid robust shrinkage covariance matrix estimates have also been proposed building

estimators upon Tyler’s robust M-estimator ([Chen 11, Ollila 14, Pascal 14]),
æ Recent works based on Random Matrix Theory (RMT) have also considered robust

estimation in the large dimensional regime ([Yang 15]).

• A way to mitigate covariance matrix estimation errors is to identify the most informative
asset part and then to filter the noisy part of the data

æ Standard statistical methods like the principal component analysis may fail in
distinguishing informative factors from the noisy ones,

æ RMT helps in finding a solution for filtering noise, even though the single market factor
still prevails in the described cleaning method that is not completely satisfactory as they
implicitly assumes homogeneous and uncorrelated series ([Laloux 99 and 00, Potters 05]),

∆ To fill this gap, the most up-to-date RMT-based model order selection [Vinogradova 13,
Terreaux 17] methods used in Signal Processing can be applied in estimating the number
of uncorrelated statistical factors embedded in a given multi-factor model.

We propose in this paper...

... a new process for estimating and denoising covariance matrix
that leads to improved global portfolio performances
(reduced Draw-Down, increased Sharpe Ratio, etc.).

æ Asset returns are modelled as a multi-factor model ([Jay 11, Darolles 13]),
æ An up-to-date Model Order Selection method is used to estimate the number of factors,
æ It can be easily applied in many Signal Processing applications like in radar and sonar

(Direction of Arrival, Source Localization, Space Time Adaptive Processing, Date of
Arrival, Spectral Analysis (AR, ARMA), etc), Hyperspectral images (Unmixing).

Assets returns Model

Let {rt}tœ[1,N ] be N observations of the m assets returns, modelled as a K-factor model. For
each observation date t, we then have:

rt =
KX

k=1
ft,k —k + Ô

·tC1/2 nt , t œ [1, N ] ,

or, written more compactly: R = BF + C1/2 NT1/2, where
• R = [r1, r2, . . . , rN ] œ Rm◊N are the observations,
• B = (—1, . . . ,—K) œ Rm◊K is an unknown mixing matrix of coe�cients (or beta) that

define the proportion of the K factors in each asset,
• F = (f1, . . . , fN) œ RK◊N is an unknown matrix of the K common returns,
• T = diag(·1, . . . , ·N) œ R+N◊N is a diagonal matrix unknown containing random texture,
• N œ Rm◊N is a white Gaussian noise (E

h
nT
t nt

i
= 1), independent of the K factors,

• C œ Rm◊m is an unknown Toeplitz scatter matrix (Tr(C) = m).

Theoretical Results [Terreaux 17]

Robust Consistent Estimation for C

Let M̂FP = m

N

NX

t=1

rt rTt
rTt M̂≠1

FP rt
be the scatter matrix Tyler M-estimator of R.

As m,N æ Œ such that m/N æ c œ]0,Œ[, we have���T
h
M̂FP

i
≠ C

��� a.s.≠≠æ 0,

where T [·] is the Toeplitz rectification operator: (T [X])ij = 1
m

mX

k=1
Xk,k+|i≠j| .

A consistent estimator Ĉ of the background scatter matrix C characterizing the background
noise is therefore defined through observations R as Ĉ = T

h
M̂FP

i
.

=∆ The observations R can now be whitened through Ĉ≠1/2 R

Behavior of whitened data

Let Rw =
⇣
T

h
M̂FP

i⌘≠1/2
R be the whitened data and ŴFP be the Tyler M-estimator of

Rw. As m,N æ Œ such that m/N æ c œ]0,Œ[, if Rw does not contain any factor, then:
����ŴFP ≠ 1

N
NNT

����
a.s.≠≠æ 0 .

• Without factors, the spectral distribution of the whitened data scatter matrix of Rw

follows a Marchenko-Pastur distribution (same spectral distribution of unobservable
covariance matrix of N) characterized by its support

h
(1 ≠ Ô

c)2
, (1 +

Ô
c)2i,

• All eigenvalues greater than ⁄̄ = (1 +
Ô
c)2 can be considered as significant factors.

Estimation of K the number of factors

Let (⁄k)kœ[1,m] be the sorted eigenvalues of ŴFP , then: K̂ = argmax
k

⇣
⁄k > ⁄̄

⌘
.

Illustration: estimating the correct number of factors

Estimating K is really a challenging problem for many applications where informative signal
is embedded in correlated noise. Below, we show how our process allows to detect the K = 3
sources embedded in non-Gaussian and strongly correlated noise.
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Fig. 1. Eigenvalue distributions. Left: SCM of observations. Middle: Tyler covariance matrix of observations. Right: Tyler covariance matrix of observations
after whitening process. K-distributed case with shape parameter � = 0.5, � = 0.8, m = 100, N = 1000 (c = 0.1), K = 3, log(�̄) = log(1.7325).

”variance”-free and really reflects the true structure of the
underlying process without power pollution. When the sources
are present in the observations {rt }, the use of this estimator
may lead to whiten the observations and to destroy the main
information concentrated in the K factors.

When the noise is assumed white distributed, several meth-
ods, based on the RMT have been proposed [33] to extract
information of interest from the received signals. One can
cite for instance the number of embedded sources estimation
[34], the problem of radar detection [35], signal subspace
estimation [36]. However, when the additive noise is corre-
lated, some RMT methods require the estimation of a specific
threshold which has no explicit expression and can be very
difficult to obtain [19], [37] while the others assume that the
covariance matrix is known and use it, through some source-
free secondary data, to whiten the signal. According to the
following consistency theorem found and proved in [20], [21],
[22], recent works have proposed to solve the problem through
a biased Toeplitz estimate of �Ctyl , let’s say �Ctyl = T

��Ctyl

�
:

Consistency theorem. Under the RMT regime assumption, ie
that N,m � �, and the ratio c = m/N � c > 0, we have the
following spectral convergence:���T ��Ctyl

�
� C

��� a.s.�� 0. (4)

This powerful theorem says that it is possible to estimate
the covariance matrix of the correlated noise even if the
observations contain the sources or information to be retrieved.
According to this result, the first step is then to whiten
the observations using �Ctyl . The whitened observations are
defined as rw,t = �C�1/2

tyl
rt .

Given the set of N whitened observations
�
rw,t

�
and given

the Tyler’s covariance matrix �̂w of these whitened returns,
recent work [22] has shown that this whitening process allows
us to consider that the eigenvalues distribution of �w has
to fit the predicted bounded distribution of Marčenko-Pastur
[38] except for a finite number of eigenvalues if any source
is still present and powerful enough to be detected outside
the upper bound of the Marčenko-Pastur distribution given by

�̄ =
�
1 +

�
c
�2.

Figure 1 compares the eigenvalues distribution of the SCM
Ĉscm = R RT /N , Ĉtyl and �̂w for K = 3 sources of in-
formation embedded in non-Gaussian correlated K-distributed
noise. If no whitening operation is made before applying the
Marčenko-Pastur boundary properties of the eigenvalues, then
there is no chance to detect any of the sources. After whitening
process, the only detected sources above the Marčenko-Pastur
threshold correspond to the K sources. As a matter of fact,
there is no need anymore to adapt the value of the threshold
value regarding the distribution of �t and the estimated value
of IE[�] [22]. The robust Tyler M-estimator is ”�-free”, i.e. it
does not depend anymore of the distribution of �t .

Once the K largest eigenvalues larger than �̄ are detected,
we set the m�K lowest ones to

�
Tr

�
�̂w

�
��m

k=K+1 �k

�
/(m�

K), and then build back the de-noised covariance matrix to be
used in (2) (or in any other objective function).

V. APPLICATION

This section is devoted to show the improvement of such
a process when applied to the Maximum Variety Portfolio
process. This allocation process (denoted as ”Variety Max”
in the following) is the one designed and used by Fideas
Capital for allocating their portfolios. The investment universe
consists of m = 40 baskets of European equity stocks rep-
resenting twenty-one industry subsectors (e.g. transportation,
materials, media...), thirteen countries (e.g. Sweden, France,
Netherlands,...) and six factor-based indices (e.g. momentum,
quality, growth, ...). Using baskets instead of single stocks
allows to reduce the idiosyncratic risks and the number of
assets to be considered. We observe the prices of these assets
on a daily basis from June 2000, the 19th to January 2018
the 29th. The daily prices are close prices, i.e. the price being
fixed before the financial marketplaces close at the end of each
weekday.

The portfolios weights are computed as follows: every four
weeks, we estimate the covariance matrix of the assets using
the past one year of returns and we run the optimisation
procedure in order to get the vector of weights that maximises

Figure 1:Eigenvalue distributions. Left: R RT/N , Sample Covariance Matrix of observations. Middle: M̂FP , Tyler covariance matrix
of observations. Right: ŴFP , Tyler covariance matrix of observations after whitening process. K-distributed case with shape parameter
‹ = 0.5, fl = 0.8, m = 100, N = 1000, K = 3.

Maximum Variety Portfolio

One way to quantify the degree of diversification of a portfolio invested in m assets with pro-
portions w = [w1, . . . , wm]T is to maximize the Variety Ratio of the portfolio:

wú
vr = argmax

w

wT s
(wT � w)1/2 ,

where � = E
h
R RT

i
is the m ◊ m covariance matrix of the m assets returns R and where

s is the m-vector of the square roots of the diagonal element of �, ie si =
Ô

�ii, i œ [1,m],
representing the standard deviation of the returns of the m assets.

Application

The investment universe consists of m = 40 baskets of European equity stocks representing
twenty-one industry subsectors (e.g. transportation, materials, etc.), thirteen countries (e.g.
Sweden, France, etc.) and six factor-based indices (e.g. momentum, quality, growth, etc.)
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Table 1:Some performance numbers.
Variety Max Annualised Annualised Ratio Maximum

Portfolios Return Volatility (Return / Volatility) Drawdown
RMT Tyler Whitened 9.71% 12.9% 0.75 50.41%

SCM 8.51% 13.80% 0.62 55.02%
Benchmark 4.92% 15.19% 0.32 58.36%
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Figure 3:Left - Middle: dynamic weights as a stacked area chart. Right: values of selected eigenvalues (left) and their number (right).

.
Conclusion

• Asset returns have been modelled as a multi-factor model embedded in a correlated elliptical
and symmetric noise, allowing to account for non-Gaussian and non correlated noise,

• Given this model setup, the most informative assets have been separated from the noise
subspace using a "Toeplitzified" robust and consistent Tyler-M estimator and the Random
Matrix Theory applied on the whitened covariance matrix estimate,

• As an illustration, applied to the Maximum Variety Portfolios, our process leads to
improved performance with respect to a classical approach.

Conf. EUSIPCO 2018 | This research was both conducted within the "Construction of factorial indexes and allocation" under the aegis of the Europlace Institut of Finance, a joint initiative with Fideas Capital and was partly funded by the French DGA | Roma, 5 Sept. 2018

Méthodes basées sur la 
loi gaussienne

Méthodes basées sur 
les lois CES

Méthodes basées sur 
les lois CES et la théorie 
des Matrices Aléatoires

• but also: estimates parameters (range, radial velocity, angles of presentation, acceleration, amplitude (related to Radar
Cross Section), etc.),

• images, classifies, recognizes.

Note : Almost all the conventional Statistical Signal Processing methodologies and background
modelling tools are based on Gaussian hypothesis (standard conditions).
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Radar and Imaging Sensors - New challenges

Positioning: facing the new non-standard conditions
• Complex Environments: ground, dynamic environments (sea, ionosphere), heterogeneous, non-Gaussian, reverberating.
• Complex targets: small RCS, extended targets, fluctuating, dispersive, anisotropic.
• Sensor Diversity: temporal, spatial, polarimetric, interferometric, spectral.
• Improvement of sensor resolution: spatial, spectral, angular.
• Outliers, jamming
• Increase of the dimension and the size of signals to analyze.
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Les réflecteurs ont un comportement différent 
selon la fréquence et la direction d’illumination

?! R̂

Dense Airborne/Ground Traffic

Inhomogeneous Terrain/Clutter
Large Discretes/Urban Clutter

Real-World Clutter!

Hétérogénéité de 
l’environnement

Grande dimension, 
Grand nombre de 

données
Comportement non-stationnaire 

des cibles et des fonds
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Applications and Results in Radar ...
Conclusions and Perspectives

Surveillance Radar
STAP Applications
MIMO-STAP
SAR Imaging
Hyperspectral Imaging

Mono-Channel SAR Images
For mono-channel SAR Images, each pixel of the spatial image is only characterized by a
complex amplitude and we don’t have directly access to this diversity. Moreover,

• very high resolution SAR images are more and more complex, detailed, heterogeneous,
• the spatial statistic of SAR images may be not at all Gaussian !
• SAR pixels may be dispersive (or colored) and anisotropic.

8

The SAR images are more and more complex, detailed, heterogeneous,  
The SAR pixels are colored and anisotropic 
The spatial statistic of SAR images is not at all Gaussian ! 

How to use in an adaptive detector the dispersive and anisotropic information of SAR pixels ? 
How to derive Multivariate Adaptive detectors (AMF, Kelly, ANMF) on a monodimensionnal SAR 
image without multi-channels like polarimetry, interferometry, multi-passes SAR images ? 

How to enhance the performance of these Gaussian detectors in non-Gaussian environment ? 

res < 0.5m 

@ONERA SETHI 

Challenging Problems Related to SAR Processing
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True Physical Behavior of Scatterers in SAR Imaging
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elevation 30°                                            elevation 50°       

Scatterers have different behavior with regards to the frequency 

True Physical Behavior of Scatterers in SAR Imaging

Non-Gaussianity Spectral diversity

Challenging Problems
• How to retrieve, how to exploit this diversity (dispersive and anisotropic information) from

mono-channel SAR image ?
• How to derive Multivariate Adaptive Detectors on a mono-channel complex SAR image ?
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Figure 4.22: Plot of the Buddingtonite target samples taken from the online ASTER Spectral library.

4.4.1 Real experiments for the detection strategy in Chapter 2

Figure 4.23 depicts the detection of the Buddingtonite targets in (At C)T . The Buddingtonite
targets are detected with very little false alarms!

Figure 4.23: The detection in (At C)T (we exhibit the mean power in dB over the 186 bands) for the
detection strategy in Chapter 2
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Heterogeneous 
Environments

Non-Gaussian 
Environments

Non-Stationary Targets 
and Environments Curse of Dimensionality
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Applicative Context

Why covariance estimation?

Portfolio selection Classification/Clustering

PCA
Radar detection

Graphical models

Gaussian graphical model

n-dimensional Gaussian vector

x = (x1, . . . , xn) ⇠ N (0,⌃)

xi, xj are conditionally independent (given the rest of x) if

(⌃�1)ij = 0

modeled as undirected graph with n nodes; arc i, j is absent if (⌃�1)ij = 0

1

2

34

5
⌃�1 =

2
66664

• • 0 • •
• • • 0 •
0 • • • 0
• 0 • • 0
• • 0 0 •

3
77775

13/44

Big Data 
 Recognition 
 Classification, Clustering 
 Dimension Reduction 
 Machine Learning, Deep Learning 
 Graphes Analysis 
 Learning Techniques  

Air, ground, sea Surveillance  
 Radar Detection, Space-Time Adaptive Processing 
 Synthetic Aperture Radar 
 Sources Localization 
 Interferometric, Polarimetric Classification 
 Change Detection, Infrastructure Monitoring 
 Anomaly Detection in Hyperspectral Imaging 
 MIMO Radar 
 Tracking

Finance 
 Time Series  
 Portofolio Optimization 
 Risk Management 
 Classification 
 Prediction
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Methodological Context

Goals: Improvement of sensors performance and their processing
• To model thanks statistics the variability of the unknown environment and data,
• To estimate the spectral properties of the environment (ionosphere, sea, wind through forest, etc.),
• To elaborate estimators and detectors that are robust and adaptive to these environments,
• To regulate the False Alarm on these heterogeneous, non-stationary, non-Gaussian environments,
• To improve the classification, the clustering techniques.

Methods: Statistical Signal Processing
• Robust Estimation Techniques of spectral and statistic characteristics of the environment and targets: adaptivity,

statistic learning, cognitive, maximal exploitation of the a priori,
• Optimal Detection Schemes (Likelihood, Bayesian) for stealthy target embedded in these complex environments,
• Exploitation of emerging statistical Signal Processing techniques: Time-Frequency Analysis, Random Matrix Theory,

Clustering, Compressive Sensing, etc.

Special issue: Greco et al., Introduction to the Issue on Advanced Signal Processing Techniques for Radar Applications, IEEE
Journal of Selected Topics in Signal Processing, 2015.
Book: Greco and De Maio, Modern Radar Detection Theory, Scitech Publishing, IET, 2015.
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Plan

1 Introduction

2 Some Background on Detection Theory
Problem Statement
Modeling Homogeneous Gaussian Noise/Clutter
Examples of CFAR Detection Schemes Under Gaussian Noise
Examples of Gaussian Hypothesis Failure

3 Robust Estimation and Detection

4 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
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Problem Statement
In a m-vector z, detecting an unknown complex deterministic signal s = A p embedded in an
additive noise y can be written as the following statistical test:

{
Hypothesis H0: z = y zi = yi i = 1, . . . , n
Hypothesis H1: z = s + y zi = yi i = 1, . . . , n

where the zi ’s are n "signal-free" independent secondary data used to estimate the noise
parameters. ⇒ Neyman-Pearson criterion [Kay 93]
Detection test: comparison between the Likelihood Ratio Λ(z) and a detection threshold λ:

Λ(z) =
pz(z/H1)
pz(z/H0)

H1
≷
H0
λ ,

Probability of False Alarm (type-I error): Pfa = P(Λ(z) > λ/H0)
Probability of Detection: Pd = P(Λ(z) > λ/H1) for different Signal-to-Noise Ratios (SNR),
When Pfa does not depend on the noise/clutter parameters, the detector is said to be CFAR
(Constant False Alarm Rate).
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Modeling Homogeneous Gaussian Noise/Clutter

Problem to solve in Gaussian environment{
H0: z = y zi = yi i = 1, . . . , n
H1: z = s + y zi = yi i = 1, . . . , n

where y and yi ∼ CN (0m,Σ), i.e. pz(z) = 1
πm |Σ|

exp
(
−zH Σ−1 z

)
Goal: to choose the best hypothesis while minimizing the risk of being wrong (False Alarm) from an observation vector z
=⇒ All is known for Gaussian assumption!

Sample Covariance Matrix (SCM)
When Σ is unknown, the Gaussian environment is modeled through the SCM:

Ŝn =
1
n

n∑
i=1

zi zHi .

Simple Covariance Matrix estimator, Very tractable,
Wishart distributed, Well-known statistical properties: unbiased and efficient.
The SCM is the most likely covariance matrix estimate (MLE) and is the empirical mean of the cross-correlation of n
m-vectors zi where n can represent any samples support (range, time, spatial, angular domain)
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Examples of CFAR Detection Schemes Under Gaussian Noise

• Adaptive Matched Filter [Robey et al. 92]: ΛAMF (z) =

∣∣pH Ŝ−1n z
∣∣2

pH Ŝ−1n p
H1
≷
H0
λAMF :

Pfa = 2F1

(
n −m + 1, n −m + 2; n + 1;−λAMF

n

)
,

• Adaptive Kelly Filter [Kelly 86]: ΛKelly (z) =

∣∣pH Ŝ−1n z
∣∣2(

pH Ŝ−1n p
) (

n + zH Ŝ−1n z
) H1
≷
H0
λKelly :

Pfa =
(

1
λKelly

− 1
)n+1−m

,

• Adaptive Normalized Matched Filter [Scharf 94]: ΛANMF (z) =

∣∣pH Ŝ−1n z
∣∣2(

pH Ŝ−1n p
) (

zH Ŝ−1n z
) H1
≷
H0
λANMF :

Pfa = (1− λANMF )n−m+1
2F1 (n −m + 2, n −m + 1; n + 1;λANMF ) .
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Examples of Gaussian Hypothesis Failure
High Resolution Radars
• Small number of scatterers in the cell under test - Varying number of scatterers from cell to cell - Central Limit Theorem

non valid ⇒ non-Gaussianity
• No validity of conventional tools based on Gaussian statistics [Farina 87, Ovarlez 96, Thesis Jay 02].

Low-Grazing angles Illumination Radar
• Microshadowing ⇒ impulsive clutter [Billingsley 93],
• Transitions of clutter areas, heterogeneity of spatial area under test ⇒ difficulty to set up the detection test λopt and the

Probability of False Alarm depending on the area [Ovarlez 95].

Low-Grazing angle surveillance
Non-Gaussian behavior

83/90

General Introduction
Background on Radar, Array Processing, ...

Background on Signal Processing
Motivations for more robust detection schemes
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Figure: Failure of the Gaussian detector (�g = - log Pfa): (left) Adjustment of
the detection threshold, (right) K-distributed clutter with same power as the
Gaussian noise

) Bad performance of the conventional Gaussian detector in case of
mis-modeling

) Need/Use of non-Gaussian distributions
) Need/Use of robust estimates
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False Alarm regulation problem
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Examples of Gaussian Hypothesis Failure

The SAR images are more and more complex, detailed, heterogeneous. The spatial statistic of
SAR images is not at all Gaussian,
In polarimetry research field, almost all Non-Coherent Polarimetric Decomposition and
classification techniques [Lee and Pottier 09] are generally based on conventional covariance
matrix estimate (covariance or coherency matrix), typically the Sample Covariance Matrix (SCM),
All these techniques may give very different results when using another estimates [Formont 12]
that may fit better to the reality! Are they more physically valid? Which one to choose?
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Examples of Gaussian Hypothesis Failure

7

DETECTION IN HYPERSPECTRAL IMAGES

• ANOMALY DETECTION IN HYPERSPECTRAL IMAGES 
To detect all that is « different » from the background (Mahalanobis distance) - Regulation 
of False Alarm. Application to radiance images. 

• DETECTION OF TARGETS IN HYPERSPECTRAL IMAGES 
To detect (GLRT) targets (characterized by a given spectral signature p) - Regulation of 
False Alarm. Application to reflectance images (after some atmospherical corrections or 
others). 

ground subspace spanned by the columns of B or U Q
[30].

The bar charts in Fig. 11 provide the range of the de-
tection statistic of the target and the maximum value of
the background detection statistics for various back-
grounds. The target-background separation or overlap is
the quantity used to evaluate target visibility enhance-
ment. For example, it can be seen that the ACE detector
performs better than the OSP algorithm for the six data
sets shown.

The expected probability distribution of the detection
statistics under the “target absent” hypothesis can be
compared to the actual statistics using a quantile-quantile
(Q-Q) plot. A Q-Q plot shows the relationship between
the quantiles of the expected distribution and the actual
data. An agreement between the two is illustrated by a
straight line. The Q-Q plots in Fig. 12 illustrate the com-
parison between the experimental detection statistics to
the theoretically predicted ones for the matched filter al-
gorithms. The actual statistics for two different back-
grounds is compared to the normal distribution. A

straight line shown that the postulated model provides a
good fit and therefore can be used to estimate the thresh-
old for CFAR operation.

The previous results dealt with full-pixel or resolved
targets. To evaluate detection performance for subpixel
targets, we have simulated subpixel targets using formula
(3). Subpixel targets were simulated by adding a ran-
domly chosen target pixel from the target pixel set to each
of the background pixels at a constant fraction. The re-
sults shown in Fig. 13, show target-background separa-
bility as a function of the target fill factor a for the ACE
and OSP detectors. Clearly, target visibility improves
with the size of the target. A more detailed comparison of
a large set of detection algorithms is provided in [31]. It
has been shown that taking into consideration target vari-
ability using a subspace model can increase detection per-
formance [32].

When the spectral observation vector x is distributed
as N( , )µ ! , its Mahalanobis distance follows a chi-squared
distribution with L degrees of freedom. By removing the
mean, we obtain the anomaly detector (19). However,
for nonnormal data the distribution of Mahalanobis dis-
tance is not chi-squared. Fig. 14 shows the probability of
false alarm for the three sets shown in Fig. 9 as well as
eight blocks obtained by partitioning this data cube into a
four by two matrix. The figure also shows theoretical pre-
dictions based on a chi-squared and a mixture of two
F-distributions. Evidently, the F-mixture provides a good
description for the body and the tails of the underlying
distribution. We note that if the data follow an elliptical
multivariate t distribution, the Mahalanobis distance fol-
lows a univariate F distribution [33]. The multivariate
normal and t distributions is a special case of the family of
elliptically contoured distributions [33] specified by the
distribution f g T( ) | | {( ) ( )}/x x x= − −− −! !1 2 1µ µ . The
form of function g( ) leads to distributions with heavier
or lighter tails than the normal.

The heavy tails in the univariate distribution of the
Mahalanobis distance imply heavy tails in the multivariate
distribution of the data. Therefore, heavy tails may appear
not only in the quadratic Mahalanobis distance, but in
other linear and quadratic statistics employed in several
widely used [34], [31] target detection techniques.

The family of symmetric α-stable (SαS) distributions
provides a good model for data with impulsive behavior.
They are characterized by a parameterα (characteristic ex-
ponent) that takes values in the range 0 2< ≤α . The value
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The performance evaluation of
detection algorithms in practice
is challenging due to the
limitations imposed by the
limited amount of target data.

[Manolakis 2002]DSO data 2010

RXD CDF

Anomaly Detection (e.g. RXD [Reed and Yu 90]) in Hyperspectral Images: detection of all that is
different from the background (Mahalanobis distance) - Regulation of False Alarm. Application to
radiance images.
Detection of targets in Hyperspectral Images: To detect (GLRT) targets (characterized by a given
spectral signature p) - Regulation of False Alarm. Application to reflectance images (after some
atmospheric corrections).
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Going to Robust Adaptive Detection
Generally, some parameters (e.g. second order statistic Σ) are unknown and cannot be estimated
through Gaussian methodology

ADAPTIVE DETECTORS AND ESTIMATION OF 
THE COVARIANCE MATRIX

Problem: in practice, the covariance matrix M is unknown and has to be perfectly 
estimated

M̂ ???

Span Single Look Complex − Image 1

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

?! R̂

Dense Airborne/Ground Traffic

Inhomogeneous Terrain/Clutter
Large Discretes/Urban Clutter

Real-World Clutter!

11

⇒ Robust Covariance Matrix Estimation

Requirements:
Background modeling: SIRV (K-distribution, Weibull, etc.), CES (Multidimensional Generalized
Gaussian Distributions, etc.),
Estimation procedure: ML-based approaches, M-estimation, LS-based methods, etc.
Adaptive detectors derivation and adaptive performance evaluation.
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Modeling the Background

Complex Elliptically Symmetric (CES) distributions:
Let z be a complex circular random vector of length m. z has a Complex Elliptically Symmetric
distribution (CE (µ,Σ, gz)) if its PDF is [Kelker 70, Frahm 04, Ollila 12]:

gz(z) = π−m |Σ|−1 hz
(

(z− µ)H Σ−1 (z− µ)
)
,

where hz : [0,∞)→ [0,∞) is the density generator, where µ is the statistical mean (generally known
or = 0m) and Σ is the scatter matrix. In general, E

[
z zH
]

= αΣ where α is known.

Large class of distributions: Gaussian (hz(z) = exp(−z), SIRV, MGGD (hz(z) = exp (−zα)),
etc. Validated through several experimentations [Billingsley 93, Ovarlez 95],
Closed under affine transformations (e.g. matched filter),

Stochastic representation theorem: z =d µ +RAu(k) ,
where R ≥ 0, independent of u(k) and Σ = AAH is a factorization of Σ, where A ∈ Cm×k with
k = rank(Σ).
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Modeling the Background
Spherically Invariant Random Vector: a CES subclass
The m-vector z is a complex Spherically Invariant Random Vector [Yao 73, Jay 02] if its PDF can be
put in the following form:

gz(z) = 1
πm |Σ|

∫ ∞
0

1
τm

exp
(

(z− µ)H Σ−1 (z− µ)
τ

)
pτ (τ) dτ , (1)

where pτ : [0,∞)→ [0,∞) is the texture generator.

Large class of distributions: Gaussian (pτ (τ) = δ(τ − 1)), K-distribution (pτ gamma), Weibull
(no closed form), Student-t (pτ inverse gamma), etc.
Main Gaussian Kernel: closed under affine transformations,
The texture random scalar τ is modeling the variation of the power of the Gaussian vector x along
his support (e.g. heterogeneity of the noise along range bins, time, spatial domain, etc.),
Exploitation of the spectral information using the covariance matrix (scatter matrix) Σ,

Stochastic representation theorem: z =d µ +
√
τ Ax , where τ ≥ 0 is the texture,

independent of x and x ∼ CN (0m,Σ).
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Estimating the Covariance/Scatter Matrix: Conventional Estimators
Assuming n available SIRV secondary data zk = √τk xk where xk ∼ CN (0m,Σ) and where τk scalar
random variable.

The Sample Covariance Matrix (SCM) may be a poor estimate of the Elliptical/SIRV
Scatter/Covariance Matrix because of the texture contamination:

Ŝn =
1
n

n∑
k=1

zk zHk =
1
n

n∑
k=1

τk xk xHk 6=
1
n

n∑
k=1

xk xHk ,

The Normalized Sample Covariance Matrix (NSCM) may be a good candidate of the Elliptical
SIRV Scatter/Covariance Matrix:

Σ̂NSCM =
1
n

n∑
k=1

zk zHk
zHk zk

=
1
n

n∑
k=1

xk xHk
xHk xk

,

This estimate does not depend on the texture τk but it is biased and share the same eigenvectors
but have different eigenvalues, with the same ordering [Bausson 07].
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Estimating the Covariance/Scatter Matrix

M-estimators:
Let (z1, ..., zn) be a n-sample ∼ CEm (0m,Σ, gz) (Secondary data).

PDF gz(.) specified: MaximumLikelihood-estimator of Σ: Σ̂ = 1
n

n∑
i=1

−g ′z
(
zHi Σ̂

−1
zi
)

gz
(
zHi Σ̂

−1
zi
) zi zHi ,

PDF gz(.) not specified: M-estimator of Σ: Σ̂ = 1
n

n∑
i=1

u
(
zHi Σ̂

−1
zi
)
zi zHi ,

[Kent et al. 91, Maronna 06, Pascal et al. 08, Mahot et al. 13]
Existence, Uniqueness, Asymptotic Properties,
Convergence of the recursive algorithm, etc.
Several PhD ONERA thesis: E. Jay 02, F. Pascal 06, M. Mahot 12, E. Terreaux 18.
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Examples of M-Estimators

SCM:
u(r) = 1

Huber’s M-estimator:

u(r) =
{

K/e if r <= e
K/r if r > e

Tyler:

u(r) = m
r

Huber = mix between SCM and Tyler [Huber 64],
Tyler and SCM are “not" (theoretically) M-estimators,
Tyler is the most robust while SCM is the most efficient.

21/50 J.-P. Ovarlez - 20 novembre 2019 - Séminaire Physique



Introduction Some Background on Detection Theory Robust Estimation and Detection Applications and Results in Radar ...

Estimating the Covariance Matrix: Tyler’s M-Estimators
Let (z1, ..., zn) be a n-sample ∼ CEm

(
0m,Σ, gz(.)

)
(Secondary data).

Tyler Estimator ([Tyler 87, Pascal 08])

Σ̂FPE = m
n

n∑
k=1

zk zHk
zHk Σ̂

−1
FPE zk

.

The Tyler M-estimator does not depend on the texture (SIRV or CES distributions),

Convergence of the algorithm: Σ̂n+1 = f
(

Σ̂n

)
with f (Σ̂) = m

n

n∑
k=1

zk zHk
zHk Σ̂

−1
zk

and Σ̂0 = Im.

Existence, Uniqueness,
True Maximum Likelihood Estimate when considering textures {τk}k∈[1,n] as unknown
deterministic parameters.
Known asymptotic behavior: Any M-estimator behaves exactly as SCM but with σ1 more
more secondary data (σ1 = (m + 1)/m times more for Tyler): It implies that SCM can be
simply replaced by any M-estimate in previous detectors without changing performance in
Gaussian case (finite distance).
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CES distribution ⇒ two-step GLRT ANMF
Adaptive Normalized Matched Filter detector

H(Σ̂) = ΛANMF (z, Σ̂) =

∣∣∣pH Σ̂
−1

z
∣∣∣2(

pH Σ̂
−1

p
) (

zH Σ̂
−1

z
) H1

≷
H0
λANMF ,

where Σ̂ stands for any M-estimators [Conte 95, Kraut 99].
The ANMF is scale-invariant (homogeneous of degree 0), i.e.
∀α, β ∈ R , ΛANMF (α z, β Σ̂) = ΛANMF (z, Σ̂).
Its asymptotic distribution (conditionally to z!) is known [Pascal 15, Ovarlez 15].

√
n
(

H
(

Σ̂
)
− H(Σ)

)
d−→ CN

(
0, 2σ1 H(Σ) (H (Σ)− 1)2

)
.

Recall for SCM:
√

n
(

H
(
Ŝ
)
− H(Σ)

)
d−→ CN

(
0, 2H(Σ) (H (Σ)− 1)2

)
.

It is CFAR w.r.t the covariance/scatter matrix,
It is CFAR w.r.t the texture.
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Illustrations of the Result on the ANMF
Λ = var

(
H(Σ̂)− H(Σ)

)
. Here Σ̂ = complex Huber’s M-estimator.

Figure 1: Gaussian context, here σ1 = 1.066.
Figure 2: K-distributed clutter (shape parameter: ν = 0.1 and 0.01).
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Validation of theorem (even for small n) Interest of the M-estimators

Performances are slightly the same in Gaussian case
but are clearly better in non-Gaussian case.
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Illustrations of the Result on Pfa

Figure 1: Gaussian context :
Pfa = (1− λANMF )n−m+1

2F1 (n −m + 2, n −m + 1; n + 1;λANMF ) .
Figure 2: K-distributed clutter (shape parameter: ν = 0.1), here σ1 = 1.066 :

Pfa = (1− λANMF )n/σ1−m+1
2F1 (n/σ1 −m + 2, n/σ1 −m + 1; n/σ1 + 1;λANMF ) .
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Illustration of the ANMF CFAR Properties For CES Noise
False Alarm regulation for ANMF built with Tyler’s estimate

100 101 102 103 104 105 106

10!3

10!2

10!1

100

PF
A

Gaussian
K!distribution
Student!t
Cauchy
Laplace

Detection threshold 

CFAR-texture property for the ANMF with Tyler's est.

Σ estimated, n=40, m=10
Σ known (NMF)

(a) CFAR-texture

100 101 102 103 104
10!3

10!2

10!1

100

PF
#

! = 0.01
! = 0.1
! = 0.5
! = 0.9
! = 0.99

:etection thresho=7 

CFAR-matrix property for the ANMF with the Tyler's est.

(b) CFAR-matrix

Figure: Illustration of the CFAR properties of the ANMF built with the Tyler’s estimator, for a Toeplitz CM
whose (i , j)-entries are ρ|i−j|.
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Properties of ANMF-Tyler Detector on Clutter Transitions

K-distributed clutter transitions: from Gaussian to impulsive noise,
Estimation of the covariance matrix onto a range bins sliding window.
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Properties of ANMF-Tyler Detector on Clutter Transitions
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ANMF-Tyler: The same detection threshold is guaranteed for a chosen Pfa whatever the clutter
area,
ANMF-Tyler: Performance in terms of detection is kept for moderate non-Gaussian clutter and
improved for spiky clutter.
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Plan

1 Introduction

2 Some Background on Detection Theory

3 Robust Estimation and Detection

4 Applications and Results in Radar, STAP, SAR imaging, Hyperspectral Imaging
Surveillance Radar against Ground and Sea Clutter
Detection Performance on STAP Data
Detection Performance on SAR Image
Hyperspectral Imaging: Detection and Anomaly Detection
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False Alarm Regulation on THALES Ground Clutter
Data Description

"Range-azimuth" map from ground clutter data collected by a radar from THALES Air Defense, placed 13 meters above
ground and illuminating area at low grazing angle.
Ground clutter complex echoes collected in 868 range bins for 70 different azimuth angles and for m = 8 pulses.
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False Alarm Regulation on THALES Ground Clutter

Data processing
Rectangular CFAR mask 5× 5 for 0 ≤ k ≤ m different steering vectors pk .

pk =



1
exp

(
2iπ(k−1)

m

)
exp

(
2iπ(k−1)2

m

)
...

exp
(
2iπ(k−1) (m−1)

m

)


For each z, computation of associated detectors ΛANMF (Σ̂Tyler ) and ΛANMF (Σ̂NSCM)
Mask moving all over the map.
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False Alarm Regulation on THALES Ground ClutterANMF CFAR PFA REGULATION ON THALES RADAR 
DATA

Application : Adaptive Detection Performances of the GLRT-LQ on

radar data
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Figure: ANMF with Tyler’s M-estimate - False alarm regulation for p0 = (1 . . . 1)T .

Black curve fits red curve until PFA = 10−3 [Ovarlez et al. 16].
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False Alarm Regulation on THALES Ground Clutter
Traitement STAP et modélisation SIRV 27
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de l’ONERA. Dix cibles artificielles dans la même case distance (case 255) mais à
des vitesses différentes ont ainsi été ajoutées dans les données synthétisées. La dimen-
sion des vecteurs STAP est ici de m = M N = 256 alors que le nombre de données
secondaires est K = 410. La règle de Brennan (m > 2 K) et qui garantit, dans le
cas gaussien, une perte maximale de 3 dB, n’est pas respectée. L’utilisation de la pro-
priété de persymétrie permet ainsi d’utiliser virtuellement 2 K données secondaires et
on peut remarquer que les détecteurs persymétriques AMF-SCM et ANMF-PFP amé-
liorent les résultats. La figure ?? présente la carte Doppler-distance d’un des capteurs
(simple transformation de Fourier des données acquises au cours du temps sur un seul
capteur) des données contenues dans la case distance.

Persymmetric Tyler-ANMF and Tyler ANMF on THALES dataset - m = 8, n = 8

Traitement STAP et modélisation SIRV 27
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Figure 8. Courbes de régulation de fausse alarme et de performance de détec-
tion sur les données de THALES (seuil de détection ⌘ = (1 � �)�m en fonc-
tion de la probabilité de fausse alarme) pour les détecteurs ⇤ANMF (cMFP , x) et
⇤ANMF�PFP (cMFP , x). Cas Pfa = 10�2, m = 8 et K = 20

de l’ONERA. Dix cibles artificielles dans la même case distance (case 255) mais à
des vitesses différentes ont ainsi été ajoutées dans les données synthétisées. La dimen-
sion des vecteurs STAP est ici de m = M N = 256 alors que le nombre de données
secondaires est K = 410. La règle de Brennan (m > 2 K) et qui garantit, dans le
cas gaussien, une perte maximale de 3 dB, n’est pas respectée. L’utilisation de la pro-
priété de persymétrie permet ainsi d’utiliser virtuellement 2 K données secondaires et
on peut remarquer que les détecteurs persymétriques AMF-SCM et ANMF-PFP amé-
liorent les résultats. La figure ?? présente la carte Doppler-distance d’un des capteurs
(simple transformation de Fourier des données acquises au cours du temps sur un seul
capteur) des données contenues dans la case distance.

Persymmetric Tyler-ANMF and Tyler ANMF on THALES dataset - m = 8, n = 20
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Detection Performance on THALES Sea Clutter

Non-Stationary and Heterogeneous THALES Sea clutter
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Detection Performance on Simulated Data

Spatially and Spectrally Heterogeneous Strong Clutter
ANMF_PSCM Detection                  ANMF-PFP Detection
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Detection Performance on STAP Data
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N=4       M=64       K=404 N=4       M=64       K=404
Figure: Doppler-angle map for the range bin 255 with n = 404 secondary data, m = 256 [Pailloux 10]
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Detection Performance on SAR Image

Analysis of Performance
• Evaluation the CFAR property of the AMF and ANMF detectors,
• Comparison of the target detection performance between AMF and ANMF.

Dataset from SANDIA National Laboratories Artificial embedded target

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Left: Original SAR Image without target. Right:
SAR image with specific embedded target.

Left: SAR Image of the target. Right: True target
response p in angular and spectral spaces (Nθ = 5

sub-looks, Nf = 5 sub-bands).

37/50 J.-P. Ovarlez - 20 novembre 2019 - Séminaire Physique



Introduction Some Background on Detection Theory Robust Estimation and Detection Applications and Results in Radar ...

Detection Performance on SAR Image
Perfect PFA regulation with ANMF-Tyler but poor PFA regulation for AMF-SCM

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Left: FA Regulation with ANMF-Tyler. Right: FA Regulation with AMF-SCM. Nθ = 5, Nf = 5, K = 88.

Better target detection for ANMF-Tyler [Ovarlez 17, Mian 19]

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: FA Regulation with ANMF-Tyler. Right: FA Regula-
tion with AMF-SCM. N✓ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector).
As it can be observed, these angular and spectral diversities defocus
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10�3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection test, Pfa = 2.6 10�3.

5. CONCLUSION AND FUTURE WORKS

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10�3.

Fig. 10. Left: SPAN detection test, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10�3.

Fig. 11. Left: Mahalanobis-TE detection test, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10�3.

Left: Full AMF-SCM detection test, Pfa = 1. Right: AMF-SCM
detection test, Pfa = 2.6 10−3.

Left: ANMF-Tyler detection test, Pfa = 1. Right: ANMF-Tyler
detection test, Pfa = 2.6 10−3.
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Hyperspectral Imaging
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• Anomaly Detection
To detect all that is "different" from the background (Mahalanobis distance) -
No information about the targets of interest available [Frontera 16].

• "Pure" Detection
To detect targets characterized by a given spectral signature p - Regulation of False Alarm [Ovarlez 11,
Frontera 17].
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Hyperspectral Imaging

ANMF and M-estimates for Hyperspectral target detection [Frontera 14]
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, where σ1 = (m + 1)/m .

This two-step GLRT test is homogeneous of degree 0: it is
independent of any particular Elliptical distribution: CFAR texture
and CFAR Matrix properties,
Under homogeneous Gaussian region, it reaches the same
performance than those of the detector built with the SCM
estimate.

33

ADAPTIVE DETECTION IN ELLIPTICAL  
BACKGROUND

 This two-step GLRT test is homogeneous of degree 0: it 
is independent of any particular Elliptical distribution: 
CFAR texture and CFAR Matrix properties, 

 Under homogeneous Gaussian region, it reaches the 
same performance than those of the detector built with 
the SCM estimate.

ADAPTIVE NORMALIZED MATCHED FILTER BUILT WITH ANY M-ESTIMATES

where the parameter s1 is very close to 1 but depends 
on the M-estimator:
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Hyperspectral Imaging

37

Original data set

Non-Gaussian region

Extracted region :  
‣100 x 100 pixels, 
‣5 bands, 
‣Sliding Window: 19x19

Selected bands

41/50 J.-P. Ovarlez - 20 novembre 2019 - Séminaire Physique



Introduction Some Background on Detection Theory Robust Estimation and Detection Applications and Results in Radar ...

Hyperspectral Imaging (HSI)
GLRT RX Anomaly Detector: Mahalanobis Distance [Reed 90]

Binary Hypotheses test:
{ H0 : c = b c1, . . . , cn

H1 : c = A p + b c1, . . . , cn
where b ∼ CN (0m,Σ) and ci ∼ CN (0m,Σ), A

known and p unknown

36

[I.S. Reed and X. Yu, 90]

 Derived and valid only under Gaussian hypotheses,  
 Its false alarm rate is independent of the covariance matrix: CFAR-matrix property in homogeneous 

Gaussian data.

GLRT RX ANOMALY DETECTOR: Mahalanobis Distance

(Hotelling’s T-squared distributed)

Binary Hypotheses test
⇢

H0 : c = b, c1, c2, . . . , cK

H1 : c = b + Ap, c1, c2, . . . , cK
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A known, p unknown
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Figure 1.1: Graphical interpretation in two-dimensional space for the ⇤KellyAD detector.

samples. Hence, N +1 vectors are available in the latter and ⇤KellyAD ⌃̂ does not represent anymore
a benchmark structure.

The quadratic form in (1.15) corresponds to the Mahalanobis distance detailed in Mahalanobis
(1936). It performs statistically as an outlier detector. When Gaussian assumption is valid, the
quadratic form (x�µ)H ⌃�1 (x�µ) follows a �2 distribution for ⌃ and µ perfectly known. In case
the parameter ⌃ is replaced by its MLE, (??), the distribution of the quadratic form:

⇤KellyAD ⌃̂ = (x � µ)H ⌃̂
�1

SCM (x � µ) ⇠ T 2 , (1.16)

becomes a Hotelling T 2 distribution and thus,

N � m + 1

m N
⇤KellyAD ⌃̂ ⇠ Fm,N�m+1 (1.17)

where Fm,N�m+1 is the non-central F -distribution with m and N � m + 1 degrees of freedom
Weisstein (2010). For high values of N, (N > 10 m), the distribution can be approximated by the
�2 distribution.

As discussed above, when both covariance matrix and mean vector are unknown, they can be
replaced by their estimates leading to:

⇤KellyAD ⌃̂,µ̂ = (x � µ̂)T ⌃̂
�1

(x � µ̂)
H1

?
H0

� . (1.18)

The distribution of this detection test is given in the next Proposition.

K�m
m (K+1) ⇤(c) ⇠ Fm,K�m

(When K tends to infinity, this test becomes chi-squared distributed)

denoting µ̂ =
1
n

n∑
i=1

ci

RXDSCM(c) = (c− µ̂)H Ŝ−1n (c− µ̂)
H1
≷
H0
λ

(Hotelling T 2 distributed)
n −m

m (n + 1)
RXDSCM(c) ∼ Fm,n−m

Derived and valid only under Gaussian hypotheses,
Its false alarm rate is independent of the covariance matrix: CFAR-matrix property in homogeneous
Gaussian data.
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Hyperspectral Imaging

Extended GLRT RX Anomaly Detector: Mahalanobis Distance [Frontera 14]

Binary Hypotheses test:
{ H0 : c = b c1, . . . , cn

H1 : c = A p + b c1, . . . , cn
where b ∼ CE(µ,Σ, gz) and ci ∼ CE(µ,Σ, gz),

A known and p unknown

36

[I.S. Reed and X. Yu, 90]

 Derived and valid only under Gaussian hypotheses,  
 Its false alarm rate is independent of the covariance matrix: CFAR-matrix property in homogeneous 

Gaussian data.

GLRT RX ANOMALY DETECTOR: Mahalanobis Distance

(Hotelling’s T-squared distributed)

Binary Hypotheses test
⇢

H0 : c = b, c1, c2, . . . , cK

H1 : c = b + Ap, c1, c2, . . . , cK

fc(c) =
1

⇡m |M|exp
�
�(c � µ)H M�1 (c � µ)

�

A known, p unknown

⇤(c) = (c � µ̂SCM )H M̂�1
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Figure 1.1: Graphical interpretation in two-dimensional space for the ⇤KellyAD detector.

samples. Hence, N +1 vectors are available in the latter and ⇤KellyAD ⌃̂ does not represent anymore
a benchmark structure.

The quadratic form in (1.15) corresponds to the Mahalanobis distance detailed in Mahalanobis
(1936). It performs statistically as an outlier detector. When Gaussian assumption is valid, the
quadratic form (x�µ)H ⌃�1 (x�µ) follows a �2 distribution for ⌃ and µ perfectly known. In case
the parameter ⌃ is replaced by its MLE, (??), the distribution of the quadratic form:

⇤KellyAD ⌃̂ = (x � µ)H ⌃̂
�1

SCM (x � µ) ⇠ T 2 , (1.16)

becomes a Hotelling T 2 distribution and thus,

N � m + 1

m N
⇤KellyAD ⌃̂ ⇠ Fm,N�m+1 (1.17)

where Fm,N�m+1 is the non-central F -distribution with m and N � m + 1 degrees of freedom
Weisstein (2010). For high values of N, (N > 10 m), the distribution can be approximated by the
�2 distribution.

As discussed above, when both covariance matrix and mean vector are unknown, they can be
replaced by their estimates leading to:

⇤KellyAD ⌃̂,µ̂ = (x � µ̂)T ⌃̂
�1

(x � µ̂)
H1

?
H0

� . (1.18)

The distribution of this detection test is given in the next Proposition.

K�m
m (K+1) ⇤(c) ⇠ Fm,K�m

(When K tends to infinity, this test becomes chi-squared distributed)

RXDM−est(c) = (c− µ̂)H Σ̂
−1

(c− µ̂)
H1
≷
H0
λ

where Σ̂ and µ̂ are M-estimates
of the location and scale

Derived and valid for any Elliptical Contoured Distributions,
Its false alarm rate unfortunately depends on texture statistic of the data.
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Anomaly Detection Results on Artificial Targets
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Results obtained with artificial targets

Original image (Forest Region) Target Spectrum 

50 x 50 pixels, 126 spectral bands
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Anomaly Detection Results on Artificial Targets

Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 9, n = 80, PFA = 0.03).

Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 126, n = 288, PFA =
0.03).
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Galaxies Anomaly Detection Results on MUSE data
Problem of detecting galaxies in HS MUSE (Multi Unit Spectroscopic Explorer) data (465-930 nm)

Classical RXD Muse Image Extended RXD

MULTI UNIT SPECTROSCOPIC EXPLORER (MUSE)

41

(a) MUSE data cube (b) Classical RX detector (c) RX detector built the FP estimates

Fig. 3. Classical and Fixed-point anomaly detection in a hyperspectral image of 300⇥ 300 in 3578 channels. See details in the
text of Section 5.
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MUSE images:  
300 x 300 pixels,  

3578 spectral bands

Problem of detecting galaxies in HS MUSE (Multi Unit Spectroscopic Explorer) data (465- 930 nm) 
)

Classical RX 
Detector

Enhanced RX 
Detector

RXDSCM = (c � µ̂SCM )H M̂�1
SCM (c � µ̂SCM ) RXDFP = (c � µ̂FP )H M̂�1

FP (c � µ̂FP )RXDSCM(c) 300 x 300 pixels RXDTyler (c)
3578 spectral bands

Better detection and False Alarm regulation with Tyler estimate (same Pfa).
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