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Context: The Radar detection problem

Primary goal of Radar systems: detect targets.

Emit signal, and search for echoes in received signal.

Received signal depends on unknown target parameters θ.

For practical reasons, tests are run for fixed values of parameters θ0 in a
Grid G = {k∆, k ∈ [0 . . N − 1]} , with N the number of samples and ∆
the sampling interval. Cell : [θ0 − ∆/2, θ0 + ∆/2].

In real conditions, there is no reason to have θ = θ0. We have mismatch :
θ 6= θ0, and performance derived under on-grid model is not met.

This motivates the search of a robust detection scheme.
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The Radar detection problem

The classical Radar detection problem is the following binary Hypothesis Test:{
H0 : r = n
H1 : r = α s(θ) + n , where

r ∈ CN is the observation,

s(θ) ∈ CN is the signal echo reflected by a target with parameters θ
(range, angle, Doppler...),

α ∈ C is the complex amplitude of the received signal,

n ∈ CN is the additive noise vector, independent of the source signal.
n ∼ CN (0, σ2 Γ).

Here the signal s(θ) follows the general spectral analysis model (angle or
Doppler shift in Radar):

s(θ) =
1√
N

[
1, e2iπθ, . . . , e2iπ(N−1)θ

]T
.

with ∆ = 1/N: grid vectors are orthogonal.
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The Generalized Likelihood Ratio Test

The GLRT is:

Λ(r) =
max
λ1
fH1(r)

max
λ0
fH0(r)

H1
≷
H0

η.

where
for i ∈ {0, 1}, fHi is the density function of r under Hi and λi
are the unknown parameters under Hi,
η guarantees a fixed Probability of False Alarm (PFA).

When λ1 = {σ, α} and λ0 = {σ}, with θ known, the GLRT is the
following Normalized Matched Filter (NMF)
[Scharf and Lytle, 1971]:

tΓ(r, θ) =

∣∣∣s(θ)H Γ−1 r
∣∣∣2(

s(θ)H Γ−1 s(θ)
) (

rH Γ−1 r
) H1

≷
H0

η.
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Impact of the off-grid target on NMF

Mismatch δ = θ− θ0
Angle mismatch creates a
degradation of the NMF
response even without noise

When θ uniformly
distributed in a cell it can be
shown PD 9 1

[Rabaste et al., 2016]
Even worse when Γ 6= I
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Existing Solutions

Extension of the GLRT to off-grid targets:

GLRT(r, θ0) = max
θc∈[θ0−∆/2,θ0+∆/2]

tΓ(r, θc)
H1
≷
H0

η.

The best PD, no closed form available, threshold unknown,
precise approximation can be costly.

Existing sub-optimal cost-efficient solutions include
Oversampling approximate GLRT, threshold unknown
Using DPSS subspace to approximate the cell structure,
analytical threshold [Bosse and Rabaste, 2018]
Detection with bounded mismatch, not yet suited to low PFA
Radar context [Besson, 2006]

These solutions do not correct the convergence issue for all Γ
and are not always near GLRT.
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Proposed Monopulse Inspired Scheme

Monopulse
traditionally used to
estimate target
parameters from a
single pulse
[Mosca, 1969].
The idea is to
combine two tests in
a function h that
carries info about θ.
Used with noise, h
can give an
approximation δ̂
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Monopulse Functions

Classically in monopulse, the function h is:

hΓ,θ0(r) =
tΓ

(
r, θ0 −

∆

2

)
− tΓ

(
r, θ0 +

∆

2

)
tΓ
(
r, θ0 − ∆

2

)
+ tΓ

(
r, θ0 +

∆

2

) .

mismatch: δ = θ− θ0, noise-free function g:

gΓ,θ0(δ) = hΓ,θ0(s(θ0 + δ))

Goal: compute δ̂ by inverting g(δ) thanks to h applied on
noisy signal r.
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Choice of g

Γ(ρ) = T
([
1 ρ . . . ρN−1

])
gΓ,θ0 needs to be
invertible. This is not
always the case.

We use gI in the
following even with
colored Gaussian
noise. We note it g.

Candidate g(.) functions for
N=10, θ0 = 0.
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The Procedure

The test procedure is the following, for every θ0 of the grid:

The test procedure

1 compute tI

(
r, θ0 −

∆

2

)
and tI

(
r, θ0 +

∆

2

)
;

2 compute δ̂ = g−1 (hI,θ0
(r));

3 run the final tests tΓ
(
r, δ̂+ θ0

) H1

≷
H0

ηg.

the statistic of tΓ
(
r, δ̂+ θ0

)
depends on the non-independent

random variables r and δ̂ =⇒ no closed form available for ηg
ηg is approximated with Monte Carlo simulations
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Properties of this approach

Let us describe some properties of this approach:

Only 2N tests are run for the whole spectral space, and the
rest of the computations are simply lookup table operations,
When the SNR tends to infinity, θ̂ = θ and the Probability of
Detection (PD) tends to 1,
When Γ = I, θ̂ is an approximate MLE and our test is an
approximate GLRT [Mosca, 1969],
When Γ 6= I, our test is still close to the GLRT in term of
performance.
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Detector Comparison

We compare our scheme to detectors of similar cost:
An oversampled NMF with 2 tests per cell,
A DPSS NSMF with subspaces of dimension 2

We also compare it to :
The classical NMF
An approximate GLRT using 50 tests per cell
The Oracle detector, which knows where the target is and as
such is the best detector possible
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Simulation under white noise

Target parameter θ drawn at
random uniformly.
Our detector converges to 1
asymptotically and
outperforms other detectors
in the same computational
range. 0 10 20 30
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Simulation under colored noise

Target parameter θ drawn at
random uniformly in
[θ0 − ∆/2, θ0 + ∆/2].
In this cell, our detector
stays close to the GLRT and
does greatly better than the
other detectors, which do
not converge to 1.
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Conclusions

We introduced a new detector that approximates GLRT under
white noise for off-grid targets.

simply based on the well-known monopulse procedure,
classically used in array processing.

performance is close to GLRT while being cost-efficient
Future works will investigate the performance of our
detector under adaptive context, other noise models, and
PFA-threshold relationship.
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The End

Thank You For Listening !
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