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m Emit signal, and search for echoes in received signal.
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= In real conditions, there is no reason to have = . We have mismatch :
& o, and performance derived under on-grid model is not met.

m This motivates the search of a robust detection scheme.
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The classical Radar detection problem is the following binary Hypothesis Test:

Ho:r=n - where
Hi:r= s()+n » wher

m r 2 CN is the observation,

s( ) 2 CN is the signal echo reflected by a target with parameters
(range, angle, Doppler...),

m 2 Cis the complex amplitude of the received signal,

m n 2 CN is the additive noise vector, independent of the source signal.
n CN(Q©; 2 ).
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Ho:r=n - where
Hi:r= s()+n » wher

m r 2 CN is the observation,

s( ) 2 CN is the signal echo reflected by a target with parameters
(range, angle, Doppler...),

m 2 Cis the complex amplitude of the received signal,

m n 2 CN is the additive noise vector, independent of the source signal.
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Here the signal s( ) follows the general spectral analysis model (angle or
Doppler shift in Radar):

with = 1=N: grid vectors are orthogonal.



The GLRT is:
max f, (r) H,

(=

= ————_ 7
max fy, (1) H,
0
where

m for i 2 f0; 19, f, is the density function of r under H; and ;
are the unknown parameters under Hj,

m guarantees a fixed Probability of False Alarm (PFA).
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where

m fori 2 f0; 1g fy, is the density function of underH; and ;
are the unknown parameters unddk,

m guarantees a xed Probability of False Alarm (PFA).
When ;=f; gand g=f g with known, the GLRT is the
following Normalized Matched Filter (NMF)

[Scharf and Lytle, 1971]:
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m Mismatch = -

m Angle mismatch creates a
degradation of the NMF
response even without noise
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m Angle mismatch creates a

degradation of the NMF
response even without noise

= When uniformly
distributed in a cell it can be
shownPp 9 1
[Rabaste et al., 2016]

m Even worse when 6 |
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precise approximation can be costly.
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GLRT(r; o) = max t(r; ¢) ?1 :
o2[ o- =2 o+ =2] Ho

The bestPp, no closed form available, threshold unknown,
precise approximation can be costly.
m Existing sub-optimal cost-e cient solutions include
m Oversampling approximate GLRT, threshold unknown
m Using DPSS subspace to approximate the cell structure,
analytical threshold [Bosse and Rabaste, 2018]
m Detection with bounded mismatch, not yet suited to low PFA
Radar context [Besson, 2006]
m These solutions do not correct the convergence issue for all
and are not always near GLRT.



= Monopulse
traditionally used to
estimate target
parameters from a
single pulse
[Mosca, 1969].

m The idea is to
combine two tests in
a functionh that
carries info about .

m Used with noiseh
can give an
approximation”
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m mismatch: = - o, noise-free functiony:

9:,()=h;(s(o+ )

= Goal: compute by invertingg( ) thanks toh applied on
noisy signatr.
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always the case.
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® g ., needs to be
invertible. This is not
always the case.

= We useg, in the
following even with
colored Gaussian
noise. We note ig.

Candidate g(:)
N:J.O, 0= 0.

functions for



m The test procedure is the following, for every of the grid:

~ The test procedure

computet; r; o- andt, r; o+ ) ;
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m The test procedure is the following, for every of the grid:

~ The test procedure S

computet, r; o- 2 andt; r; o+ > ;

compute” = g~ (h;. ,(r));

El run the naltestst r;"+ o 2?2 .

L J

m the statistic oft r;"+ ( depends on the non-independent
random variables and” =) no closed form available for

m 4 is approximated with Monte Carlo simulations



Let us describe some properties of this approach:

m Only 2N tests are run for the whole spectral space, and the
rest of the computations are simply lookup table operations,

= When the SNR tends to infinity, * = and the Probability of
Detection (PD) tends to 1,

= When =1, " is an approximate MLE and our test is an
approximate GLRT [Mosca, 1969],

m When & I, our test is still close to the GLRT in term of
performance.



We compare our scheme to detectors of similar cost:
m An oversampled NMF with 2 tests per cell,
m A DPSS NSMF with subspaces of dimension 2



We compare our scheme to detectors of similar cost:
m An oversampled NMF with 2 tests per cell,
m A DPSS NSMF with subspaces of dimension 2
We also compare it to :
m The classical NMF
= An approximate GLRT using 50 tests per cell

m The Oracle detector, which knows where the target is and as
such is the best detector possible
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m Target parameter drawn at
random uniformly in
[o— =2, o+ =2]

m In this cell, our detector
stays close to the GLRT and
does greatly better than the
other detectors, which do
not converge to 1.
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white noise for o [=gkid targets.
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classically used in array processing.
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We introduced a new detector that approximates GLRT under
white noise for o [=gkid targets.

m simply based on the well-known monopulse procedure,
classically used in array processing.

= performance is close to GLRT while being cost-e [cieht

m Future works will investigate the performance of our
detector under adaptive context, other noise models, and
PFA-threshold relationship.




Thank You For Listening !




[Bandiera et al., 2009] Bandiera, F., Orlando, D., and Ricci, G. (2009).
Advanced Radar Detection Schemes Under Mismatched Signal Models.
Morgan & Claypool publishers.

[Besson, 2006] Besson, O. (2006).
Detection of a signal in linear subspace with bounded mismatch.
Aerospace and Electronic Systems, IEEE Transactions on, 42(3):1131-1139.

[Bosse and Rabaste, 2018] Bosse, J. and Rabaste, O. (2018).
Subspace rejection for matching pursuit in the presence of unresolved targets.
Signal Processing, IEEE Transactions on, 66(8):1997—2010.

[Bosse et al., 2020] Bosse, J., Rabaste, O., and Ovarlez, J.-P. (2020).
Adaptive subspace detectors for off-grid mismatched targets.
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4777—-4780.

[Chaumette, 2004] Chaumette, E. (2004).
Contribution a la caractérisation des performances des problemes conjoints de détection et
d’estimation.
PhD thesis, Cachan, Ecole Normale Superieure, Gif-sur-Yvette, France.

[Ciuonzo et al., 2016] Ciuonzo, D., De Maio, A., and Orlando, D. (2016).
A unifying framework for adaptive radar detection in homogeneous plus structured interference - part
II: Detectors design.
Signal Processing, IEEE Transactions on, 64:2907—2919.

[Conte et al., 1995] Conte, E., Lops, M., and Ricci, G. (1995).
Asymptotically optimum radar detection in compound-Gaussian clutter.
Aerospace and Electronic Systems, IEEE Transactions on, 31(2):617—-625.

[Mosca, 1969] Mosca, E. (1969).
Angle estimation in amplitude comparison monopulse systems.
Aerospace and Electronic Systems, IEEE Transactions on, AES-5(2):205-212.

[Ollila et al., 2012] Ollila, E., Tyler, D. E., Koivunen, V., and Poor, H. V. (2012).
Complex elliptically symmetric distributions: Survey, new results and applications.
Signal Processing, IEEE Transactions on, 60(11):5597 —5625.



[Pascal et al., 2006] Pascal, F., Ovarlez, J.-P., Forster, P., and Larzabal, P. (2006).
On a SIRV-CFAR detector with radar experimentations in impulsive noise.
In European Signal Processing Conference, EUSIPCO’06, Florence, Italy.

[Rabaste et al., 2016] Rabaste, O., Bosse, J., and Ovarlez, J.-P. (2016).
Off-grid target detection with Normalized Matched Subspace Filter.
In 24th European Signal Processing Conference (EUSIPCO), pages 1926—1930.

[Rabaste and Trouve, 2014] Rabaste, O. and Trouve, N. (2014).
Geometrical design of radar detectors in moderately impulsive noise.
Aerospace and Electronic Systems, IEEE Transactions on, 50(3):1938-1954.

[Scharf and Friedlander, 1994] Scharf, L. L. and Friedlander, B. (1994).
Matched subspace detectors.
Signal Processing, IEEE Transactions on, 42(8):2146—2157.

[Scharf and Lytle, 1971] Scharf, L. L. and Lytle, D. W. (1971).
Signal detection in Gaussian noise of unknown level: an invariance application.
Information Theory, IEEE Transactions on, 17:404—411.



	Problem formulation
	Model under study
	GLRT
	Off-Grid

	A monopulse-based solution
	Definitions
	The Procedure
	Properties

	Numerical Results
	Detector Comparison
	Simulation under white noise

	Bibliography

