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ABSTRACT significantly decreases. For that purpose, non-Gaussian mo

. : Is for the clutter have to be considered. In the literatdre o
Reducing the number of secondary data used to estimate the

Clutter Covariance Matrix (CCM) for Space Time Adaptive (r;:)(:grvdeittiﬁgc()gglg ([azs]ng;:tloer:{etraﬁlSﬁzggﬁglrl){r:gzlrasmi
Processing (STAP) techniques is still an active reseagb.to 9 y

Low rank CCM estimates have already been proposed bL[jatropemes and for their good fitting with real data [3]. This

. modeling includes classical distributions as for exampke t
only for homogeneous and Gaussian clutter. We propose 9 b

this paper to extend the low-rank CCM methods for heterogegaussmn distribution, the K-distribution or the Weibusd

neous and/or non-Gaussian clutter. We derive a new detectg}buuon'

based on low-rank techniques and exploiting propertiekef t One of the main challenging problem in STAP detection
Normalized Sample Covariance Matrix (NSCM). This detecds to estimate the Clutter Covariance Matrix (CCM); better
tor is shown to exhibit a smaller SNR loss than classical STABhe accuracy of the estimate, better the detection perfacma
detectors. Moreover, the new detector has a texture-CFARhe CCM is estimated from signal-free and independent data,
property with respect to non-Gaussian SIRV model and hagalled the secondary data. Under non-Gaussian clutter as-
more robust behavior when some targets are present in tffgimptions, this raises several difficulties. First, theetwet
secondary data. We also give experimental comparison r@eneity of the cluter deteriorates the CCM estimation accu

sults between the classical STAP detectors and the new ofi@cy- Indeed, if the secondary data do not result from the
for STAP data. same parametrized distribution, i.e. the same covariarece m

trix, this estimation process makes no sense. On the other
Index Terms— STAP, non-homogeneous and low rank hanq the secondary data may contain parts of the target (e.g
cl_utter, CFAR detector, Normalized Sample Covariance Ma‘sidelobes) present in the range cell under study, evensf thi
trix. problem can be partly avoided with guard cells. These two
problems show the necessity of a robust CCM estimator and,
1. INTRODUCTION as a consequence, the robustness of the STAP detector. This
is the purpose of this paper.

Space Time Adaptive Processing (STAP) is a recent tech- | this paper, to overcome the problem of clutter het-
nique [1] used in airborne phased array radar to detect mo¥syogeneity, we propose to use the Normalized Sample Co-
ing target embedded in an interference background such ggriance Matrix (NSCM) [4] which is invariant to the clutter
jamming or strong clutter. While conventional radars are Capower variations (texture), while for the problem of target
pable of detecting targets both in the time domain related t@ontamination, we propose a Low Rank (LR) [5] approach
target range and in the frequency domain related to targgjhich requires fewer secondary data for the CCM estima-
velocity, STAP uses an additional domain (space) related tgon - The combination of these two techniques leads to a
the target angular localization. The consequence is a tWQyey improved detector, called the Low Rank-Normalized
dimensional adapFive filterin_g technique whigh uses jgintl Sample Covariance Matrix Test (LR-NSCMT). Then, the sta-
temporal and spatial dimensions to suppress interferemte aristical analysis of this detector provides the Constaré=a
to improve target detection. Recently, STAP can be jointlys|arm Rate (CFAR) properties with respect to the texture
used with High Resolution Synthetic Aperture Radar (SAR)ng, asymptotically, in term of the CCM. Moreover, the LR-
imaging waveforms for a better classification of the movingyscmT is applied to realistic STAP data (built from a true

target. Butin this case, the widely used hypothesis of a Gaugery High Resolution SAR image) and its robustness to target
sian noise is not valid anymore and detection performancgyniamination is validated.

The authors thank the CELAR Agency for the STAP data. The paper is organized as follows: Section 2 gives the



problem statement while Sections 3 and 4 contain the maimhis test has interesting properties: it is CFAR with regard
contributions. First, we derive the LR-NSCMT and we ana-to the texture distribution and a closed-form relationghép
lyze its statistical properties and then, the detector diegp  tween the Probability of False Alarm (PFA) and the threshold
to real STAP data. Finally, Section 5 concludes this work.  \ has been derived.
But, in practice,M is generally unknown and has to be
2 PROBLEM STATEMENT estimated from the secondary data The CCM estimate is
denotedM. Then, test (3) may be rewritten in its adaptive

The problem of STAP [1] is considered when an airborneversion by replacingvI by its estimatéVl. In this case, and
radar is used to detect a moving target. We focus here withodier Gaussian clutter, it is well known that the Reed-Maflett
loss of generality on GMTI (Ground Target Moving Indicator) Brennan's rule ensures a SNR Loss equad tiB for N, =
applications for which illumination is made across the fiyin 2NV M.

path. Typically, the radar receiver consists of an arrajof Let A, with 1 < n < NM be the CCM eigenvalues. The
antenna elements collectidg pulses in a coherent process- CCM is well known to exhibit a low rank << VM provided
ing interval. We are interested in detecting a complex digna by Brennan’s rule [10]. This low rank assumption will be
corrupted by an additive SIRV clutteiin a N M/-dimensional made in the following:

complex vectory. The complex signal is parameterized by

the target characteristics: the target amplituge the nor- ALyces A 2> Ari1 = = AN (4)

malized Doppler frequency, and the azimuthal ang of .y o0k clutter STAP context [5], let us denoteldy

t_he target. For a given target range bin u nde.r test, the deteﬁwe estimated projector onto the clutter subspace, i.esutthe
tion scheme can be stated as the following binary hypothesis

. Space spanned by the eigenvectors associated togeatest
test: : . .
eigenvalues. The inverse CCM may then be approximated as

Hy:y=c yvi=c; i=1,...,Ng (1) follows (up to a scal factor):
Hlly:S+C Yi =¢C; izl,...,Ns ’ “ ~
M~ o Iy — I (%)
wherey; are theN, signal-free independent measurements, o . N _
i.e. the secondary data, used to estimate the CCM. By substitutingl v, — II. for M~! in Eq. (3), we obtain a
. . H
Under the hypothesi#/; , it is assumed that the observed new testh (1., 0, f) = A(Iy s — T, 0, ) > N

data consists in the sum of a sigeak «g p(6o, fo) and clut- H,

0
This new test has several advantages: the first one is that

terc, wherep(6y, fo) is the classical complex steering vector
the SNR loss has been shown to be roughly equal ¢

andqy is the signal complex amplitude. The parametgrs : )
6, anday are unknown. when N, = 2r in the case of homogeneous Gaussian sec-

The clutter is modeled in this paper as a SIRV, a non_ondary data[11, 12]. The second one concerns the posgibilit
homogeneous Gaussian process with random power: i{Qr the datay; to be corrupted by the S'Q”a' without a strolng_
randomness is induced by spatial variation in the radaf€crease of performance when the signal to clutter ratio is
backscattering. A SIRV [2] is the product of the squarelow [13]..Th|s allows to have firstly a significant reductioh o
root of a positive random variable(called the texture) with e réquired number of secondary data and, secondly, Fobust
unknown Probability Density Function (PDF)7), and a €SS to data corrupted by a target. _ _

N M-dimensional independent complex Gaussian vestor Th|§ paper proposes a new method to estimate the projec-
(called thespeckle), with zero-mean and covariance matrix (©F Ilc in the case of a non-homogeneous clutter.
M = E(xx) (# denotes the conjugate transpose operator):

c=+T1x 2
) o i ) Let us first recall the common way to estimate the projector
Note that the covariance matrix is normalized according tqg in the case of homogeneous clutter. The Sample Covari-

Tr(M) = N M [6] for identifiability considerations. i i
Under hypothese#l, and Hy, the observations PDF de- ance Matrix (SCM) is computed from secondary data

pends on several unknown quantities: the amplituglethe L
target parameterg, and fy, the texture PDFp(7) and the Moy = - ZW YzH )
=1

3. ESTIMATION OF Il¢

covariance matriXMl. Therefore, a Generalized Likelihood
Ratio Test (GLRT) is usually developed. The major difficulty
comes from the estimation of the texture Probability Densit )
Function (PDF). WheiM is known, this problem was solved The Eigenvalue Value Decomposition (EVD) Mscs
i(g a giﬁe_re)nt ways in [7, 8] (BORD) and [9] (GLRT - Linear s next performed:

uadratic):

0 HMfl 2 H, ~ 2’)“ 0
A(Mfl,G,f) = max P, f) | 5 A (3) Mgscym = (UT UQ) < 0 N > (U,- Uo)H, (7)
0

0.f (p(6,)EM~1p(0, f))(yEM~1ly)




whereU,. andUj are respectively twON M x r) andN M x The STAP data are provided by the french DGA/CELAR’s
(NM — r) unitary matrices X, = diag{Xl, . XT} and simulator that allows to synthesize, in side looking configu
o = diag{Ar41,...,Anas} are the matrices of the esti- ration, STAP datacubes from very high resolution RAMSES

mated eigenvalues. From the low rank clutter assumptiorSynthetic Aperture Radar (SAR) [15]. The number of sen-

we have the following eigenvalue property;,...,\, >  SorsisN = 4 and the number of coherent pulses can be up
MArt1s-- -, Anar. Next, we obtain the estimated projector ontoto M = 64. The center frequency and the bandwidth are
the clutter subspace [13]: respectively equal t¢y, = 10 GHz andB = 5 MHz. The
radar velocity is given by = 100 m/s. The inter-element
I.scy = U, Uf’ (8) spacing isd = 0.3 m and the pulse repetition frequency is

fr = 1kHz. The value of parametet is therefore equal to
The resulting Low Rank Sample Covariance Matrix Test (LR-2/3 and the estimated clutter rank is here equal to 46 (for
SCMT) becomes: M = 64) in comparison to the full size of clutter covariance
X ) R o matrix, M N = 256. For this particular STAP datacube,
Arr—scmr(Mesen; 0, f) = AAnm — esonm, 9, f) 5 A" (9 clutter statistic is closer to Gaussian's one than SIRV's.on
o ’ In this scenario, three targets are presetitm(s, 0 deg, bin
In the case of non-homogeneous clutter, it is well-known thaz16) ¢ my/s, 0 deg, bin 256) and £4 m/s, 0 deg, bin 296).
the SCM is not a good estimate of the clutter covariance marpjs allows to compare performance of the three detectors
trix. As a consequence, the same conclusion holds for thg . A, . <1+ and Ayp_yscar for the range bin

estimatd I sca of IL.. In heterogeneous clutter modeled by p56 nder test when the secondary data are contaminated by
SIRV processes, the NSCM is a very interesting alternative tino targets located in range bins 216 and 296.

Mscwm: N . Figure 1 shows the results afsc s (result of Ay scarr
Myscy = M5 y;Iyi o) Is quite the sameNr—scmr andArr—nscur When the
Ns i3y v targets in range bins 216 and 296 are removed from secondary

The statistical properties Iy sc have been studied in data. As the number of secondary dataNis = 410 <
detail in [14]. In this paper it was shown that, despite its2/V}, performance ofAscar detector is poor but the tar-
bias, E(Myscas) has the same eigenvectors as the CCMJet can still be detected. Results of both low rank detectors
M,. The associated eigenvalues are different, but their o2"® much better. As clutter is homogeneous, their restats ar
dering and their multiplicity are identical. Thereforeetpro- the_ same. This is the first advantage of I_ow rank detectors
jector Iy s built from the NSCM (10) using steps (7) Which need less secondary data for an equivalent perforenanc
and (8) is a good candidate for estimatifig in the case of (27 < 2N M). R R
non-homogeneous clutter. Moreover, this estimate isyeasil ~ Figure 2 shows the results &fscrr, ALr—scur and

shown to be consistent in our SIRV framework: Arr-nNscmr When all secondary data are considered. First,
it can be noticed that the target response is not detected any
Movsony —— I, (11) more byAscamr due to the presence of the target contami-

nation in the secondary data. Perforrqancégﬁ_gc MT IS
whenN,; — oco. This new estimate of the projector leads to adegraded: in comparison to the previousg_scarr perfor-
detection test that we call the Low Rank Normalized Samplenance without contamination, there is a loss of 6 dB but the

Covariance Matrix Test (LR-NSCMT): target of interest is still detected. Actually, a part of tamget
X R R o in secondary data is estimated in the orthogonal clutter sub
ALr-nsour(Mensonm, 0, ) = AIyy —Tlensom, 0, f) 2 X space. Finally, performance &f r_ yscar is better (no dB

o (12) loss) and close to the previous one when secondary data are
This new detector is texture-CFAR and also asymptoticallyiot suffering from target contamination. This is the second
M-CFAR thanks to the consistency By scar (Eg. (11)).  advantage of the combination of low rank and the NSCM.
In the next section, the performance of this detector are
compgred on experimental STAP data to those of classical 5. CONCLUSION
detection schemes.

In this paper, we developed a new low-rank STAP detector for
4. RESULTS ON STAP DATA non-homogeneous clutter. This detector is based on statist
cal properties of the Normalized Sample Covariance Matrix.
For non-homogeneous clutter, performancé@ﬁ,NSCMT We showed that this detector has CFAR properties in term of
would be better thad g and Az r_scar ONes, but an-  texture and, asymptotically, in term of the CCM. When tested
other interested advantage of this new detector can beqabinton experimental STAP data obtained from a real clutter, this
out: its excellent behavior when the secondary data are comletector has been shown to provide increased performance
taminated by the target. compared to conventional full rank detectors. It also eihib
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1. Comparison of the three detectaks;crr (top),

ALR SCMT (mldd|6) andALR NSCMT (bottom) without
target contamination.

robustness to target contamination compared to existiwg lo [9]
rank detection schemes.
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