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ABSTRACT

Reducing the number of secondary data used to estimate the
Clutter Covariance Matrix (CCM) for Space Time Adaptive
Processing (STAP) techniques is still an active research topic.
Low rank CCM estimates have already been proposed but
only for homogeneous and Gaussian clutter. We propose in
this paper to extend the low-rank CCM methods for heteroge-
neous and/or non-Gaussian clutter. We derive a new detector
based on low-rank techniques and exploiting properties of the
Normalized Sample Covariance Matrix (NSCM). This detec-
tor is shown to exhibit a smaller SNR loss than classical STAP
detectors. Moreover, the new detector has a texture-CFAR
property with respect to non-Gaussian SIRV model and has
more robust behavior when some targets are present in the
secondary data. We also give experimental comparison re-
sults between the classical STAP detectors and the new one
for STAP data.

Index Terms— STAP, non-homogeneous and low rank
clutter, CFAR detector, Normalized Sample Covariance Ma-
trix.

1. INTRODUCTION

Space Time Adaptive Processing (STAP) is a recent tech-
nique [1] used in airborne phased array radar to detect mov-
ing target embedded in an interference background such as
jamming or strong clutter. While conventional radars are ca-
pable of detecting targets both in the time domain related to
target range and in the frequency domain related to target
velocity, STAP uses an additional domain (space) related to
the target angular localization. The consequence is a two-
dimensional adaptive filtering technique which uses jointly
temporal and spatial dimensions to suppress interference and
to improve target detection. Recently, STAP can be jointly
used with High Resolution Synthetic Aperture Radar (SAR)
imaging waveforms for a better classification of the moving
target. But in this case, the widely used hypothesis of a Gaus-
sian noise is not valid anymore and detection performance
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significantly decreases. For that purpose, non-Gaussian mod-
els for the clutter have to be considered. In the literature of
radar detection and estimation, the Spherically InvariantRan-
dom Vectors (SIRV) [2] are generally used for their statistical
properties and for their good fitting with real data [3]. This
modeling includes classical distributions as for example the
Gaussian distribution, the K-distribution or the Weibull dis-
tribution.

One of the main challenging problem in STAP detection
is to estimate the Clutter Covariance Matrix (CCM); better
the accuracy of the estimate, better the detection performance.
The CCM is estimated from signal-free and independent data,
called the secondary data. Under non-Gaussian clutter as-
sumptions, this raises several difficulties. First, the hetero-
geneity of the clutter deteriorates the CCM estimation accu-
racy. Indeed, if the secondary data do not result from the
same parametrized distribution, i.e. the same covariance ma-
trix, this estimation process makes no sense. On the other
hand, the secondary data may contain parts of the target (e.g.
sidelobes) present in the range cell under study, even if this
problem can be partly avoided with guard cells. These two
problems show the necessity of a robust CCM estimator and,
as a consequence, the robustness of the STAP detector. This
is the purpose of this paper.

In this paper, to overcome the problem of clutter het-
erogeneity, we propose to use the Normalized Sample Co-
variance Matrix (NSCM) [4] which is invariant to the clutter
power variations (texture), while for the problem of target
contamination, we propose a Low Rank (LR) [5] approach
which requires fewer secondary data for the CCM estima-
tion. The combination of these two techniques leads to a
new improved detector, called the Low Rank-Normalized
Sample Covariance Matrix Test (LR-NSCMT). Then, the sta-
tistical analysis of this detector provides the Constant False
Alarm Rate (CFAR) properties with respect to the texture
and, asymptotically, in term of the CCM. Moreover, the LR-
NSCMT is applied to realistic STAP data (built from a true
Very High Resolution SAR image) and its robustness to target
contamination is validated.

The paper is organized as follows: Section 2 gives the



problem statement while Sections 3 and 4 contain the main
contributions. First, we derive the LR-NSCMT and we ana-
lyze its statistical properties and then, the detector is applied
to real STAP data. Finally, Section 5 concludes this work.

2. PROBLEM STATEMENT

The problem of STAP [1] is considered when an airborne
radar is used to detect a moving target. We focus here without
loss of generality on GMTI (Ground Target Moving Indicator)
applications for which illumination is made across the flying
path. Typically, the radar receiver consists of an array ofN
antenna elements collectingM pulses in a coherent process-
ing interval. We are interested in detecting a complex signal s
corrupted by an additive SIRV clutterc in aNM -dimensional
complex vectory. The complex signal is parameterized by
the target characteristics: the target amplitudeα0, the nor-
malized Doppler frequencyf0 and the azimuthal angleθ0 of
the target. For a given target range bin under test, the detec-
tion scheme can be stated as the following binary hypothesis
test:

{

H0 : y = c yi = ci i = 1, . . . , Ns

H1 : y = s + c yi = ci i = 1, . . . , Ns

, (1)

whereyi are theNs signal-free independent measurements,
i.e. the secondary data, used to estimate the CCM.

Under the hypothesisH1, it is assumed that the observed
data consists in the sum of a signals = α0 p(θ0, f0) and clut-
terc, wherep(θ0, f0) is the classical complex steering vector
andα0 is the signal complex amplitude. The parametersf0,
θ0 andα0 are unknown.

The clutter is modeled in this paper as a SIRV, a non-
homogeneous Gaussian process with random power: its
randomness is induced by spatial variation in the radar
backscattering. A SIRV [2] is the product of the square
root of a positive random variableτ (called the texture) with
unknown Probability Density Function (PDF)p(τ), and a
NM -dimensional independent complex Gaussian vectorx

(called thespeckle), with zero-mean and covariance matrix
M = E(xxH) (H denotes the conjugate transpose operator):

c =
√

τx (2)

Note that the covariance matrix is normalized according to
Tr(M) = NM [6] for identifiability considerations.

Under hypothesesH0 andH1, the observations PDF de-
pends on several unknown quantities: the amplitudeα0, the
target parametersθ0 and f0, the texture PDFp(τ) and the
covariance matrixM. Therefore, a Generalized Likelihood
Ratio Test (GLRT) is usually developed. The major difficulty
comes from the estimation of the texture Probability Density
Function (PDF). WhenM is known, this problem was solved
in a different ways in [7, 8] (BORD) and [9] (GLRT - Linear
Quadratic):

Λ(M−1, θ, f) = max
θ,f

|p(θ, f)HM−1y|2

(p(θ, f)HM−1p(θ, f))(yHM−1y)

H1

≷
H0

λ (3)

This test has interesting properties: it is CFAR with regards
to the texture distribution and a closed-form relationshipbe-
tween the Probability of False Alarm (PFA) and the threshold
λ has been derived.

But, in practice,M is generally unknown and has to be
estimated from the secondary datayi. The CCM estimate is
denotedM̂. Then, test (3) may be rewritten in its adaptive
version by replacingM by its estimateM̂. In this case, and
for Gaussian clutter, it is well known that the Reed-Mallett-
Brennan’s rule ensures a SNR Loss equal to3 dB for Ns =
2NM .

Let λn with 1 ≤ n ≤ NM be the CCM eigenvalues. The
CCM is well known to exhibit a low rankr ≪ NM provided
by Brennan’s rule [10]. This low rank assumption will be
made in the following:

λ1, . . . , λr ≫ λr+1 = . . . = λNM (4)

In this low-rank clutter STAP context [5], let us denote byΠ̂c

the estimated projector onto the clutter subspace, i.e. thesub-
space spanned by the eigenvectors associated to ther greatest
eigenvalues. The inverse CCM may then be approximated as
follows (up to a scal factor):

M̂−1 ∝ INM − Π̂c (5)

By substitutingINM − Π̂c for M̂−1 in Eq. (3), we obtain a

new test̂Λ(Π̂c, θ, f) = Λ(INM − Π̂c, θ, f)
H1

≷
H0

λ′.

This new test has several advantages: the first one is that
the SNR loss has been shown to be roughly equal to3 dB
whenNs = 2r in the case of homogeneous Gaussian sec-
ondary data [11, 12]. The second one concerns the possibility
for the datayi to be corrupted by the signal without a strong
decrease of performance when the signal to clutter ratio is
low [13]. This allows to have firstly a significant reduction of
the required number of secondary data and, secondly, robust-
ness to data corrupted by a target.

This paper proposes a new method to estimate the projec-
tor Πc in the case of a non-homogeneous clutter.

3. ESTIMATION OF ΠC

Let us first recall the common way to estimate the projector
Πc in the case of homogeneous clutter. The Sample Covari-
ance Matrix (SCM) is computed from secondary datayi:

M̂SCM =
1

Ns

Ns
∑

i=1

yi y
H

i (6)

The Eigenvalue Value Decomposition (EVD) of̂MSCM

is next performed:

M̂SCM = (Ur U0)

(

Σr 0

0 Σ0

)

(Ur U0)
H

, (7)



whereUr andU0 are respectively two(NM×r) andNM×
(NM − r) unitary matrices,Σr = diag{λ̂1, . . . , λ̂r} and
Σ0 = diag{λ̂r+1, . . . , λ̂NM} are the matrices of the esti-
mated eigenvalues. From the low rank clutter assumption,
we have the following eigenvalue property:̂λ1, . . . , λ̂r ≫
λ̂r+1, . . . , λ̂NM . Next, we obtain the estimated projector onto
the clutter subspace [13]:

Π̂cSCM = Ur UH

r (8)

The resulting Low Rank Sample Covariance Matrix Test (LR-
SCMT) becomes:

Λ̂LR−SCMT (Π̂cSCM , θ, f) = Λ(INM − Π̂cSCM , θ, f)
H1

≷
H0

λ′′ (9)

In the case of non-homogeneous clutter, it is well-known that
the SCM is not a good estimate of the clutter covariance ma-
trix. As a consequence, the same conclusion holds for the
estimateΠ̂cSCM of Πc. In heterogeneous clutter modeled by
SIRV processes, the NSCM is a very interesting alternative to
M̂SCM :

M̂NSCM =
NM

Ns

Ns
∑

i=1

yi yH
i

yH
i yi

(10)

The statistical properties of̂MNSCM have been studied in
detail in [14]. In this paper it was shown that, despite its
bias, E(M̂NSCM ) has the same eigenvectors as the CCM
Mc. The associated eigenvalues are different, but their or-
dering and their multiplicity are identical. Therefore, the pro-
jector Π̂cNSCM built from the NSCM (10) using steps (7)
and (8) is a good candidate for estimatingΠc in the case of
non-homogeneous clutter. Moreover, this estimate is easily
shown to be consistent in our SIRV framework:

Π̂cNSCM

P−→ Πc, (11)

whenNs → ∞. This new estimate of the projector leads to a
detection test that we call the Low Rank Normalized Sample
Covariance Matrix Test (LR-NSCMT):

Λ̂LR−NSCMT (Π̂cNSCM , θ, f) = Λ(INM − Π̂cNSCM , θ, f)
H1

≷
H0

λ′′′

(12)

This new detector is texture-CFAR and also asymptotically
M-CFAR thanks to the consistency ofΠ̂cNSCM (Eq. (11)).

In the next section, the performance of this detector are
compared on experimental STAP data to those of classical
detection schemes.

4. RESULTS ON STAP DATA

For non-homogeneous clutter, performance ofΛ̂LR−NSCMT

would be better than̂ΛSCMT andΛ̂LR−SCMT ones, but an-
other interested advantage of this new detector can be pointed
out: its excellent behavior when the secondary data are con-
taminated by the target.

The STAP data are provided by the french DGA/CELAR’s
simulator that allows to synthesize, in side looking configu-
ration, STAP datacubes from very high resolution RAMSES
Synthetic Aperture Radar (SAR) [15]. The number of sen-
sors isN = 4 and the number of coherent pulses can be up
to M = 64. The center frequency and the bandwidth are
respectively equal tof0 = 10 GHz andB = 5 MHz. The
radar velocity is given byV = 100 m/s. The inter-element
spacing isd = 0.3 m and the pulse repetition frequency is
fr = 1kHz. The value of parameterβ is therefore equal to
2/3 and the estimated clutter rank is here equal tor = 46 (for
M = 64) in comparison to the full size of clutter covariance
matrix, MN = 256. For this particular STAP datacube,
clutter statistic is closer to Gaussian’s one than SIRV’s one.
In this scenario, three targets are present: (4 m/s,0 deg, bin
216), (4 m/s, 0 deg, bin 256) and (−4 m/s, 0 deg, bin 296).
This allows to compare performance of the three detectors
Λ̂SCMT , Λ̂LR−SCMT and Λ̂LR−NSCMT for the range bin
256 under test when the secondary data are contaminated by
the targets located in range bins 216 and 296.

Figure 1 shows the results ofΛ̂SCMT (result ofΛ̂NSCMT

is quite the same),̂ΛLR−SCMT andΛ̂LR−NSCMT when the
targets in range bins 216 and 296 are removed from secondary
data. As the number of secondary data isNs = 410 <
2NM , performance of̂ΛSCMT detector is poor but the tar-
get can still be detected. Results of both low rank detectors
are much better. As clutter is homogeneous, their results are
the same. This is the first advantage of low rank detectors
which need less secondary data for an equivalent performance
(2r ≪ 2NM ).

Figure 2 shows the results of̂ΛSCMT , Λ̂LR−SCMT and
Λ̂LR−NSCMT when all secondary data are considered. First,
it can be noticed that the target response is not detected any-
more byΛ̂SCMT due to the presence of the target contami-
nation in the secondary data. Performance ofΛ̂LR−SCMT is
degraded: in comparison to the previousΛ̂LR−SCMT perfor-
mance without contamination, there is a loss of 6 dB but the
target of interest is still detected. Actually, a part of thetarget
in secondary data is estimated in the orthogonal clutter sub-
space. Finally, performance ofΛ̂LR−NSCMT is better (no dB
loss) and close to the previous one when secondary data are
not suffering from target contamination. This is the second
advantage of the combination of low rank and the NSCM.

5. CONCLUSION

In this paper, we developed a new low-rank STAP detector for
non-homogeneous clutter. This detector is based on statisti-
cal properties of the Normalized Sample Covariance Matrix.
We showed that this detector has CFAR properties in term of
texture and, asymptotically, in term of the CCM. When tested
on experimental STAP data obtained from a real clutter, this
detector has been shown to provide increased performance
compared to conventional full rank detectors. It also exhibits
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Fig. 1. Comparison of the three detectorsΛ̂SCMT (top),
Λ̂LR−SCMT (middle) andΛ̂LR−NSCMT (bottom) without
target contamination.

robustness to target contamination compared to existing low
rank detection schemes.
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